Technical Series No

Total Page:16

File Type:pdf, Size:1020Kb

Technical Series No REVISION OF THE nematinj: of north America, A SUBFAMILY OF LEAF-FEEDJNG HYMENOPTERA OF THE FAMILY TENTHREDINIDJ^]. ( ^ L. MARLATT. ^. WASHINGTON : GOVERNMENT PRINTING OFFICE. 1 SOfi. c<^. '/ .Frontispiece. Agriculture. U. S. Department of Tech. Ser. No. 3, D,v. Entom., Leaf Galls of Pontania. 7. P. bruneri n. sp. 4. P. povvum Walsh. 1. Pontania resinicola n. sp. 2 P hvalina Norton. 5. P. pyriformis u. sp. niO)w?e u. sp. 3. P. desmodioides Walsh. 6. P. Technical Series No. 3. U. S. DEPARTMENT OF AGRICULTURE. DIVISION OF ENT()M()H)GY- REVISION OF THE NEMATIN/E OF NORTH AMERICA, A SUBFAMILY OF LEAF-FEEDING HYMENOPTERA OF THE FAMILY TENTHREDINIDiE. C. L. MARLATT, FIRST ^-SSISa^^NT KN'iM )]VXOT^OGMST. WASHINGTON : GOVERNMENT PRINTING OFFICE, 1896, LETTER OF TRANSMITTAL. United States Department of AaRicuLTURE, Division of Entomology, Washington, I). C, February 25, 1896. Sir: I luive the honor to submit for i)ublicatiou the third number of the techuical series of bulletins of this Division. It has been prepared by my first assistant, Mr. C L. Marhitt, aud consists of a monographic revision of the IS^eniatiuie, an important subfamily of leaf-feeding hymeuoi^terous insects of the family Tenthredinida'. The larva; of these insects are all plant-feeders aud include amoug their uumber some very important enemies of cultivated plants. They represent, economically, the most important group of the family to which they belong. Respectfully, L. O. Howard, Entomoloyist, Hon, J. Sterling Morton, ISecretary of Agriculture. 3 . CONTENTS. Page. The Nematin.e of North America 7 Introduction 7 Geographical distribution 7 Food-plants 7 Life history and habits 7 Range of species and economic importance 9 Difficulties arising from confusion of species and loss of types 9 Sources of material 10 Structure and terminology 10 Classification i 17 Table of genera 18 Genus Cladius 19 Trichiocampus 20 Priophorns 20 Camponiscns 20 Anoplonyx 20 Euura 20 Pontania 20 Pteronus 44 Amauroneniatus '^ Crci'sus ^6 Holcocnerao 87 Nematus o7 Pachynematus 91 Micronematus HO Lyga^onematns HI Pristiphora H*^ Gy mnonychus 1-^2 Dineura 125 HcMiichroa 125 are lost or inaccessible. 126 Appendix : Description of species the types of which Index to genera and species l^*' 5 LIST OF ILLUSTRATIONS. Page. Leaf Galls of Pontania Frontispiece Fig. 1. Head of retcronns extensicorms 11 2. Moutli-parts of Pachynematus erichsonii 12 3. Thorax of rachi/nematus erichsonii 13 4. Types of claws 15 5. Abdomen of Pachynematus erichsonii 16 G. Venation of Nematines 16 7. Pontania pisum Walsh 33 8. Pteronus rcntralis Say 51 D. Pachynematus extensicornis Norton 97 10. Gymnouyehus californicus n. sp 123 6 THE NEMATIN.'E OF NORTH AMERICA. INTRODUCTION. The subfamily NemaUnm of Thompson or Nematina of Cameron (Konow's sabtribe Nematides) comprises a very large group of closely allied species, distributed in the classification adopted by the author among nearly a score of genera. They range from very small insects to medium sized, but include no very large species, or in length from 2 to 12 mm. They are for the most part smooth, shining, and rather soft bodied, and are variously colored, but yet presenting frequently a confusing similarity in general form, and iiarticularly in coloration, rendering their generic and specific references in some cases difficult. In point of number of species and abundance of individuals this sub- fixmily lar exceeds any other of the corresponding groups in the family Tenthredinidii^, and in variation and peculiarities in larval habits and in economic importance many of the species belonging to it have a very great interest. Geofjrajyhical distribution.—The Nematina) are distinctly northern in their range, reaching their greatest development in abundance of species and specimens in the transition and boreal zones, and extend north- ward into circumpolar regions— species occurring abundantly in Green- land, Iceland, and Spitzbergen. Southward they become less and less numerous, and are practically wanting in tropical countries. This is illustrated very forcibly in Europe by the occurrence of over 70 species of the old genus Nematus in Scotland (Cameron) and 95 in Sweden (Thompson), as against 12 about Naples, Italy (Costa) ; and the same discrepancy exists between the temperate and subarctic region of America and the Southern States and Mexico. Food-plants—Their food-plants cover a wide range, some species affect- ing grasses, one or two very destructive ones the grains, others various deciduous trees and shrubs, and still others conifers. The majority of the species occur, however, on plants of the families Salicacea', Betu- laceai, Eosace», and Couifera), in the order given. Life history and habits. —The Nematines are among the first sawflies to api)ear in spi-ing, occurring abundantly on trees at the first ax)pear- ance of the leaves. They do not often frequent flowers, except, at least, those of the plants upon which their larva', feed. Many willow species, for example, occur abundantly on the earliest spring bloom of the willow. 7 In commou with other sawflies, however, they rarely leave their larval food- plants, and to be collected snccessfully a knowledge of their habits in this respect is very desirable. In number of broods great diversity is found, and the normal rule of most Teuthredinidic, of a single yearly brood, is frequently deviated from. Some species are known to be limited in number of broods only by the length of the season, as, for example, Ptcronus centralis Say, the common willow species. Two annual generations are common, but mai^y species are snigle brooded, the larva* entering the soil or other material or remaining in their galls at the completion of growth and continuing in dormant condition until the following spring, when shortly before they emerge as perfect insects the change to the pupal condition takes i^lace. The males normally appear a few days before the females, and the duration of the life of the adults of both sexes is short, not often exceeding a week or ten days. Of a large percentage of the species no males are known, and in the case of many species careful and repeated breeding records indicate that males are very rarely produced. In some species parthenogenesis is complete; that is, the eggs from unimpregnated females produce other females. In other instances of parthenogenesis, however, either males only are developed from unfer- tilized ova or females very rarely. The union of the sexes takes i)lace very shortly after the appearance of the females and egg deposition closely follows. The eggs are inserted either singly or a number together in the young twigs, larger veins, l^etioles, in the surface j)arenchyma, or in the edges of the leaves, the single exception being the case of the gooseberry sawfly {Ptcronus ribesii), which merely glues its eggs to the leaf without making any incision whatever. Most of the species are external feeders on the foliage of plants, but the species of two genera, Euura and Pontania^ so far as their habits have been studied, are gall makers, and pass their early life in the interior of the iilants, either in the stems without causing abnormal growths or in the excrescences or galls on the stems and leaves. At least one American si^ecies develops in the rolled or folded edge of the leaf. The larv.T are 20-footed, some solitary, others gregarious—the latter usually more brightly colored and possessing means of i^rotec- tion in glands secreting a noxious fluid. Most of the solitary ones are green and not readily observed. They usually feed from the underside of the leaves, eating from the edge or cutting circular holes in the gen- eral surface, and in some cases taking everything but the stronger veins. Many species rest quietly during the day, feeding only at night. Some have the habit of throwing the posterior segments violently upward to frighten away parasites or enemies; others adhere to the leaves or twigs by the thoracic feet only, coiling the jiosterior segments under the middle ones. 9 The nematine larva, after its final molt,' generally enters the ground to liupate, spinning a double or single silken cocoon more or less incor- porated with particles of earth exteriorly. In the case of the species having several broods annually, the cocoons, at least of the summer generation, are frequently constructed above ground, either among the dry leaves and rubbish at the base of the host plant, or on the twigs, or in crevices of the bark of the latter. Some of the gall species pupate m their galls, but many of them abandon their galls to undergo their transformations in rotten wood, in the pith of plants, in deserted galls, or iu the earth. Species living exposed on the leaves will also sometimes enter deserted galls, either to transform or to hibernate.-^ Range of species and economic importance.—Somefew species are known to be widely distributed, and this is particularly true of the larch saw- Hy, which occurs throughout Canada and the Northern States, and also in Europe. Whether this species {Lygwonematus erichsonii Ilartig) can be called an introduced species or not is a question. Its wide dis- tribution throughout the Northern States would seem to indicate that it has, perhaps for many centuries, occurred on both continents. The gooseberry and currant sawflies, however [Fterornis ribesii Scop, and Fristiphora appendiculata Hartig), are undoubted cases of importation. The economic importance of the group is well illustrated by the species just mentioned, the last two being among the most serious enemies of several small fruits, and the first threatening the almost total destruction of the larch forests in many districts. Other examples of very destruc- tive species are the willow sawfly {Pteornus ventralis Say), the wheat sawfly (Pachynematus extensicornis Nort.), the Western pear sawfiy {Gymnonychus californicus n.
Recommended publications
  • ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity.
    [Show full text]
  • Willows of Interior Alaska
    1 Willows of Interior Alaska Dominique M. Collet US Fish and Wildlife Service 2004 2 Willows of Interior Alaska Acknowledgements The development of this willow guide has been made possible thanks to funding from the U.S. Fish and Wildlife Service- Yukon Flats National Wildlife Refuge - order 70181-12-M692. Funding for printing was made available through a collaborative partnership of Natural Resources, U.S. Army Alaska, Department of Defense; Pacific North- west Research Station, U.S. Forest Service, Department of Agriculture; National Park Service, and Fairbanks Fish and Wildlife Field Office, U.S. Fish and Wildlife Service, Department of the Interior; and Bonanza Creek Long Term Ecological Research Program, University of Alaska Fairbanks. The data for the distribution maps were provided by George Argus, Al Batten, Garry Davies, Rob deVelice, and Carolyn Parker. Carol Griswold, George Argus, Les Viereck and Delia Person provided much improvement to the manuscript by their careful editing and suggestions. I want to thank Delia Person, of the Yukon Flats National Wildlife Refuge, for initiating and following through with the development and printing of this guide. Most of all, I am especially grateful to Pamela Houston whose support made the writing of this guide possible. Any errors or omissions are solely the responsibility of the author. Disclaimer This publication is designed to provide accurate information on willows from interior Alaska. If expert knowledge is required, services of an experienced botanist should be sought. Contents
    [Show full text]
  • 25Th U.S. Department of Agriculture Interagency Research Forum On
    US Department of Agriculture Forest FHTET- 2014-01 Service December 2014 On the cover Vincent D’Amico for providing the cover artwork, “…and uphill both ways” CAUTION: PESTICIDES Pesticide Precautionary Statement This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife--if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Product Disclaimer Reference herein to any specific commercial products, processes, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recom- mendation, or favoring by the United States government. The views and opinions of wuthors expressed herein do not necessarily reflect those of the United States government, and shall not be used for advertising or product endorsement purposes. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C.
    [Show full text]
  • Insects That Feed on Trees and Shrubs
    INSECTS THAT FEED ON COLORADO TREES AND SHRUBS1 Whitney Cranshaw David Leatherman Boris Kondratieff Bulletin 506A TABLE OF CONTENTS DEFOLIATORS .................................................... 8 Leaf Feeding Caterpillars .............................................. 8 Cecropia Moth ................................................ 8 Polyphemus Moth ............................................. 9 Nevada Buck Moth ............................................. 9 Pandora Moth ............................................... 10 Io Moth .................................................... 10 Fall Webworm ............................................... 11 Tiger Moth ................................................. 12 American Dagger Moth ......................................... 13 Redhumped Caterpillar ......................................... 13 Achemon Sphinx ............................................. 14 Table 1. Common sphinx moths of Colorado .......................... 14 Douglas-fir Tussock Moth ....................................... 15 1. Whitney Cranshaw, Colorado State University Cooperative Extension etnomologist and associate professor, entomology; David Leatherman, entomologist, Colorado State Forest Service; Boris Kondratieff, associate professor, entomology. 8/93. ©Colorado State University Cooperative Extension. 1994. For more information, contact your county Cooperative Extension office. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture,
    [Show full text]
  • Hymenoptera: Symphyta, Tenthredinidae) from Japan and Korea
    New Nematinae species (Hymenoptera: Symphyta, Tenthredinidae) from Japan and Korea A. Haris & B. Zsolnai Haris, A. & B. Zsolnai. New Nematinae species (Hymenoptera: Symphyta: Tenthredinidae) from Japan and Korea. Zool. Med. Leiden 81 (7), 8.vi.2007: 137-147, fi gs. 1-18.— ISSN 0024-0672. Attila Haris, H-8142 Urhida, Petöfi u. 103, Hungary (e-mail: [email protected]). Balázs Zsolnai, Plant Protection and Soil Conservation Service of County Fejér, H-2481, Velence, Ország u. 23, Hungary (e-mail: [email protected]). Key words: Hymenoptera; Symphyta; Tenthredinidae; Pristiphora; Pachynematus; Pontania; Euura; Japan; Korea; new species. Seven new species of Nematinae (Tenthredinidae) from Japan and Korea are described: Pachynematus hirowatari spec. nov, P. hayachinensis spec. nov., Pristiphora nigrocoreana spec. nov, P. issikii spec. nov., P. shinoharai spec. nov, Pontania nipponica spec. nov. and Euura soboensis spec. nov. Pristiphora punctifrons (Thomson, 1871) is new record for Japan. Introduction Matsumura (1912) was the fi rst to study intensively the sawfl y fauna of Japan. However, the Nematinae sawfl ies are a group that has been neglected and its species are still poorly known. As a comparison, 116 Nematinae species occur in the post-Trianon Hungary (93,000 mi2) (Haris, 2001), yet only 94 species are recorded from Japan (377,835 mi2). In this paper, I add eight species to the Japanese and Korean fauna, seven of which are new and one is new record. A revision of the Nematinae of Japan and the Far East will be published in a separate paper. The material studied is mainly in the Takeuchi collection deposited in the Univer- sity of Osaka Prefecture; one species is described from the collection of the National Museum of Natural History, Washington D.C.
    [Show full text]
  • VC55 Species Number
    VC55 Species Number: 135 Last updated: 3rd Feb 2018 Species Common Records Last Seen Arge berberidis Berberis Sawfly 16 2017 Arge cyanocrocea Bramble Sawfly 30 2017 Arge melanochra none 2 2016 Arge ochropus Rose Sawfly 15 2017 Arge pagana Large Rose Sawfly 19 2017 Arge ustulata none 8 2017 Calameuta filiformis Reed Stem Borer 3 2015 Cephus nigrinus none 1 2017 Cephus pygmeus Wheat Stem Borer 6 2017 Cephus spinipes none 2 2017 Hartigia xanthostoma none 1 2014 Abia sericea Scabious/Club-horned Sawfly 6 2017 Cimbex connatus Large Alder Sawfly 4 2017 Cimbex femoratus Birch Sawfly 8 2017 Trichiosoma lucorum 1 1990 Trichiosoma tibiale Hawthorn Sawfly 2 1999 Zaraea fasciata 2 2017 Diprion similis Imported Pine Sawfly 2 2014 Diprion pini 1 2017 Pamphilius betulae 2 2017 Sirex noctilio 1 1980 Urocerus gigas Giant Woodwasp 25 2017 Allantus cinctus Curled Rose Sawfly 6 2014 Allantus cingulatus 2 2014 Allantus calceatus 1 2015 Ametastegia carpini Geranium Sawfly 3 2017 Ametastegia glabrata 1 2014 Apethymus filiformis 1 2014 Athalia bicolor 1 2014 Athalia circularis 5 2017 Athalia cordata 11 2017 Athalia liberta 2 2016 Athalia rosae Turnip Sawfly 31 2017 Athalia scutellariae Skullcap Sawfly 7 2017 Blennocampa pusilla 3 1996 Blennocampa phyllocolpa 7 2017 Caliroa annulipes Oak Slug Sawfly 2 2014 Caliroa cerasi Pear Slug Sawfly 4 2015 Eutomostethus ephippium 8 2017 Eutomostethus luteiventris 1 2014 Halidamia affinis 2 2013 Monophadnus pallescens 1 2011 Periclista albida 1 2010 Periclista lineolata Oak Sawfly 4 2016 Phymatocera aterrima Solomon's Seal
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • On the Taxonomy and the Host Plants of North European Species of Eupontania
    Beitr. Ent. Keltern ISSN 0005 - 805X Beitr. Ent. 56 (2006) 2 239 56 (2006) 2 S. 239 - 268 15.12.2006 On the taxonomy and the host plants of North European species of Eupontania (Hymenoptera: Tenthredinidae: Nematinae) With 3 figures and 1 table VELI VIKBERG and ALEXEY ZINOVJEV Zusammenfassung In Europa umfasst Eupontania die vesicator-, viminalis-, aquilonis- und crassipes-Artengruppen. Aus Nord- europa werden 13 Arten der Eupontania-viminalis-Gruppe aufgeführt. E. brevicornis (Förster, 1854), sp. rev. und comb. n. (= Nematus congruens Förster, 1854, syn. n., Pontania carpentieri Konow, 1907, syn n., Pontania pedunculi auct., nec Hartig), die Gallen an Salix cinerea L. hervorruft, wird in Finnland nachgewiesen und mit der eng verwandeten E. arcticornis (Konow, 1904) verglichen, die Gallen an Salix phylicifolia L. bildet. Die Taxonomie und die Wirtspflanzen von E. pedunculi (Hartig, 1837) (= Nematus bellus Zaddach, 1876; Pontania gallarum auct. nec. Hartig) und E. gallarum (Hartig, 1837) (= N. aestivus Thomson, 1863, syn. n.; Pontania varia Kopelke, 1991, syn. n.; Pontania norvegica Kopelke, 1991, syn. n.) werden kurz diskutiert. E. pedunculi wird als Art betrachtet, die Gallen an verschiedenen Arten der Sektion Vetrix hervorruft, nicht aber an S. cinerea: Salix aurita L., S. caprea L., S. starkeana ssp. starkeana Willd. und ssp. cinerascens (Wahlenb.) Hultén (= S. bebbiana Sarg.). Der Status von E. myrtilloidica (Kopelke, 1991), die an S. myrtilloides L. in Finnland nachgewiesen wurde, bleibt unsicher. Die Wirtspflanze von E. gallarum ist Salix myrsinifolia Salisb. einschliesslich der ssp. borealis (Fr.) Hyl. Lectotypen werden festgelegt für Pontania arcticornis, P. phylicifoliae Forsius, 1920, P. viminalis var. hepatimaculae Malaise, 1920, Nematus brevicornis, P.
    [Show full text]
  • The Yellow-Headed Spruce Sawfly in Maine
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 1953 The Yellow-headed Spruce Sawfly in Maine. Edward John Duda University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Duda, Edward John, "The Yellow-headed Spruce Sawfly in Maine." (1953). Masters Theses 1911 - February 2014. 2871. Retrieved from https://scholarworks.umass.edu/theses/2871 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. i']■])'■: Y MID W-HEADED SPRUCE I) 0 D A -19 5 3 IMORR -LD 3234 iM268 1953 D344 ✓ A**-*- The Yellow-headed Spruce Sawfly in Maine Edward J. Dnda l?-1‘I^ x~ I'M ; Thesis submitted in partial fulfillment of the requirements for Degree of Master of Science. University of Massachusetts Amherst, Massachusetts June, 1953* To Mother < This thesis is dedicated in memory of Jennie E. Duds beloved mother and very dear friend, who has always been my inspiration. ACKNOWLEDGEMENTS The author is greatly indebted to H. B. Peirson, State Entomol¬ ogist of Maine who made the development of this problem possible* It was through hie generous efforts that the writer was permitted to use informa¬ tion that had been obtained while under the employ of the Maine Forest Service* Indebtedness is also expressed to The F. A* Bartlett Tree Expert Company of Stamford, Connecticut who so generously granted the author leave from his present duties to complete this work* The writer also wishes to make acknowledgements to J* F* Hanson, Assistant Professor of Entomology, University of Massachusetts, under whose direction this work was done) to W* B* Becker and R* P* Holdsworth who also, as members of the thesis committee, critically read this thesis and offered helpful suggestions) to R* W* Nash and A* E.
    [Show full text]
  • Lajiluettelo 2020
    Lajiluettelo 2020 Artlistan 2020 Checklist 2020 Helsinki 2021 Viittausohje, kun viitataan koko julkaisuun: Suomen Lajitietokeskus 2021: Lajiluettelo 2020. – Suomen Lajitietokeskus, Luonnontieteellinen keskusmuseo, Helsingin yliopisto, Helsinki. Viittausohje, kun viitataan osaan julkaisusta, esim.: Mutanen, M. & Kaila, L. 2021: Lepidoptera, perhoset. – Julkaisussa: Suomen Lajitietokeskus 2021: Lajiluettelo 2020. Suomen Lajitietokeskus, Luonnontieteellinen keskusmuseo, Helsingin yliopisto, Helsinki. Citerande av publikationen: Finlands Artdatacenter 2021: Artlistan 2020. – Finlands Artdatacenter, Naturhistoriska centralmuseet, Helsingfors universitet, Helsingfors Citerande av en enskild taxon: Mutanen, M. & Kaila, L. 2021. Lepidoptera, fjärilar. – I: Finlands Artdatacenter 2021: Artlistan 2020. – Finlands Artdatacenter, Naturhistoriska centralmuseet, Helsingfors universitet, Helsingfors Citation of the publication: FinBIF 2021: The FinBIF checklist of Finnish species 2020. – Finnish Biodiversity Information Facility, Finnish Museum of Natural History, University of Helsinki, Helsinki Citation of a separate taxon: Mutanen, M. & Kaila, L. 2021: Lepidoptera, Butterflies and moths. – In: FinBIF 2021: The FinBIF checklist of Finnish species 2020 – Finnish Biodiversity Information Facility, Finnish Museum of Natural History, University of Helsinki, Helsinki Lajiluettelo on ladattavissa osoitteessa: laji.fi/lajiluettelo Palaute: helpdesk@laji.fi Artlistan kan laddas ner på sidan: laji.fi/artlistan Feedback: helpdesk@laji.fi The checklist can be downloaded:
    [Show full text]
  • Hymenoptera, Tenthredinidae) with Descriptions of Two New Species from China
    A peer-reviewed open-access journal ZooKeys 829: 29–42First (2019) record of the genus Fagineura Vikberg & Zinovjev with descriptions of... 29 doi: 10.3897/zookeys.829.30086 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research First record of the genus Fagineura Vikberg & Zinovjev (Hymenoptera, Tenthredinidae) with descriptions of two new species from China Mengmeng Liu1,2, Zejian Li2, Meicai Wei3 1 Lab of Insect Systematics and Evolutionary Biology, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, Hunan, China 2 Lishui Academy of Forestry, Lishui 323000, Zhejiang, China 3 College of Life Science, Jiangxi Normal University, Nanchang 330026, Jiangxi, China Corresponding author: Meicai Wei ([email protected]) Academic editor: S.M. Blank | Received 26 September 2018 | Accepted 4 February 2019 | Published 11 March 2019 http://zoobank.org/0FECA10B-88D0-46F0-93EC-34EE524BED9B Citation: Liu M, Li Z, Wei M (2019) First record of the genus Fagineura Vikberg & Zinovjev (Hymenoptera, Tenthredinidae) with descriptions of two new species from China. ZooKeys 829: 29–42. https://doi.org/10.3897/ zookeys.829.30086 Abstract Fagineura Vikberg & Zinovjev, 2000 is recorded from China for the first time. Two species of Fagineura are described as new, F. flactoserrula sp. n. and F. xanthosoma sp. n. A key to the species of Fagineura worldwide is provided, now including four species. In addition, a simple phylogenetic analysis of Fagineura species is provided, based on sequences of the COI and NaK genes. Keywords COI, key, NaK, Nematinae, sawfly, Symphyta, taxonomy Introduction Fagineura Vikberg & Zinovjev, 2000 (Shinohara et al. 2000) is a very small genus of the subfamily Nematinae (Tenthredinidae).
    [Show full text]
  • Diversitymobile – Mobile Data Retrieval Platform for Biodiversity Research Projects
    DiversityMobile – Mobile Data Retrieval Platform for Biodiversity Research Projects Stefan Jablonski1, Alexandra Kehl2, Dieter Neubacher3, Peter Poschlod4, Gerhard Rambold2, Tobias Schneider1, Dagmar Triebel3, Bernhard Volz1, Markus Weiss3 1Applied Computer Science IV 2 DNA Analytics and Ecoinformatics Laboratory University of Bayreuth, Bayreuth, Germany {stefan.jablonski, alexandra kehl, gerhard.rambold, tobias.schneider, bernhard.volz}@uni- bayreuth.de 3IT Center of the Bavarian Natural History Collections Munich, Germany {neubacher,triebel,weiss}@bsm.mwn.de 4Institute for Botany University of Regensburg, Regensburg, Germany [email protected] Abstract: A majority of biodiversity research projects depend on field recording and ecology data. Therefore it is important to provide a seamless and transparent data flow from the field to the data storage systems and networks. Seamless in the sense, that data are available shortly after their gathering, transparent in the sense that the history of data operations may be traced backward. DiversityMobile (with the complementing applications of the Diversity Workbench frameworks) is a GUI software that provides the option of gathering biological and ecological research data in a structured way by using mobile devices for data retrieval. 1 Introduction With the development of scientific data networks for biological and ecological research projects the need for a seamless and transparent flow of data became increasingly important within the last ten years. Especially the establishment of international web portals such as the Global Biodiversity Information Facility (GBIF, http://www.gbif.org), Species2000 (http://www.species2000.org) or the Encyclopedia of Life (http://www.eol.org/) required standards and guidelines set up by politics, and, in parallel, augmented pressure on scientists to provide their primary research data in appropriate interchangeable formats.
    [Show full text]