Intelligent Systems for Molecular Biology

Total Page:16

File Type:pdf, Size:1020Kb

Intelligent Systems for Molecular Biology Intelligent Systems for Molecular Biology Proceed i n gs of the Third In tern a ti onal Con feren ce on In tell i gent Sys tems for Mo l ecular Bi o l ogy Edited byChristopher Rawlings, Dominic Clark, Russ Altman, Lawrence Hunter,Thomas Lengauer, & Shoshana Wodak 414 pp., index. ISBN 0-929280-83-0 $50.00 softcover The organizing committee can report that the level of interest raised by the First and Second Conferences has been sustained and increased. A distinguished program committee, comprising a cross-section of biologists and computer scientists, who are actively engaged in addressing problems in molecular biology using advanced computational methods, has again been assembled from 8 different countries. The call for papers produced 88 submissions which were of a high standard and which reflected the interna- tional nature of the Conference, in that submissions were received from North America, Europe, Asia and Australasia. Proceed i n gs of the Second In tern a ti onal Con feren ce on In tell i gent Sys tems for Mo l ecular Bi o l ogy Edited by Russ Altman, Douglas Brutlag, Peter Karp, Richard Lathrop, and David Searls 408 pp., index. ISBN 0-929280-68-7 $45.00 softcover The papers in this interdisciplinary work present breakthroughs in dynamic programming, multiple sequence alignment, the fed- eration of molecular biology databases, hidden Markov models for sequence analysis, constraint satisfaction techniques for map assembly or structure definition, probabilistic modeling of biological structures and sequences, simulation of metabolic processes, heuristic ways to search large hypothesis spaces, the theory of neural networks, energy functions that fold protein structures more accurately, search algorithms for protein conformation, linguistic parsing techniques for sequence analysis, novel map reconstruc- tion algorithms, computational geometry breakthroughs for drug design, robotic applications to molecular structure, and more. Proceed i n gs of the First In tern a ti onal Con feren ce on In tell i gent Sys tems for Mo l ecular Bi o l ogy Edited by Lawrence Hunter, David Searls, and Jude Shavlik 460 pp., index. ISBN 0-929280-47-4 $45.00 softcover The interdisciplinary work in this proceedings represents original biological results as well as pragmatically-inclined applications of computational research, including work in robotics, statistics, and databases. Pu bl i s h ed by The AAAI Press, 445 Bu rgess Drive, Menlo Pa rk, Ca l i fornia 94025 To order, call (415) 328-3123 or fax to (415) 321-4457. MasterCard and VISA accepted. AAAI members in good standing may take a 20% discount from the printed price..
Recommended publications
  • Proquest Dissertations
    Automated learning of protein involvement in pathogenesis using integrated queries Eithon Cadag A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2009 Program Authorized to Offer Degree: Department of Medical Education and Biomedical Informatics UMI Number: 3394276 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI Dissertation Publishing UMI 3394276 Copyright 2010 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. uest ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 University of Washington Graduate School This is to certify that I have examined this copy of a doctoral dissertation by Eithon Cadag and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Chair of the Supervisory Committee: Reading Committee: (SjLt KJ. £U*t~ Peter Tgffczy-Hornoch In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of this dissertation is allowable only for scholarly purposes, consistent with "fair use" as prescribed in the U.S.
    [Show full text]
  • Functional Effects Detailed Research Plan
    GeCIP Detailed Research Plan Form Background The Genomics England Clinical Interpretation Partnership (GeCIP) brings together researchers, clinicians and trainees from both academia and the NHS to analyse, refine and make new discoveries from the data from the 100,000 Genomes Project. The aims of the partnerships are: 1. To optimise: • clinical data and sample collection • clinical reporting • data validation and interpretation. 2. To improve understanding of the implications of genomic findings and improve the accuracy and reliability of information fed back to patients. To add to knowledge of the genetic basis of disease. 3. To provide a sustainable thriving training environment. The initial wave of GeCIP domains was announced in June 2015 following a first round of applications in January 2015. On the 18th June 2015 we invited the inaugurated GeCIP domains to develop more detailed research plans working closely with Genomics England. These will be used to ensure that the plans are complimentary and add real value across the GeCIP portfolio and address the aims and objectives of the 100,000 Genomes Project. They will be shared with the MRC, Wellcome Trust, NIHR and Cancer Research UK as existing members of the GeCIP Board to give advance warning and manage funding requests to maximise the funds available to each domain. However, formal applications will then be required to be submitted to individual funders. They will allow Genomics England to plan shared core analyses and the required research and computing infrastructure to support the proposed research. They will also form the basis of assessment by the Project’s Access Review Committee, to permit access to data.
    [Show full text]
  • Trancep: Predicting Transmembrane Transport Proteins Using Composition, Evolutionary, and Positional Information
    bioRxiv preprint doi: https://doi.org/10.1101/293159; this version posted April 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. TranCEP: Predicting transmembrane transport proteins using composition, evolutionary, and positional information Munira Alballa1, Faizah Aplop2, Gregory Butler1,3* 1 Department of Computer Science and Software Engineering, Concordia University, Montr´eal, Qu´ebec, Canada 2 School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu, Malaysia 3 Centre for Structural and Functional Genomics, Concordia University, Montr´eal,Qu´ebec, Canada * [email protected] Abstract Transporters mediate the movement of compounds across the membranes that separate the cell from its environment, and across inner membranes surrounding cellular compartments. It is estimated that one third of a proteome consists of membrane proteins, and many of these are transport proteins. Given the increase in the number of genomes being sequenced, there is a need for computation tools that predict the substrates which are transported by the transmembrane transport proteins. In this paper, we present TranCEP, a predictor of the type of substrate transported by a transmembrane transport protein. TranCEP combines the traditional use of the amino acid composition of the protein, with evolutionary information captured in a multiple sequence alignment, and restriction to important positions of the alignment that play a role in determining specificity of the protein. Our experimental results show that TranCEP significantly outperforms the state of the art.
    [Show full text]
  • Algorithms for Computational Biology 8Th International Conference, Alcob 2021 Missoula, MT, USA, June 7–11, 2021 Proceedings
    Lecture Notes in Bioinformatics 12715 Subseries of Lecture Notes in Computer Science Series Editors Sorin Istrail Brown University, Providence, RI, USA Pavel Pevzner University of California, San Diego, CA, USA Michael Waterman University of Southern California, Los Angeles, CA, USA Editorial Board Members Søren Brunak Technical University of Denmark, Kongens Lyngby, Denmark Mikhail S. Gelfand IITP, Research and Training Center on Bioinformatics, Moscow, Russia Thomas Lengauer Max Planck Institute for Informatics, Saarbrücken, Germany Satoru Miyano University of Tokyo, Tokyo, Japan Eugene Myers Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany Marie-France Sagot Université Lyon 1, Villeurbanne, France David Sankoff University of Ottawa, Ottawa, Canada Ron Shamir Tel Aviv University, Ramat Aviv, Tel Aviv, Israel Terry Speed Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia Martin Vingron Max Planck Institute for Molecular Genetics, Berlin, Germany W. Eric Wong University of Texas at Dallas, Richardson, TX, USA More information about this subseries at http://www.springer.com/series/5381 Carlos Martín-Vide • Miguel A. Vega-Rodríguez • Travis Wheeler (Eds.) Algorithms for Computational Biology 8th International Conference, AlCoB 2021 Missoula, MT, USA, June 7–11, 2021 Proceedings 123 Editors Carlos Martín-Vide Miguel A. Vega-Rodríguez Rovira i Virgili University University of Extremadura Tarragona, Spain Cáceres, Spain Travis Wheeler University of Montana Missoula, MT, USA ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Bioinformatics ISBN 978-3-030-74431-1 ISBN 978-3-030-74432-8 (eBook) https://doi.org/10.1007/978-3-030-74432-8 LNCS Sublibrary: SL8 – Bioinformatics © Springer Nature Switzerland AG 2021 This work is subject to copyright.
    [Show full text]
  • Microblogging the ISMB: a New Approach to Conference Reporting
    Message from ISCB Microblogging the ISMB: A New Approach to Conference Reporting Neil Saunders1*, Pedro Beltra˜o2, Lars Jensen3, Daniel Jurczak4, Roland Krause5, Michael Kuhn6, Shirley Wu7 1 School of Molecular and Microbial Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia, 2 Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America, 3 Novo Nordisk Foundation Center for Protein Research, Panum Institute, Copenhagen, Denmark, 4 Department of Bioinformatics, University of Applied Sciences, Hagenberg, Freistadt, Austria, 5 Max-Planck-Institute for Molecular Genetics, Berlin, Germany, 6 European Molecular Biology Laboratory, Heidelberg, Germany, 7 Stanford Medical Informatics, Stanford University, Stanford, California, United States of America Cameron Neylon entitled FriendFeed for Claire Fraser-Liggett opened the meeting Scientists: What, Why, and How? (http:// with a review of metagenomics and an blog.openwetware.org/scienceintheopen/ introduction to the human microbiome 2008/06/12/friendfeed-for-scientists-what- project (http://friendfeed.com/search?q = why-and-how/) for an introduction. room%3Aismb-2008+microbiome+OR+ We—a group of science bloggers, most fraser). The subsequent Q&A session of whom met in person for the first time at covered many of the exciting challenges The International Conference on Intel- ISMB 2008—found FriendFeed a remark- for those working in this field. Clearly, ligent Systems for Molecular Biology
    [Show full text]
  • Computational Biology and Bioinformatics
    Vol. 30 ISMB 2014, pages i1–i2 BIOINFORMATICS EDITORIAL doi:10.1093/bioinformatics/btu304 Editorial This special issue of Bioinformatics serves as the proceedings of The conference used a two-tier review system, a continuation the 22nd annual meeting of Intelligent Systems for Molecular and refinement of a process begun with ISMB 2013 in an effort Biology (ISMB), which took place in Boston, MA, July 11–15, to better ensure thorough and fair reviewing. Under the revised 2014 (http://www.iscb.org/ismbeccb2014). The official confer- process, each of the 191 submissions was first reviewed by at least ence of the International Society for Computational Biology three expert referees, with a subset receiving between four and (http://www.iscb.org/), ISMB, was accompanied by 12 Special eight reviews, as needed. These formal reviews were frequently Interest Group meetings of one or two days each, two satellite supplemented by online discussion among reviewers and Area meetings, a High School Teachers Workshop and two half-day Chairs to resolve points of dispute and reach a consensus on tutorials. Since its inception, ISMB has grown to be the largest each paper. Among the 191 submissions, 29 were conditionally international conference in computational biology and bioinfor- accepted for publication directly from the first round review Downloaded from matics. It is expected to be the premiere forum in the field for based on an assessment of the reviewers that the paper was presenting new research results, disseminating methods and tech- clearly above par for the conference. A subset of 16 papers niques and facilitating discussions among leading researchers, were viewed as potentially in the top tier but raised significant practitioners and students in the field.
    [Show full text]
  • ISMB 99 August 6 – 10, 1999 Heidelberg, Germany the Seventh
    ______________________________________ Welcome to ISMB 99 August 6 – 10, 1999 Heidelberg, Germany The Seventh International Conference on Intelligent Systems for Molecular Biology ______________________________________ Final Program and Detailed Schedule Friday, August 6, 1999 Tutorial Day The tutorials will take place in the following rooms: 8:30 – 12:30 (Coffee break around 10:30) Tutorial #1 Trübnersaal Piere Baldi Probabilistic graphical models Tutorial #2 Robert-Schumann-Zimmer Douglas L. Brutlag Bioinformatics and Molecular Biology Tutorial #3 Ballsaal Martin Reese The challenge of annotating a complete eukaryotic genome: A case study in Drosophila melanogaster Tutorial #4 Gustav-Mahler-Zimmer Tandy Warnow Computational and statistical Junhyong Kim challenges involved in reconstructing evolutionary trees Tutorial #5 Sebastian-Münster-Saal Thomas Werner The biology and bioinformatics of regulatory regions in genomes Lunch (on this day served in "Grosser Saal" on the ground floor) 13:30 – 17:30 (Coffee break around 15:30) Tutorial #6 Sebastian-Münster-Saal Rob Miller EST Clustering Alan Christoffels Winston Hide Tutorial #7 Trübnersaal Kevin Karplus Getting the most out of hidden Markov Melissa Cline models Christian Barrett Tutorial #8 Robert-Schumann-Zimmer Arthur Lesk Sequence-structure relationships and evolutionary structure changes in proteins Tutorial #9 Gustav-Mahler-Zimmer David States PERL abstractions for databases and Brian Dunford distributed computing Shore Tutorial # 10 Ballsaal Zoltan Szallasi Genetic network analysis
    [Show full text]
  • BIOINFORMATICS ISCB NEWS Doi:10.1093/Bioinformatics/Btp280
    Vol. 25 no. 12 2009, pages 1570–1573 BIOINFORMATICS ISCB NEWS doi:10.1093/bioinformatics/btp280 ISMB/ECCB 2009 Stockholm Marie-France Sagot1, B.J. Morrison McKay2,∗ and Gene Myers3 1INRIA Grenoble Rhône-Alpes and University of Lyon 1, Lyon, France, 2International Society for Computational Biology, University of California San Diego, La Jolla, CA and 3Howard Hughes Medical Institute Janelia Farm Research Campus, Ashburn, Virginia, USA ABSTRACT Computational Biology (http://www.iscb.org) was formed to take The International Society for Computational Biology (ISCB; over the organization, maintain the institutional memory of ISMB http://www.iscb.org) presents the Seventeenth Annual International and expand the informational resources available to members of the Conference on Intelligent Systems for Molecular Biology bioinformatics community. The launch of ECCB (http://bioinf.mpi- (ISMB), organized jointly with the Eighth Annual European inf.mpg.de/conferences/eccb/eccb.htm) 8 years ago provided for a Conference on Computational Biology (ECCB; http://bioinf.mpi- focus on European research activities in years when ISMB is held inf.mpg.de/conferences/eccb/eccb.htm), in Stockholm, Sweden, outside of Europe, and a partnership of conference organizing efforts 27 June to 2 July 2009. The organizers are putting the finishing for the presentation of a single international event when the ISMB touches on the year’s premier computational biology conference, meeting takes place in Europe every other year. with an expected attendance of 1400 computer scientists, The multidisciplinary field of bioinformatics/computational mathematicians, statisticians, biologists and scientists from biology has matured since gaining widespread recognition in the other disciplines related to and reliant on this multi-disciplinary early days of genomics research.
    [Show full text]
  • Applications of Case-Based Reasoning in Molecular Biology
    Articles Applications of Case-Based Reasoning in Molecular Biology Igor Jurisica and Janice Glasgow ■ Case-based reasoning (CBR) is a computational problems by recalling old problems and their reasoning paradigm that involves the storage and solutions and adapting these previous experi- retrieval of past experiences to solve novel prob- ences represented as cases. A case generally lems. It is an approach that is particularly relevant comprises an input problem, an output solu- in scientific domains, where there is a wealth of data but often a lack of theories or general princi- tion, and feedback in terms of an evaluation of ples. This article describes several CBR systems that the solution. CBR is founded on the premise have been developed to carry out planning, analy- that similar problems have similar solutions. sis, and prediction in the domain of molecular bi- Thus, one of the primary goals of a CBR system ology. is to find the most similar, or most relevant, cases for new input problems. The effective- ness of CBR depends on the quality and quan- tity of cases in a case base. In some domains, even a small number of cases provide good so- lutions, but in other domains, an increased number of unique cases improves problem- he domain of molecular biology can be solving capabilities of CBR systems because characterized by substantial amounts of there are more experiences to draw on. Howev- Tcomplex data, many unknowns, a lack of er, larger case bases can also decrease the effi- complete theories, and rapid evolution; rea- ciency of a system. The reader can find detailed soning is often based on experience rather descriptions of the CBR process and systems in than general knowledge.
    [Show full text]
  • Dear Delegates,History of Productive Scientific Discussions of New Challenging Ideas and Participants Contributing from a Wide Range of Interdisciplinary fields
    3rd IS CB S t u d ent Co u ncil S ymp os ium Welcome To The 3rd ISCB Student Council Symposium! Welcome to the Student Council Symposium 3 (SCS3) in Vienna. The ISCB Student Council's mis- sion is to develop the next generation of computa- tional biologists. We would like to thank and ac- knowledge our sponsors and the ISCB organisers for their crucial support. The SCS3 provides an ex- citing environment for active scientific discussions and the opportunity to learn vital soft skills for a successful scientific career. In addition, the SCS3 is the biggest international event targeted to students in the field of Computational Biology. We would like to thank our hosts and participants for making this event educative and fun at the same time. Student Council meetings have had a rich Dear Delegates,history of productive scientific discussions of new challenging ideas and participants contributing from a wide range of interdisciplinary fields. Such meet- We are very happy to welcomeings have you proved all touseful the in ISCBproviding Student students Council and postdocs Symposium innovative inputsin Vienna. and an Afterincreased the network suc- cessful symposiums at ECCBof potential 2005 collaborators. in Madrid and at ISMB 2006 in Fortaleza we are determined to con- tinue our efforts to provide an event for students and young researchers in the Computational Biology community. Like in previousWe ar yearse extremely our excitedintention to have is toyou crhereatee and an the opportunity vibrant city of Vforienna students welcomes to you meet to our their SCS3 event. peers from all over the world for exchange of ideas and networking.
    [Show full text]
  • ISMB/ECCB 2007: the Premier Conference on Computational Biology Thomas Lengauer, B
    MESSAGE FROM ISCB ISMB/ECCB 2007: The Premier Conference on Computational Biology Thomas Lengauer, B. J. Morrison McKay*, Burkhard Rost Two Societies Meet in ways to specifically encourage increased participation from The ISMB conference series was previously underrepresented kicked off in 1993 by the vision of David disciplines of computational biology. Searls (GlaxoSmithKline), Jude Shavlik The major challenge for this (University of Wisconsin Madison), and interdisciplinary field is that two Larry Hunter (University of Colorado). cultures with very different ways of A few years down the road, ISMB had publishing intersect at computational established itself as a primary event in biology meetings such as ISMB/ECCB: computational biology and triggered computational scientists publish their Introduction the founding of ISCB, the International most important results in rigorously Society for Computational Biology reviewed proceedings of meetings; the he International Society for (http://www.iscb.org). ISCB has been lower the ratio between accepted/ Computational Biology (ISCB) organizing the ISMB conference series submitted, the more valued the presents ISMB/ECCB 2007, the since 1998. While ISCB evolved into the T publication. In many cases, publication Fifteenth International Conference on only society representing in proceedings of conferences on Intelligent Systems for Molecular Biology computational biology globally, its computer science are valued more (ISMB 2007), held jointly with the Sixth flagship conference has become the highly than those in peer-reviewed European Conference on Computational largest annual forum focused on scientific journals. In contrast, life Biology (ECCB 2007) in Vienna, Austria, computational biology worldwide scientists publish their best work in July 21–25, 2007 (http://www.iscb.org/ (Table 1).
    [Show full text]
  • Ontology-Driven Pathway Data Integration
    ©Copyright 2019 Lucy Lu Wang Ontology-driven pathway data integration Lucy Lu Wang A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2019 Reading Committee: John H. Gennari, Chair Neil F. Abernethy Paul K. Crane Program Authorized to Offer Degree: Biomedical & Health Informatics University of Washington Abstract Ontology-driven pathway data integration Lucy Lu Wang Chair of the Supervisory Committee: Graduate Program Director & Associate Professor John H. Gennari Biomedical Informatics and Medical Education Biological pathways are useful tools for understanding human physiology and disease pathogenesis. Pathway analysis can be used to detect genes and functions associated with complex disease pheno- types. When performing pathway analysis, researchers take advantage of multiple pathway datasets, combining pathways from different pathway databases. Pathways from different databases do not eas- ily inter-operate, and the resulting combined pathway dataset can suffer from redundancy or reduced interpretability. Ontologies have been used to organize pathway data and eliminate redundancy. I generated clus- ters of semantically similar pathways by mapping pathways from seven databases to classes of one such ontology, the Pathway Ontology (PW). I then produced a typology of differences between pathways by summarizing the differences in content and knowledge representation between databases. Using the typology, I optimized an entity and graph-based network alignment algorithm for aligning pathways between databases. The algorithm was applied to clusters of semantically similar pathways to generate normalized pathways for each PW class. These normalized pathways were used to produce normal- ized gene sets for gene set enrichment analysis (GSEA). I evaluated these normalized gene sets against baseline gene sets in GSEA using four public gene expression datasets.
    [Show full text]