Wright Andredenisg Phd.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Wright Andredenisg Phd.Pdf A Thesis Presented to The Facuity of Graduate Studies of The University of Guelph in partial fuifilment of requirements for the degree of Doctor of Philosophy Apni, 1998 Q André-Denis Girard Wright, 1998 Acquisitions and Acquisitions et Bibliographie Services servkes bibliographiques 395 weüirgm Street 395. nie walingtori OttawaON K1AW OGEawa ON K1A ON4 Canada; canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant a la National Lhmy of Canada to Bibliothèque nationale du Canada de reproduce, loan, distri-bute or sell reproduire, prêter, distriiuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/flh, de reproduction sur papier ou sur format électronique. The author retains ownershrp of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantid extracts fiom it Ni la thése ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. MOLECUUR PHYLOGENY OF TEE ENDOSYMBIOTIC CXLIATES (LITOSTOMATEA: TRICHOSTOMATIA) OF VERTEBRATE ANIMAIS INFERRED FROM 18s rRNA GENE SEQUIENCES An-Denis Girard Wright Univeasity of Guelph, 1998 Complete 18s rRNA sequences were elucidated f?om (1) six entodiniomorphid ruma c*ates7 Diphdnirrrn. En~ocirniurn, Qidinim, Eurlpfodinium, OphyoscoIer, ad Polplasaon, (2) three vestibuliferid rumen ciliates, BaCantidiaum. Daytricha, koû-icha iniestnalis? and /. prosroma. (3) two manupiai ciliates, Cyclopusthium and MUWQ@*. and (4) the fie-living ciliates, Diaïinna, Dilepius, and Enche&&n7 iikely the dosest relatives to these endosynbionts. Phylogenetic analysis of these 15 new sequences revealed that ophryoscolecids are a rnonophyletic group that is divided into three iineages corresponding to the subwal divisions of the Op~oscolecidae,with Entdnium branching first. The menciliates are the siaer group to Cirfoposhium consistent with their placement into the order Entodùiiomorphida. iblacr~pdniumdoes not group with the other entodiniomorphids, but basai to the vestibuliferid-entodiniornorphid clade. Together, the endosymbionts are the sister group to the free-living haptorians, together constituting the class Litostomatea. The rate of nucleotide substitution for ciliates was calibrated to be 1% divergence per 72 to 80 million years (My). nie origin of ciliates (i.e. crown eukaryotes) is caldated to be much older than previously speculated, dahg back to the Paleoproterozoic, 1,980 ta 2,200 million years ago. It was ais0 detennùied that the rate of nucleotide s~bstitution for menciliates is aimost a magnitude faster (1% per 8-1 1 My) than that for fkee-living diates. This faster dock rnight be explaineci by intense seledon on su~vabilityas they invaded the rumen, or by the rdatively high ambient temperature (39" C) of the rumen environment, as such high temperatures are known to decrease the efnciency of DNA repair mechanisms leading to higher mutation rates. Intraspecific sequence variation among diEerent hosts and geographical locations was examineci using the ITS-l/S. 8S/TTS-2 region And* of thk @on fkom I. prastoma fiom Canadian, American, and Australian cattie and sheep, showed that there is no sequence variation within this region. This suggests that populations of l. prostoma on two continents are very recendy diverged, consistent with human colonisation and migration of domestic anirnals in the 18' and 19& centuries. Fiy,secondary mucture of these sequences reveai that mernbers of the ciass Litostomatea have "Ioa" hek E23-5, indicating a new mo1ecuiar diagnostic featrre for this class of ciliates. ACKNO'WLEDGIEMENTS It is dBicuit to single out everybody who has contriiuted, big or srnaIl, to the completion of this degree, so to ail of you my sincere thanks and gratitude are extended. To my advisor and mentor, Dr. Denis H Lynn, thank you for your support, patience, and fiiendship. You have influenceci me in many ways and 1 am very grata to you - Thanks for &hg me a chance. To the memben of rny adMsory cornmittee, Drs. Paul Hebert, John Barta, Cecil Forsberg, and Burk Dehority (Ohio State University, USA), thank you for your tirne, advice, and criticai comments on this thesis. To Dr. Tadeusz Michalowski (ünivenity of Warsaw, Poland), thank you for your gift of ked ceUs of Eud@Idnium moggrï. To Dr. Burk Dehonty, thank you for allowing me to work in your laboratory in Wwster, Ohio. To Dr. Michael Ivan (Agridture Canada), thank you for ailowing me to work in your laboratory in ûttawa. To Dr. Andrew Knoll (Harvard University), thank you for your citicai comments on one the chapters (chapter 4) in this dissertation. To Dr. C. Graham Clark (London School of Hygiene and Tropical Medicine, London, ENGLAND), thank you for your gift of genomic and 18s DNA fiom Bahntidium. To Stephen Cameron (University of Qumland, Brisbane, Australia), thank you for your gift of genomic DNA fiom Mricropociiunz and CycIoposrhium. To Linda Neill (Agriculture Canada), thank you for colecting rumen fluid and assisting me while I was in Ottawa, and to Angela Holliss, thank you for generating sequences using the AB1 Automaîed DNA Sequencer. To my "academic brother and sister", Scott Gransden and Cheryl Jerome. thank you for your fiendship, support, and scholastic advice. Also, thank you to Scott Gransden for the eventfid times - AGAIN (e.g. Alabama! !). To Dr. Michaela Strüder-Kypke and Reinhard 1 Kypke, thank you for your niendship and warmth, we WU dways keep in touch. To the 'Yâmdy", Pat Cooke, Dave O'Hare, Steve Marshall, and John Fox, thank you for the rnany good times we shared (e-g birthday immunity), you guys are great. To the staff of the Shakespeare's Ams, thank you for quenching my thirst and filiïng my appetite, and to the guys and gds on my rnany sof&baUteams, thank you for your support and evening philosophicals. To my good %end Jonita Sornede, thank you for your understanding, fiiendship, and support during the final stretch of my research and writing, and for being there to nurse me back to hedth. To my long rime house-mate and "brother", Dr. Donald Martin, thank you for everything you have taught me7 you have a big heart and 1 will aiways remanber what you have done for me. To my '%ig brother and sister", Dedd and Donna Caldwell, thank you for always behg there for me - you will always be a part of my kdy. To my best Wend Connie Krawqlq thank you for your unconditional love and support - you mean a lot to me and wiii always be my "Sparky" (good luck with your Ph-D!). To my aunt Susan and uncle Stan Wright (cousins Shannon and Jason), thank you for ail that you have done for me while 1 have been away fiom home, this is what f is ail about - 1love each of you. Finally, to my mother and fàther (Jean and Kenneth McG. Dick) - 1DID ïï!! Thank you for aii the sacdices you made, aiI the prayers you said, and for the love, encouragement, and support you gave me to make this degree possible. 1 wdd never repay you for al1 that you have done and given me. 1LOVE YOU BOTH. 1DEDICATE TEDS THESIS TO YOU, MOM AND DAD. This research was supported by an NSERC research grant awarded to Dr. D.H. Lynn CaAPTER ONE General Introduction And Literature IReview INTRODUCCïION... ..................................................................................0.1 Hstorid Background......................................................................... 1 Characteristics Of The Riosoma1 DNA Genes ............................................-4 The Impact Of MoIecular Data On Phylogeneîic Analysis................................ -9 The Paraphyletic Protias ......................................................................16 The Alveolates. .................................................................................21 The Chate Protozoa .........................................................................25 The Rumen Ciliates.......................................................................... -26 RESEARCH OBJECTIVES .........................................................................30 Molecular Phylogeny Of The Endosymbiotic Ciliates Of Vertebrate Anirnals Inferred From Small Subunit Ribosomal RNA Sequences. INTRODUCTION.. .36 . ................................................................................... The Entodmornorphids...................................................................... -39 The Vestibuliferids........................................................................... -49 Monophyly Or Paraphyly Of The Rumen Ciliates......................................... 51 MATERIALS AND METHODS .................................................................... 55 Source Of Sampies And Culture Conditions ..............................................-55 DNAExtraction And Sequencing........................................................... 59 Squence Availability And Phylogenetic Anaiysis ........................................61 RESULTS ..*.....................................................................................-..... 66 Molecular Phylogenies ....................................................................... 82 ... 111 DISCUSSION... ......e...............e..........eee.......e....e.......ee..................*........ ..91 Phylogeny Within The Phylum Ciliophom.. .................................................. 98 Phylogeny ûf The Litostome
Recommended publications
  • Novel Contributions to the Peritrich Family Vaginicolidae
    applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Zoological Journal of the Linnean Society, 2019, 187, 1–30. With 13 figures. Novel contributions to the peritrich family Vaginicolidae (Protista: Ciliophora), with morphological and Downloaded from https://academic.oup.com/zoolinnean/article-abstract/187/1/1/5434147/ by Ocean University of China user on 08 October 2019 phylogenetic analyses of poorly known species of Pyxicola, Cothurnia and Vaginicola BORONG LU1, LIFANG LI2, XIAOZHONG HU1,5,*, DAODE JI3,*, KHALED A. S. AL-RASHEID4 and WEIBO SONG1,5 1Institute of Evolution and Marine Biodiversity, & Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China 2Marine College, Shandong University, Weihai 264209, China 3School of Ocean, Yantai University, Yantai 264005, China 4Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia 5Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China Received 29 September 2018; revised 26 December 2018; accepted for publication 13 February 2019 The classification of loricate peritrich ciliates is difficult because of an accumulation of several taxonomic problems. In the present work, three poorly described vaginicolids, Pyxicola pusilla, Cothurnia ceramicola and Vaginicola tincta, were isolated from the surface of two freshwater/marine algae in China. In our study, the ciliature of Pyxicola and Vaginicola is revealed for the first time, demonstrating the taxonomic value of infundibular polykineties. The small subunit rDNA, ITS1-5.8S rDNA-ITS2 region and large subunit rDNA of the above species were sequenced for the first time. Phylogenetic analyses based on these genes indicated that Pyxicola and Cothurnia are closely related.
    [Show full text]
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • Kamena Jedra Mehkužcev Iz Miocenskih Plasti Pri Beli Cerkvi Na Dolenjskem
    KAMENA JEDRA MEHKUŽCEV IZ MIOCENSKIH PLASTI PRI BELI CERKVI NA DOLENJSKEM MOLLUSC INTERNAL CASTS FROM THE MIOCENE BEDS NEAR BELA CERKEV, SLOVENIA Vasja MIKUŽ1 IZVLEČEK UDK 57.071.64:594(497.434Bela Cerkev)"628.42" ABSTRACT UDC 57.071.64:594(497.434Bela Cerkev)"628.42" Kamena jedra mehkužcev iz miocenskih plasti pri Beli Mollusc internal casts from the Miocene beds near Bela Cerkvi na Dolenjskem Cerkev, Slovenia Raziskovana in obravnavana so kamena jedra miocen- We present a study of Miocene mollusc internal casts skih mehkužcev, ki so najdena v preperini laporastih in ko- found in the weathered marls and corallinacean limestones ralinacejskih apnencev na njivi blizu zaselka Bela Cerkev na in a field near Bela Cerkev in Dolenjska. Among the internal Dolenjskem. Prevladujejo kamena jedra školjk, ki so običaj- casts, bivalves are most abundant, complete specimens are no ohranjena v celoti. Veliko manj in slabše ohranjenih je common. Gastropod internal casts are much less abundant polžjih kamenih jeder. Ugotovljene oblike školjk in polžev so and poorly preserved. The determined specimens are of Ba- badenijske starosti. denian age. Ključne besede: kamena jedra, mehkužci - polži, školjke, Key words: internal casts, Mollusc - Gastropods, Bival- srednji miocen, badenij, Centralna Paratetida, Bela Cerkev, ves, Middle Miocene, Badenian, Central Paratethys, Bela Slovenija Cerkev, Slovenia 1 Univerza v Ljubljani, Naravoslovnotehniška fakulteta, Oddelek za geologijo, Privoz 11, SI – 1000 Ljubljana, Slovenija; vasja. [email protected] FOLIA BIOLOGICA ET GEOLOGICA 54/1, 95–107, LJUBLJANA 2013 VASJA MIKUŽ: KAMENA JEDRA MEHKUŽCEV IZ MIOCENSKIH PLASTI PRI BELI CERKVI NA DOLENJSKEM UVOD V Sloveniji je veliko najdišč s kamenimi jedri različnih Kamena jedra so pri školjkah večinoma ohranjena fosilnih ostankov v zelo različno starih kamninah.
    [Show full text]
  • Survival Strategies of Two Small Marine Ciliates and Their Role in Regulating Bacterial Community Structure Under Experimental Conditions
    MARINE ECOLOGY - PROGRESS SERIES Vol. 33: 59-70, 1986 Published October l Mar. Ecol. Prog. Ser. - Survival strategies of two small marine ciliates and their role in regulating bacterial community structure under experimental conditions C. M. Turley, R. C. Newel1 & D. B. Robins Institute for Marine Environmental Research. Prospect Place, The Hoe, Plymouth PL13DH. United Kingdom ABSTRACT: Urcmema sp. of ca 12 X 5 pm and Euplotes sp. ca 20 X 10 pm were isolated from surface waters of the English Channel. The rapidly motile Uronerna sp. has a relative growth rate of 3.32 d-' and responds rapidly to the presence of bacterial food with a doubling time of only 5.01 h. Its mortality rate is 0.327 d-' and mortality time is therefore short at 50.9 h once the bacterial food resource has become hiting. Uronema sp. therefore appears to be adapted to exploit transitory patches when bacterial prey abundance exceeds a concentration of ca 6 X 106 cells ml-'. In contrast, Euplotes sp. had a slower relative growth rate of 1.31 d-' and a doubling time of ca. 12.7 h, implying a slower response to peaks in bacterial food supply. The mortality rate of 0.023 d-' is considerably lower than In Uronema and mortality time is as much as 723 h. This suggests that, relative to Uronerna, the slower moving Euplotes has a more persistent strategy whch under the conditions of our experiment favours a stable equhbnum wlth its food supply. Grazing activities of these 2 ciliates have an important influence on abundance and size-class structure of their bacterial prey.
    [Show full text]
  • Molecular Parasitology Protozoan Parasites and Their Molecules Molecular Parasitology Julia Walochnik • Michael Duchêne Editors
    Julia Walochnik Michael Duchêne Editors Molecular Parasitology Protozoan Parasites and their Molecules Molecular Parasitology Julia Walochnik • Michael Duchêne Editors Molecular Parasitology Protozoan Parasites and their Molecules Editors Julia Walochnik Michael Duchêne Institute of Specifi c Prophylaxis Institute of Specifi c Prophylaxis and Tropical Medicine and Tropical Medicine Center for Pathophysiology, Infectiology Center for Pathophysiology, Infectiology and Immunology and Immunology Medical University of Vienna Medical University of Vienna Vienna Vienna Austria Austria ISBN 978-3-7091-1415-5 ISBN 978-3-7091-1416-2 (eBook) DOI 10.1007/978-3-7091-1416-2 Library of Congress Control Number: 2016947730 © Springer-Verlag Wien 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • The Macronuclear Genome of Stentor Coeruleus Reveals Tiny Introns in a Giant Cell
    University of Pennsylvania ScholarlyCommons Departmental Papers (Biology) Department of Biology 2-20-2017 The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell Mark M. Slabodnick University of California, San Francisco J. G. Ruby University of California, San Francisco Sarah B. Reiff University of California, San Francisco Estienne C. Swart University of Bern Sager J. Gosai University of Pennsylvania See next page for additional authors Follow this and additional works at: https://repository.upenn.edu/biology_papers Recommended Citation Slabodnick, M. M., Ruby, J. G., Reiff, S. B., Swart, E. C., Gosai, S. J., Prabakaran, S., Witkowska, E., Larue, G. E., Gregory, B. D., Nowacki, M., Derisi, J., Roy, S. W., Marshall, W. F., & Sood, P. (2017). The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell. Current Biology, 27 (4), 569-575. http://dx.doi.org/10.1016/j.cub.2016.12.057 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/biology_papers/49 For more information, please contact [email protected]. The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell Abstract The giant, single-celled organism Stentor coeruleus has a long history as a model system for studying pattern formation and regeneration in single cells. Stentor [1, 2] is a heterotrichous ciliate distantly related to familiar ciliate models, such as Tetrahymena or Paramecium. The primary distinguishing feature of Stentor is its incredible size: a single cell is 1 mm long. Early developmental biologists, including T.H. Morgan [3], were attracted to the system because of its regenerative abilities—if large portions of a cell are surgically removed, the remnant reorganizes into a normal-looking but smaller cell with correct proportionality [2, 3].
    [Show full text]
  • The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
    bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years.
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Wrc Research Report No. 131 Effects of Feedlot Runoff
    WRC RESEARCH REPORT NO. 131 EFFECTS OF FEEDLOT RUNOFF ON FREE-LIVING AQUATIC CILIATED PROTOZOA BY Kenneth S. Todd, Jr. College of Veterinary Medicine Department of Veterinary Pathology and Hygiene University of Illinois Urbana, Illinois 61801 FINAL REPORT PROJECT NO. A-074-ILL This project was partially supported by the U. S. ~epartmentof the Interior in accordance with the Water Resources Research Act of 1964, P .L. 88-379, Agreement No. 14-31-0001-7030. UNIVERSITY OF ILLINOIS WATER RESOURCES CENTER 2535 Hydrosystems Laboratory Urbana, Illinois 61801 AUGUST 1977 ABSTRACT Water samples and free-living and sessite ciliated protozoa were col- lected at various distances above and below a stream that received runoff from a feedlot. No correlation was found between the species of protozoa recovered, water chemistry, location in the stream, or time of collection. Kenneth S. Todd, Jr'. EFFECTS OF FEEDLOT RUNOFF ON FREE-LIVING AQUATIC CILIATED PROTOZOA Final Report Project A-074-ILL, Office of Water Resources Research, Department of the Interior, August 1977, Washington, D.C., 13 p. KEYWORDS--*ciliated protozoa/feed lots runoff/*water pollution/water chemistry/Illinois/surface water INTRODUCTION The current trend for feeding livestock in the United States is toward large confinement types of operation. Most of these large commercial feedlots have some means of manure disposal and programs to prevent runoff from feed- lots from reaching streams. However, there are still large numbers of smaller feedlots, many of which do not have adequate facilities for disposal of manure or preventing runoff from reaching waterways. The production of wastes by domestic animals was often not considered in the past, but management of wastes is currently one of the largest problems facing the livestock industry.
    [Show full text]
  • Based on SSU Rdna Sequences
    J. Eukaryot. Microbiol., 48(5), 2001 pp. 604±607 q 2001 by the Society of Protozoologists Phylogenetic Position of Sorogena stoianovitchae and Relationships within the Class Colpodea (Ciliophora) Based on SSU rDNA Sequences ERICA LASEK-NESSELQUISTa and LAURA A. KATZa,b aDepartment of Biological Sciences, Smith College, Northampton, Massachusetts 01063, and bProgram in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA ABSTRACT. The ciliate Sorogena stoianovitchae, which can form a multicellular fruiting body, has been classi®ed based upon its ultrastructure and morphology: the oral and somatic infraciliature of S. stoianovitchae most closely resemble those of members of the order Cyrtolophosidida in the class Colpodea. We characterized the small subunit ribosomal DNA (SSU rDNA) gene sequence from S. stoianovitchae and compared this sequence with those from representatives of all ciliate classes. These analyses placed S. stoianovitchae as either sister to members of the class Nassophorea or Colpodea. In an in-group analysis, including all SSU rDNA sequences from members of the classes Nassophorea and Colpodea and representatives of appropriate outgroups, S. stoianovitchae was always sister to Platyophrya vorax (class Colpodea, order Cyrtolophosidida). However, our analyses failed to support the monophyly of the class Colpodea. Instead, our data suggest that there are essentially three unresolved clades: (1) the class Nassophorea; (2) Bresslaua vorax, Colpoda in¯ata, Pseudoplatyophrya nana, and Bursaria truncatella (class Colpodea); and (3) P. vorax and S. stoianovitchae (class Colpodea). Key Words. Bursariomorphida, ciliate phylogeny, Colpodida, Cyrtolophosidida, molecular systematics, Nassophorea, Sorogenida. OROGENA stoianovitchae is a unique ciliate that aggregates partial B. sphagni sequence), provide the ®rst molecular hy- S to produce an aerial fruiting body when cells are starved.
    [Show full text]
  • Mammalia, Felidae, Canidae, and Mustelidae) from the Earliest Hemphillian Screw Bean Local Fauna, Big Bend National Park, Brewster County, Texas
    Chapter 9 Carnivora (Mammalia, Felidae, Canidae, and Mustelidae) From the Earliest Hemphillian Screw Bean Local Fauna, Big Bend National Park, Brewster County, Texas MARGARET SKEELS STEVENS1 AND JAMES BOWIE STEVENS2 ABSTRACT The Screw Bean Local Fauna is the earliest Hemphillian fauna of the southwestern United States. The fossil remains occur in all parts of the informal Banta Shut-in formation, nowhere very fossiliferous. The formation is informally subdivided on the basis of stepwise ®ning and slowing deposition into Lower (least fossiliferous), Middle, and Red clay members, succeeded by the valley-®lling, Bench member (most fossiliferous). Identi®ed Carnivora include: cf. Pseudaelurus sp. and cf. Nimravides catocopis, medium and large extinct cats; Epicyon haydeni, large borophagine dog; Vulpes sp., small fox; cf. Eucyon sp., extinct primitive canine; Buisnictis chisoensis, n. sp., extinct skunk; and Martes sp., marten. B. chisoensis may be allied with Spilogale on the basis of mastoid specialization. Some of the Screw Bean taxa are late survivors of the Clarendonian Chronofauna, which extended through most or all of the early Hemphillian. The early early Hemphillian, late Miocene age attributed to the fauna is based on the Screw Bean assemblage postdating or- eodont and predating North American edentate occurrences, on lack of de®ning Hemphillian taxa, and on stage of evolution. INTRODUCTION southwestern North America, and ®ll a pa- leobiogeographic gap. In Trans-Pecos Texas NAMING AND IMPORTANCE OF THE SCREW and adjacent Chihuahua and Coahuila, Mex- BEAN LOCAL FAUNA: The name ``Screw Bean ico, they provide an age determination for Local Fauna,'' Banta Shut-in formation, postvolcanic (,18±20 Ma; Henry et al., Trans-Pecos Texas (®g.
    [Show full text]
  • An Integrative Approach Sheds New Light Onto the Systematics
    www.nature.com/scientificreports OPEN An integrative approach sheds new light onto the systematics and ecology of the widespread ciliate genus Coleps (Ciliophora, Prostomatea) Thomas Pröschold1*, Daniel Rieser1, Tatyana Darienko2, Laura Nachbaur1, Barbara Kammerlander1, Kuimei Qian1,3, Gianna Pitsch4, Estelle Patricia Bruni4,5, Zhishuai Qu6, Dominik Forster6, Cecilia Rad‑Menendez7, Thomas Posch4, Thorsten Stoeck6 & Bettina Sonntag1 Species of the genus Coleps are one of the most common planktonic ciliates in lake ecosystems. The study aimed to identify the phenotypic plasticity and genetic variability of diferent Coleps isolates from various water bodies and from culture collections. We used an integrative approach to study the strains by (i) cultivation in a suitable culture medium, (ii) screening of the morphological variability including the presence/absence of algal endosymbionts of living cells by light microscopy, (iii) sequencing of the SSU and ITS rDNA including secondary structures, (iv) assessment of their seasonal and spatial occurrence in two lakes over a one‑year cycle both from morphospecies counts and high‑ throughput sequencing (HTS), and, (v) proof of the co‑occurrence of Coleps and their endosymbiotic algae from HTS‑based network analyses in the two lakes. The Coleps strains showed a high phenotypic plasticity and low genetic variability. The algal endosymbiont in all studied strains was Micractinium conductrix and the mutualistic relationship turned out as facultative. Coleps is common in both lakes over the whole year in diferent depths and HTS has revealed that only one genotype respectively one species, C. viridis, was present in both lakes despite the diferent lifestyles (mixotrophic with green algal endosymbionts or heterotrophic without algae).
    [Show full text]