Correlation of the Upper Oligocene–Miocene Deltaic To

Total Page:16

File Type:pdf, Size:1020Kb

Correlation of the Upper Oligocene–Miocene Deltaic To NORWEGIAN JOURNAL OF GEOLOGY Vol 99 Nr. 4 https://dx.doi.org/10.17850/njg99-4-1 Correlation of the Upper Oligocene–Miocene deltaic to shelfal succession onshore Denmark with similar deposits in the northern North Sea and Norwegian Sea shelf based on Sr isotope-, bio- and seismic stratigraphy—a review Tor Eidvin1, Erik Skovbjerg Rasmussen2, Fridtjof Riis1, Karen Dybkjær2 & Kari Grøsfjeld3 1Norwegian Petroleum Directorate (NPD), Professor Olav Hanssens vei 10, P. O. Box 600, NO–4003 Stavanger, Norway. 2Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, DK–1350, Copenhagen K, Denmark. 3Geological Survey of Norway, Leif Eirikssons vei 39, P. O. Box 6315 Torgarden, NO–7491 Trondheim, Norway E-mail corresponding author (Tor Eidvin): [email protected] The almost complete, mainly deltaic, upper Paleogene and Neogene succession in Jylland, Denmark, was previously investigated for 87Sr/86Sr ratios in 143 samples from 18 localities. In the present paper, strontium-isotope data from the Upper Oligocene–Lower Miocene parts and foraminiferal and pyritised diatoms data from 94 of these samples were used to correlate with previously published data from Norwegian wells and boreholes and one borehole in the British sector of the North Sea. For the Middle–Upper Miocene parts of the succession the correlation is based mainly on Bolboforma data. The ages of the geological formations in the Danish succession correlate readily with lithological units in the Norwegian North Sea, the Norwegian Sea shelf and the East Shetland Platform, which have all been investigated applying similar methods. The Bolboforma assemblages have their origin in the North Atlantic and the Norwegian Sea and confirm the presence of an open strait in the northern North Sea. This strait was the only seaway passage into the North Sea Basin during the Miocene. The glauconitic Utsira Formation sand (approximately 5.7–4.2 Ma), in the threshold area close to the outlet to the Norwegian Sea, overlies erosional unconformities comprising hiati of 21 my in some areas and 13 my in other areas. We believe that the unconformity below the Utsira Formation was mainly related to a fall in sea level in the Late Miocene, contemporaneous with that partly responsible for the Messinian salinity crisis. Bolboforma and dinoflagellate cysts stratigraphy indicate that the base of the Molo Formation in its southern distribution area (Draugen Field, Trøndelag Platform) is of Late Miocene age (close to 9 Ma). This part of the Molo Formation was contemporaneous with the middle/upper part of the Kai Formation. Keywords: Sr isotope stratigraphy, foraminiferal stratigraphy, Bolboforma stratigraphy, upper Paleogene-Neogene correlation, Denmark, North Sea, Norwegian Sea shelf, Norwegian Sea. Received 30. May 2019 / Accepted 25. September 2019 / Published online 30. October 2019 Introduction understanding the palaeogeography and infill history of the North Sea basin. A proper dating of the sedimentary A correlation between the well-dated outcropping Upper units and recognition of the extent of hiatuses are Oligocene–Miocene succession in Denmark (Eidvin et necessary for this purpose. al., 2014a) and the offshore succession in the Norwegian North Sea, East Shetland Platform and Norwegian Sea Thin-walled calcareous microfossils such as foraminifera shelf (Eidvin, 2016; Eidvin et al., 2013, 2014b) is a key for and Bolboforma are generally sparse in the Danish Eidvin, T., Rasmussen, E.S., Riis, F., Dybkjær, K. & Grøsfjeld, K. 2019: Correlation of the Upper Oligocene–Miocene deltaic to shelfal succession onshore Denmark with similar deposits in the northern North Sea and Norwegian Sea shelf based on Sr isotope-, bio- and seismic stratigraphy – a review. Norwegian Journal of Geology 99, 543–573. https://dx.doi.org/10.17850/njg99-4-1. © Copyright the authors. This work is licensed under a Creative Commons Attribution 4.0 International License. 543 544 T. Eidvin et al. onshore upper Paleogene and Neogene successions. This Eidvin et al. (2014a) presented a comparison and is either due to their dissolution by humic acid in the a discussion of the Danish strontium-isotope and pore water or they were not present in the most marginal dinocyst data. They concluded that the Sr isotope ages marine environments. However, from the stratigraphic from the lower part of the Danish Miocene succession, borehole Rødding (DGU nr. 141.1141) in southern i.e., the latest Oligocene–Early Miocene Brejning to Jylland (Fig. 1), Eidvin et al. (2013) were able to retrieve Odderup formations, agree with the age estimates based foraminifera, Bolboforma and mollusc shells from most on dinocysts. However, the 87Sr/86Sr ratios of fossil sections (Figs. 1 & 2). In several sites, investigated for carbonates from the Middle–Upper Miocene, Hodde fossil dinoflagellate cysts (dinocysts) by Dybkjær & to Gram formations consistently indicate ages older Piasecki (2010), thick-walled tests of molluscs have than those recorded by the dinocysts (Fig. 2). Post- been quite resistant to dissolution. These are present depositional processes as an explanation for this offset where foraminifera are absent, and Eidvin et al. (2014a) are inconsistent with the good preservation of the shell succeeded to retrieve molluscs and/or mollusc fragments material. There is also restricted reworking. Eidvin et al. from a number of samples for strontium isotope analyses (2014a) suggested that limited oceanic exchange with the from these sites (Table 1). inner North Sea Basin might have caused the observed Sr isotope ratios. Boreholes/wells 100 km Exposures Frida-1 Studied localities Lone-1 North Sea Jylland 50 km S-1 Tove-1 57°N Limfjorden Sweden Salling Lyby Strand Harre-1 Denmark Præstbjerg Fasterholt Jylland 55°N Sdr. Vium Jensgård Fakkegrav Dykær Vejle Fjord Føvling Brejning Bøgeskov Sjælland Gram-2 Rødding Fyn Gram 53°N Lille Tønde Hørup Hav Klintinghoved Germany 8°E 10°E 12°E Figure 1. Map of onshore and offshore Denmark showing wells, boreholes and outcrops analysed for dinocysts (Dybkjær & Piasecki, 2010), Bolboforma and foraminifera (Eidvin et al. 2013). It also shows the sites where shell material has been Sr dated. Small circles: Outcrops and boreholes which formed the basis for the dinocyst study (Dybkjær & Piasecki, 2010). Large circles: Outcrops and boreholes that formed the basis for the dinocystFig. study 1 (Dybkjær & Piasecki, 2010) as well as the present Sr isotope study. NORWEGIAN JOURNAL OF GEOLOGY Correlation of the Upper Oligocene–Miocene deltaic to shelfal succession onshore Denmark with similar deposits Table 1. Strontium-isotope analyses (all samples are analysed at the University in Bergen if not stated otherwise. All Sr ratios were corrected to NIST 987 = 0.710248. Numerical ages derived from the SIS Look-up Tables of Howarth & McArthur (1997, 2004). NIST – National Institute for Standard and Technology. DC – ditch cuttings). Corrected Age (Ma; H. & M., 1997; Age (Ma; H. & M., 2004; Localities Lithostratigraphy/sample level 2S error Comments Analysed fossils 87/86Sr mean value) mean value) Brejning (outcrop) Brejning Fm 0.708202 0.000009 24.84 23.99 One mollusc fragment Brejning (outcrop) Brejning Fm 0.708193 0.000008 24.98 24.16 Same sample as above One mollusc fragment Dykær (outcrop) Brejning Fm 0.708272 0.000008 23.74 22.68 Two mollusc fragments Dykær (outcrop) Brejning Fm 0.708273 0.000008 23.72 22.67 Same sample as above Two mollusc fragments Fakkegrav (outcrop) Brejning Fm 0.708163 0.000009 25.53 24.78 One mollusc fragment Fakkegrav (outcrop) Brejning Fm 0.708161 0.000008 25.57 24.83 Same sample as above One mollusc fragment Bøgeskov (outcrop) Brejning Fm 0.708287 0.000008 23.46 22.43 One mollusc fragment Bøgeskov (outcrop) Brejning Fm 0.708275 0.000008 23.69 22.63 Same sample as above One mollusc fragment Jensgård (outcrop) Brejning Fm 0.708164 0.000008 25.51 24.76 One mollusc fragment Jensgård (outcrop) Brejning Fm 0.708155 0.000008 25.68 24.99 Same sample as above One mollusc fragment Lyby Strand (outcrop) Brejning Fm 0.708202 0.000008 24.84 23.99 One mollusc fragment Lyby Strand (outcrop) Brejning Fm 0.708231 0.000008 24.42 23.93 Same sample as above One mollusc fragment Hørup Hav (boreh.) Brejning Fm? 76.8–76.4 m (bucket) 0.708243 0.000009 24.23 23.20 One mollusc fragment Harre (borehole, core) Brejning Fm, 44.25 m (core) 0.708174 0.000008 25.32 24.53 Two mollusc fragments Harre (boreh.) Brejning Fm, 44.25 m (core) 0.708212 0.000008 24.70 23.81 Three mollusc fragments Harre (boreh.) Brejning Fm, 37.25 m (core) 0.708202 0.000008 24.84 23.99 One mollusc fragment Harre (boreh.) Brejning Fm, 31.25 m (core) 0.708190 0.000009 25.03 24.22 One mollusc fragment Rødding (boreh.) Vejle Fjord Fm, 243 m (DC) 0.708265 0.000009 23.86 22.80 One mollusc fragment Rødding (boreh.) Vejle Fjord Fm, 241 m (DC) 0.708199 0.000009 24.89 24.05 One mollusc fragment Salling 1 (outcrop) Vejle Fjord Fm 0.708313 0.000009 22.88 22.06 Three mollusc fragments Salling 1 (outcrop) Vejle Fjord Fm 0.708297 0.000008 23.25 22.28 Six mollusc fragments Salling 1 (outcrop) Vejle Fjord Fm 0.708318 0.000008 22.76 21.99 Same sample as the two above One mollusc fragment Fasterholt (boreh.) Vejle Fjord Fm, 170 m (core) 0.708259 0.000009 23.97 22.91 One mollusc fragment Fasterholt (boreh.) Vejle Fjord Fm, 170 m (core) 0.708266 0.000008 23.85 22.79 One mollusc fragment Fasterholt (boreh.) Vejle Fjord Fm, 170 m (core) 0.708284 0.000008 23.52 22.48 One mollusc fragment Hørup Hav (boreh.) Vejle Fjord Fm, 68.8–68.4 m (bucket) 0.708302 0.000009 23.14 22.22 One mollusc fragment Harre (boreh.) Vejle Fjord Fm, 19.75 m (core) 0.708252 0.000009 24.08 23.03 One mollusc fragment Rødding (boreh.) Vejle Fjord Fm, 238 m (DC) 0.708233 0.000008 24.54 23.39 One mollusc fragment Rødding (boreh.) Vejle Fjord Fm, 236 m (DC) 0.708258 0.000008 23.99 22.93 Three mollusc fragments 545 Rødding (boreh.) Vejle Fjord Fm, 230 m 0.708232 0.000009 24.41 23.41 One mollusc fragment Continues T.
Recommended publications
  • Three New Miocene Fungal Palynomorphs from the Brassington Formation, Derbyshire, UK
    Northumbria Research Link Citation: Pound, Matthew J., O’Keefe, Jennifer M. K., Nuñez Otaño, Noelia B. and Riding, James B. (2019) Three new Miocene fungal palynomorphs from the Brassington Formation, Derbyshire, UK. Palynology, 43 (4). pp. 596-607. ISSN 0191-6122 Published by: Taylor & Francis URL: https://doi.org/10.1080/01916122.2018.1473300 <https://doi.org/10.1080/01916122.2018.1473300> This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/id/eprint/37999/ Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University’s research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher’s website (a subscription may be required.) 1 This is an author pre-print version of the manuscript.
    [Show full text]
  • Provenance of Early Pleistocene Sediments Based on a High-Resolution Sedimentological Dataset of Borehole Petten, Southern North Sea
    Provenance of Early Pleistocene sediments based on a high-resolution sedimentological dataset of borehole Petten, southern North Sea Hao Ding 6559972 A thesis submitted for the degree of MSc Earth, Life and Climate Utrecht University July, 2020 1 Preface and Acknowledgements This thesis was written as part of the Master of Science degree in Earth Sciences, program Earth, Life and Climate, at Utrecht University. The research was performed under the supervision of Kim Cohen and Wim Hoek, also with help of Timme Donders and Alexander Houben. This research, together with a parallel research conducted by Lissane Krom, contributes to a larger project in paleoenvironment reconstruction of the Early Pleistocene in the southern North Sea Basin, based on the Petten Borehole 1. This thesis focused on sedimentology, and the parallel thesis by Krom focused on palynology. For the process of this project, I would like to express my gratitude to my supervisors Kim Cohen and Wim Hoek for their great effort on the research and lab work guidance. All the redactional and scientific comments on my writing from Kim Cohen are highly appreciated. I would also like to thank Timme Donders, Alexander Houben and Lisanne Krom for all the cross-disciplinary discussions as well as the assistance on my final presentation. Last but not least, I would like to thank my family and friends, who have been supporting me as always during this Covid-19 pandemic. Studying abroad has been tough, but I really appreciate all the love and encouragement around me, no matter how far apart we are. 2 Abstract In 2018, a fairly complete core (Petten BH 1) reaching over 300 meters into the unconsolidated, dominantly sandy Pleistocene sequence was recovered in the northwest of the Netherlands, in the coastal dune area along the present North Sea.
    [Show full text]
  • Devonian Plant Fossils a Window Into the Past
    EPPC 2018 Sponsors Academic Partners PROGRAM & ABSTRACTS ACKNOWLEDGMENTS Scientific Committee: Zhe-kun Zhou Angelica Feurdean Jenny McElwain, Chair Tao Su Walter Finsinger Fraser Mitchell Lutz Kunzmann Graciela Gil Romera Paddy Orr Lisa Boucher Lyudmila Shumilovskikh Geoffrey Clayton Elizabeth Wheeler Walter Finsinger Matthew Parkes Evelyn Kustatscher Eniko Magyari Colin Kelleher Niall W. Paterson Konstantinos Panagiotopoulos Benjamin Bomfleur Benjamin Dietre Convenors: Matthew Pound Fabienne Marret-Davies Marco Vecoli Ulrich Salzmann Havandanda Ombashi Charles Wellman Wolfram M. Kürschner Jiri Kvacek Reed Wicander Heather Pardoe Ruth Stockey Hartmut Jäger Christopher Cleal Dieter Uhl Ellen Stolle Jiri Kvacek Maria Barbacka José Bienvenido Diez Ferrer Borja Cascales-Miñana Hans Kerp Friðgeir Grímsson José B. Diez Patricia Ryberg Christa-Charlotte Hofmann Xin Wang Dimitrios Velitzelos Reinhard Zetter Charilaos Yiotis Peta Hayes Jean Nicolas Haas Joseph D. White Fraser Mitchell Benjamin Dietre Jennifer C. McElwain Jenny McElwain Marie-José Gaillard Paul Kenrick Furong Li Christine Strullu-Derrien Graphic and Website Design: Ralph Fyfe Chris Berry Peter Lang Irina Delusina Margaret E. Collinson Tiiu Koff Andrew C. Scott Linnean Society Award Selection Panel: Elena Severova Barry Lomax Wuu Kuang Soh Carla J. Harper Phillip Jardine Eamon haughey Michael Krings Daniela Festi Amanda Porter Gar Rothwell Keith Bennett Kamila Kwasniewska Cindy V. Looy William Fletcher Claire M. Belcher Alistair Seddon Conference Organization: Jonathan P. Wilson
    [Show full text]
  • Burlington House Fire Safety Information
    William Smith Meeting 2015 (Part 2) 5 November 2015 200 Years and Beyond: The future of geological mapping Contents Page 2 Acknowledgements Page 3 Conference Programme Page 5 Speaker Biographies and Abstracts Page 29 Poster Abstracts Page 40 Burlington House Fire Safety Information Page 41 Ground Floor Plan of the Geological Society, Burlington House @geolsoc #wsmith15 #williamsmith200 Page 1 William Smith Meeting 2015 (Part 2) 5 November 2015 200 Years and Beyond: The future of geological mapping WELCOME FROM THE CONVENORS In 1815 William Smith published the first edition of his Geological Map of England and Wales. Smith’s map made a seminal contribution to the understanding of the ground beneath our feet and, by showing the location of coal, iron ore, clays and other raw materials, helped fuel the industrial revolution. Two hundred years on, the demands for spatial knowledge about our geological environment and its resources and hazards have become ever more diverse and pressing. Nevertheless, many of the motivators, approaches and principles pioneered by William Smith survive in the geological maps, models and information systems of today. The History of Geology Group and the British Geological Survey have worked together to convene two William Smith meetings at the Geological Society in 2015 to celebrate this landmark anniversary. The first, very successful meeting in April 2015, convened by HOGG, chronicled the history and development of the geological map from its earliest beginnings to the digital maps of today. This second meeting, convened by the BGS, looks to the future of geological mapping, and to the grand challenges for geoscience that will motivate the ‘William Smiths’ of tomorrow.
    [Show full text]
  • Newsletter June 2017 Volume 50, Number 2
    AASP - The Palynological Society Promoting the Scientific Understanding of Palynology since 1967 Newsletter June 2017 Volume 50, Number 2 Published Quarterly by AASP - The Palynological Society AASP-TPS NEWSLETTER Published Quarterly by AASP - The Palynological Society June 2017 Volume 50, Number 2 List of AASP-TPS awardees -3- 2016-2017 Board of Directors and upcoming deadlines -4- President’s Letter -5- Managing Editor's Report -7- 50th Annual Meeting - Nottingham, UK, September 3-7, 2017 -9- Student Travel Grants for Travel to the Annual Meeting -19- Celebrating 50 years of AASP Newsletters! -20- News From Cenex -21- In Memoriam: Dr. Arthur Sweet -22- In Memoriam: Dr. Robert Daly -33- Overview of AASP-TPS Undergraduate Awards -35- Congratulations Student Research Grant Winners -36- Candidates for Office -39- Volunteers needed! 1) GSA Liaison; 2) Newsletter Edtor -44- Donations to the Foundation - Form -45- Upcominig AASP-TPS Meetings! -46- First Circular: 51st Annual Meeting - Calgary, Canada, August 5-9, 2018 -47- Other Meetings and Workshops of Interest -48- 2 A.A.S.P. The Palynological Society The American Association of Stratigraphic Palynologists, Inc. - AASP-The Palynological Society - was established in 1967 by a group of 31 founding members to promote the science of palynology. Today AASP has a world-wide membership of about 800 and is run by an executive comprising an elected Board of Directors and subsidiary boards and committees. AASP welcomes new members. The AASP Foundation publishes the journal Palynology (triannually), the AASP Newsletter (quarterly), and the AASP Contri- butions Series (mostly monographs, issued irregularly), as well as several books and miscellaneous items.
    [Show full text]
  • The Growth of Geological Knowledge in the Council Peak District Mrs
    VOLUME 14 PART 4 DECEMBER 1999 Journal of the East Midlands Contents Geological Society Mercian News 154 President Vice-President Bakewell Bargains; The Flying Finns; Rockwatch Dr. R. J. O. Hamblin Mrs. S. M. Miles 1999; Sculptured Stones; Trent Trends Secretary Treasurer Reports 156 Mr. A. J. Filmer Mrs. C. Moore Cool Peterborough exhibition — A. Dawn and A. Filmer Editorial Board Peak District Mining Museum — L. Willies Dr. J. N. Carney Mrs. J. B. Rigby Dr. A. S. Howard Mrs. J. M. Small Mr. T. Morris Dr. A. C. Waltham T. D. Ford 161 The Growth of Geological Knowledge in the Council Peak District Mrs. J. Anderson Mr. L. R. Hall Mr. J. Aram Mrs. P. M. Jones Mr. C. Bagshaw Dr. P. G. Small M. Evans 191 Mr. B. Bentley Dr. I. D. Sutton A new reconstruction of the skull of the Callovian Dr. P. Gutteridge Mr. D. Usher elasmosaurid plesiosaur Muraenosaurus leedsii Seeley Address for Correspondence General information and membership details: The Secretary, E.M.G.S. H. E. Boynton 197 Rose Cottage, Chapel Lane, New fossils in the Precambrian of Charnwood Epperstone, Nottingham NG14 6AE Forest, Leicestershire, England Tel: 01159 663854 The Mercian Geologist is published by the East Excursion Reports 201 Midlands Geological Society and printed by P. Gutteridge — Wye Valley Norman Printing Ltd, Nottingham and London. K. Ambrose and A. Filmer — Cloud Hill Quarry Paper made from woodpulp harvested from J. Small — Field excursion to Skipton Moor renewable forests, where replacement rate exceeds K. Ambrose — Ticknall and Ibstock Brick Pit consumption. T. Morris — Field visit to the Malverns Area No part of this publication may be reproduced in any other publication without the prior written Secretary’s Report 213 consent of the Society.
    [Show full text]
  • Pliocene Dinoflagellate Cyst Stratigraphy, Palaeoecology And
    Geol. Mag.: page 1 of 21. c 2008 Cambridge University Press 1 doi:10.1017/S0016756808005438 Pliocene dinoflagellate cyst stratigraphy, palaeoecology and sequence stratigraphy of the Tunnel-Canal Dock, Belgium STIJN DE SCHEPPER∗,MARTINJ.HEAD† & STEPHEN LOUWYE‡ ∗Cambridge Quaternary, Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK †Department of Earth Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario L2S 3A1, Canada ‡Palaeontology Research Unit, Ghent University, Krijgslaan 281 – S8, B-9000 Gent, Belgium (Received 21 November 2007; accepted 8 April 2008) Abstract – Dinoflagellate cysts and sequence stratigraphy are used to date accurately the Tunnel-Canal Dock section, which contains the most complete record of marine Pliocene deposits in the Antwerp harbour area. The Zanclean Kattendijk Formation was deposited between 5.0 and 4.4 Ma during warm- temperate conditions on a shelf influenced by open-marine waters. The overlying Lillo Formation is divided into four members. The lowest is the Luchtbal Sands Member, estimated to have been deposited between 3.71 and 3.21 Ma, under cooler conditions but with an open-water influence. The Oorderen Sands, Kruisschans Sands and Merksem Sands members of the Lillo Formation are considered a single depositional sequence, and biostratigraphically dated between 3.71 and c. 2.6 Ma, with the Oorderen Sands Member no younger than 2.72–2.74 Ma. Warm-temperate conditions had returned, but a cooling event is noted within the Oorderen Sands Member. Shoaling of the depositional environment is also evidenced, with the transgressive Oorderen Sands Member passing upwards into (near-)coastal high- stand deposits of the Kruisschans Sands and Merksem Sands members, as accommodation space decreased.
    [Show full text]
  • 2. General Index
    Downloaded from http://pygs.lyellcollection.org/ by guest on September 29, 2021 2. General Index abandoned river courses. Vale of York 40,223-32 anhydrite 50.78.79,81,86,88.143-54 Abbey Crags, Knaresborough Gorge 46,290 Anisocardiu tenera (Antiquicyprina) loweana 39, 117, 130, 131.738-9 Acadian 46,175 ff.; 50,255-65 anisotropy of vitrinites 39,515-26 acanthite 46,135 ankerite 50,87 Acanthodiacrodium cf. simplex 42,412-3 annelida, in Yorkshire Museum 41,402 Acanthodiacrodium rotundatum 45.124 antimony, trace element in galena 44,153 Acanthodiacrodium cf. tumidum 45,124 apatite 44,438 Acanthopleuroceras sp. 42, 152-3 apatite fission-track palaeotemperatures. north-west England 50,95-9 accretionary lapilli, Cwm Clwyd Tuff 39,201,206-7,209,215-6 Apatocythere (Apatocythere) simulans 45, 243 Acheulian handaxes 41,89,94-5 Apedale Fault 50. 196," 198 acid intrusions, Ordovician and Caledonian, geochemical characteristics aplites. Whin Sill 47,251 of 39,33-57 Apollo's Coppice, Shropshire 50,193 acritarchs. Arenig 42. 405 Arachinidiuin smithii 42, 213 acritarchs, Ordovician 47,271-4 Araucarites phillipsii 45,287 acritarchs,Tremadoc 38 45-55; 45,123-7 archaeology, Lincolnshire 41.75 ff. Actinocamax plenus 40,586 Arcomva unioniformis 39.117.133, 134, 138 Acton Reynald Hall, Shropshire 50,193,198,199,200,202,204 Arcow"45,19ff.' adamellite (Threlkeld Microgranite) 40,211-22 Arcow Wood Quarry 39,169,446,448,455,459,470-1 aegirine 44,356 arctic-alpine flora. Teesdale 40.206 aeolian deposition, Devensian loess 40,31 ff. Arenicolites 41,416,436-7 aeolian deposition. Permian 40,54.55 Arenobulirnina advena 45,240 aeolian sands, Permian 45, 11-18 Arenobulimina chapmani 45,240 aeolian sedimentation, Sherwood Sandstone Group 50,68-71 Arenobulirnina macfadyeni 45, 240 aeromagnetic modelling, west Cumbria 50,103-12 arfvedsonite 44,356 aeromagnetic survey, eastern England 46,313,335—41 argentopyrite 46, 134-5 aeromagnetic survey, Norfolk 46.313 Arniocreas fulcaries 42, 150-1 Africa, North, Devonian of 40,277-8 arsenic 44,431 ff.
    [Show full text]
  • Palaeoenvironment, Palaeoclimate and Age of the Brassington Formation (Miocene) of Derbyshire, UK
    Northumbria Research Link Citation: Pound, Matthew and Riding, James (2016) Palaeoenvironment, palaeoclimate and age of the Brassington Formation (Miocene) of Derbyshire, UK. Journal of the Geological Society, 173. pp. 306-319. ISSN 0016-7649 Published by: Geological Society URL: http://dx.doi.org/10.1144/jgs2015-050 <http://dx.doi.org/10.1144/jgs2015-050> This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/id/eprint/24538/ Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University’s research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher’s website (a subscription may be required.) Full reference: Pound, M.J., Riding, J.B., 2016.
    [Show full text]
  • Geology of the Dutch Coast
    Geology of the Dutch coast The effect of lithological variation on coastal morphodynamics Deltores Title Geology of the Dutch coast Client Project Reference Pages Rijkswaterstaat Water, 1220040-007 1220040-007-ZKS-0003 43 Verkeer en Leefomgeving Keywords Geology, erodibility, long-term evolution, coastal zone Abstract This report provides an overview of the build-up of the subsurface along the Dutch shorelines. The overview can be used to identify areas where the morphological evolution is partly controlled by the presence of erosion-resistant deposits. The report shows that the build-up is heterogeneous and contains several erosion-resistant deposits that could influence both the short- and long-term evolution of these coastal zones and especially tidal channels. The nature of these resistant deposits is very variable, reflecting the diverse geological development of The Netherlands over the last 65 million years. In the southwestern part of The Netherlands they are mostly Tertiary deposits and Holocene peat-clay sequences that are relatively resistant to erosion. Also in South- and North-Holland Holocene peat-clay sequences have been preserved, but in the Rhine-Meuse river-mouth area Late Pleistocene• early Holocene floodplain deposits form additional resistant layers. In northern North-Holland shallow occurrences of clayey Eemian-Weichselian deposits influence coastal evolution. In the northern part of The Netherlands it are mostly Holocene peat-clay sequences, glacial till and over consolidated sand and clay layers that form the resistant deposits. The areas with resistant deposits at relevant depths and position have been outlined in a map. The report also zooms in on a few tidal inlets to quick scan the potential role of the subsurface in their evolution.
    [Show full text]
  • Wind Farm Footings Spotlight Hidden UK Geology
    SCIENTIST GEO VOLUME 24 NO 8 u SEPTEMBER 2014 u WWW.GEOLSOC.ORG.UK/GEOSCIENTIST The Fellowship Magazine of the Geological Society of London UK / Overseas where sold to individuals: £3.95 READ GEOLSOC BLOG!] [geolsoc.wordpress.com Generating Geo-Data Wind farm footings spotlight hidden UK geology BIG BANG THEORY RADWASTE DISPOSAL ACADEMIC ISSUE New dating correlates mass Towards a new approach to Why academics and the extinctions LIPs, climate change finding a repository site in the UK Society need each other The best digital mapping app in the world FieldMove Clino Pro is your complete mapping kit in one device: DigitalDigit compass-clinometer CameraCam NotebookNote NEW:NEW: Stereonet Sterreeonet display of geological data NEWNEW:: Expanded library of symbols for plaplanarn and linear data NEW:NENEWW: Draw contacts, faults and outcropsoutcrroops on yyour chosen basemap in iOS version Get thesehese new featuresfeaturrees by upgradingupgrading to ProPrroo inside the FieldMove Clino app, available to downloadd ffromfrrroom the App StorStoreree aand Google PlayPlay.y.. For mmoreorree information visivisitt wwwwww.mve.com/software/fieldmoveclino.mve.com/softwarve.com/softwareree/fieldmoveclino/fi Midland Valley, VVaalley, 2 WestWest Regent Street,Street, Glasgow G2 1RW,1RW, UK +44 (0)141 332 2681 System Requirements: iPhone: iOS 7 and up iPad: iOS 7 and up www.mve.comwww.mve.com Android Phone: IceCream Sandwich4.0andup. GEOSCIENTIST CONTENTS 06 24 12 18 FEATURES IN THIS ISSUE... 18 Big bang New dating is drawing closer parallels between Large
    [Show full text]
  • Leeds Thesis Template
    Middle to Late Miocene terrestrial biota and climate by Matthew James Pound M.Sci., Geology (University of Bristol) Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Earth and Environment September 2012 - 2 - Declaration of Authorship The candidate confirms that the work submitted is his/her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. Chapter 2 has been published as: Pound, M.J., Riding, J.B., Donders, T.H., Daskova, J. 2012 The palynostratigraphy of the Brassington Formation (Upper Miocene) of the southern Pennines, central England. Palynology 36, 26-37. Chapter 3 has been published as: Pound, M.J., Haywood, A.M., Salzmann, U., Riding, J.B. 2012. Global vegetation dynamics and latitudinal temperature gradients during the mid to Late Miocene (15.97 - 5.33 Ma). Earth Science Reviews 112, 1-22. Chapter 4 has been published as: Pound, M.J., Haywood, A.M., Salzmann, U., Riding, J.B., Lunt, D.J. and Hunter, S.J. 2011. A Tortonian (Late Miocene 11.61-7.25Ma) global vegetation reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 300, 29-45. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. © 2012, The University of Leeds, British Geological Survey and Matthew J.
    [Show full text]