Neurotoxicity in Marine Invertebrates: an Update

Total Page:16

File Type:pdf, Size:1020Kb

Neurotoxicity in Marine Invertebrates: an Update biology Review Neurotoxicity in Marine Invertebrates: An Update Irene Deidda , Roberta Russo , Rosa Bonaventura , Caterina Costa , Francesca Zito † and Nadia Lampiasi *,† Istituto per la Ricerca e l’Innovazione Biomedica IRIB, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; [email protected] (I.D.); [email protected] (R.R.); [email protected] (R.B.); [email protected] (C.C.); [email protected] (F.Z.) * Correspondence: [email protected]; Tel.: +39-0916809513 † These authors contributed equally. Simple Summary: The pollution of air, soil, and sea has grown in recent decades at the same pace as human development. Climate changes add further damage to the ecosystems. Nowadays, pollutants that derive from the anthropization of the environment are indicated as “emerging pollutants”. Marine organisms, especially invertebrates, are used as model systems for ecotoxicological studies also regarding the nervous system, even if studies on pollutants’ neurotoxic effects are still few. A great leap forward in knowledge can come from integrated omics studies that bring together genomics, transcriptomics, proteomics, and metabolomics data. These studies have revealed that pollutants are dangerous for the life of marine organisms, and not only because they can be mod- ified in the environment, but also because they can combine giving rise to new mixtures. These new combinations can be even more harmful than individual pollutants. We must not forget that many marine organisms, both invertebrates and vertebrates, become part of the human food chain. Therefore, ultimately, the pollutants that contaminate the air, soil, and sea are potentially harmful to human health. The purpose of this review is to focus on some of the pollutants that are most frequently present in marine environments and analyze their neurotoxic potential effects on some marine model organisms. Citation: Deidda, I.; Russo, R.; Bonaventura, R.; Costa, C.; Zito, F.; Lampiasi, N. Neurotoxicity in Marine Abstract: Invertebrates represent about 95% of existing species, and most of them belong to aquatic Invertebrates: An Update. Biology ecosystems. Marine invertebrates are found at intermediate levels of the food chain and, therefore, 2021, 10, 161. https://doi.org/ they play a central role in the biodiversity of ecosystems. Furthermore, these organisms have a short 10.3390/biology10020161 life cycle, easy laboratory manipulation, and high sensitivity to marine pollution and, therefore, they are considered to be optimal bioindicators for assessing detrimental chemical agents that are re- Academic Editor: John R Turner lated to the marine environment and with potential toxicity to human health, including neurotoxicity. Received: 28 November 2020 In general, albeit simple, the nervous system of marine invertebrates is composed of neuronal and Accepted: 11 February 2021 glial cells, and it exhibits biochemical and functional similarities with the vertebrate nervous system, Published: 18 February 2021 including humans. In recent decades, new genetic and transcriptomic technologies have made the identification of many neural genes and transcription factors homologous to those in humans Publisher’s Note: MDPI stays neutral possible. Neuroinflammation, oxidative stress, and altered levels of neurotransmitters are some of with regard to jurisdictional claims in the aspects of neurotoxic effects that can also occur in marine invertebrate organisms. The purpose of published maps and institutional affil- this review is to provide an overview of major marine pollutants, such as heavy metals, pesticides, iations. and micro and nano-plastics, with a focus on their neurotoxic effects in marine invertebrate organisms. This review could be a stimulus to bio-research towards the use of invertebrate model systems other than traditional, ethically questionable, time-consuming, and highly expensive mammalian models. Copyright: © 2021 by the authors. Keywords: nervous system; echinoderms; molluscs; crustaceans; emerging contaminants; heavy Licensee MDPI, Basel, Switzerland. metals; pesticides; microplastics; omics This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Biology 2021, 10, 161. https://doi.org/10.3390/biology10020161 https://www.mdpi.com/journal/biology Biology 2021, 10, x FOR PEER REVIEW 2 of 28 Biology 2021, 10, 161 2 of 27 In the frame of the global environmental changes, rising and worrying data on both the environmental1. Introduction contamination and the related toxicology have been recorded since the mid-twentiethIn the century, frame of thewhen global the environmentalhuman activities changes, that are rising oriented and worrying towards dataindustrial on bothi- the zationenvironmental and globalization contamination began to and intensify. the related In particular, toxicology marine have been ecosystems recorded sinceexhibit the a mid- widetwentieth variety of century, hazardous when anthropogenic the human activitiespollutants that that are pervade oriented the towards entire water industrialization column, includingand globalization sediments, especially began to intensify. along the In coasts particular, that exhibit marine the ecosystems differentexhibit levels of a wide human variety activitiesof hazardous releasing anthropogenicindustrial, agricultural, pollutants hospitals, that pervade clinics the, and entire domestic water wastes column, into including the sea [1sediments,–3]. Without especially considering along the the biodegradable coasts that exhibit contaminants the different that levels arise of from human organic activities waste,releasing the main industrial, global concerns agricultural, are related hospitals, to the clinics, release and of emerging domestic contaminants wastes into the (ECs) sea [,1 –3]. also Withoutcalled micropollutants, considering the including, biodegradable among contaminants others, heavy that metals, arise microplastics, from organic waste,nano- the particles,main pharmaceuticals global concerns are, and related personal to the care release products of emerging (PPCPs) contaminants (drugs chemicals, (ECs), also etc.), called xenobioticsmicropollutants,, such as pesticides including, (insecticides, among others, herbicides heavy,metals, and fungicides) microplastics,, and endocrine nanoparticles, disruptingpharmaceuticals, compounds and (EDC) personal, etc. Due care to products their persistence (PPCPs) (drugs in the chemicals,environment, etc.), accumu- xenobiotics, lationsuch in the as pesticidesliving tissues (insecticides, via the food herbicides, chains, and and toxicity, fungicides), they endanger and endocrine the health disrupting of the marinecompounds biota (EDC),as well etc.as th Duee human to their health persistence [4–7]. The in the ECs environment, impact can accumulationdetermine sub in- the lethal,living acute tissues, or chronic via the effects food to chains, the single and organism toxicity, theylevel, endanger or can be extended the health to of the the pop- marine ulationbiota level, as well influencing as the human, in this health case, population [4–7]. TheECs dynamics, impact genetic can determine, and diversity sub-lethal, of the acute, ecosystemor chronic [2]. Through effects to the the impairment single organism of cellular level, orhomeostasis can be extended and gene to theexpression population reg- level, influencing, in this case, population dynamics, genetic, and diversity of the ecosystem [2]. ulation, the ECs can cause human disorders, as well as determine epigenetic phenomena Through the impairment of cellular homeostasis and gene expression regulation, the ECs altering gene functions with inherited effects [8]. Therefore, many ECs, even if in trace, can cause human disorders, as well as determine epigenetic phenomena altering gene can represent a high environmental risk factor, reached by trophic transfer animal species, functions with inherited effects [8]. Therefore, many ECs, even if in trace, can represent and cause several adverse effects in the human health, including alterations in the struc- a high environmental risk factor, reached by trophic transfer animal species, and cause ture and function of the nervous system (NS) and, thus, contribute to neurodevelopmental several adverse effects in the human health, including alterations in the structure and disorders (DNT) and neurological diseases. Most neurotoxic contaminants are highly lip- function of the nervous system (NS) and, thus, contribute to neurodevelopmental disorders ophilic and they easily cross the blood brain barrier (BBB) and the placenta [4] (Figure 1). (DNT) and neurological diseases. Most neurotoxic contaminants are highly lipophilic and they easily cross the blood brain barrier (BBB) and the placenta [4] (Figure1). Figure 1. Diagram describing a wide variety of hazardous anthropogenic pollutants that pervade the entire water column, including sediments, originating from different levels of human activities Figure 1. Diagram describing a wide variety of hazardous anthropogenic pollutants that pervade the entirereleasing water industrial, column, including agricultural, sediments, hospitals, originating clinics and from domestic different wasted levels into of thehuman sea, activities with potential releasingand adverseindustrial, effects agricultural, on human hospitals, health. clinics and domestic wasted into
Recommended publications
  • Southward Range Extension of the Goldeye Rockfish, Sebastes
    Acta Ichthyologica et Piscatoria 51(2), 2021, 153–158 | DOI 10.3897/aiep.51.68832 Southward range extension of the goldeye rockfish, Sebastes thompsoni (Actinopterygii: Scorpaeniformes: Scorpaenidae), to northern Taiwan Tak-Kei CHOU1, Chi-Ngai TANG2 1 Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan 2 Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan http://zoobank.org/5F8F5772-5989-4FBA-A9D9-B8BD3D9970A6 Corresponding author: Tak-Kei Chou ([email protected]) Academic editor: Ronald Fricke ♦ Received 18 May 2021 ♦ Accepted 7 June 2021 ♦ Published 12 July 2021 Citation: Chou T-K, Tang C-N (2021) Southward range extension of the goldeye rockfish, Sebastes thompsoni (Actinopterygii: Scorpaeniformes: Scorpaenidae), to northern Taiwan. Acta Ichthyologica et Piscatoria 51(2): 153–158. https://doi.org/10.3897/ aiep.51.68832 Abstract The goldeye rockfish,Sebastes thompsoni (Jordan et Hubbs, 1925), is known as a typical cold-water species, occurring from southern Hokkaido to Kagoshima. In the presently reported study, a specimen was collected from the local fishery catch off Keelung, northern Taiwan, which represents the first specimen-based record of the genus in Taiwan. Moreover, the new record ofSebastes thompsoni in Taiwan represented the southernmost distribution of the cold-water genus Sebastes in the Northern Hemisphere. Keywords cold-water fish, DNA barcoding, neighbor-joining, new recorded genus, phylogeny, Sebastes joyneri Introduction On an occasional survey in a local fish market (25°7.77′N, 121°44.47′E), a mature female individual of The rockfish genusSebastes Cuvier, 1829 is the most spe- Sebastes thompsoni (Jordan et Hubbs, 1925) was obtained ciose group of the Scorpaenidae, which comprises about in the local catches, which were caught off Keelung, north- 110 species worldwide (Li et al.
    [Show full text]
  • Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Ophiothrix fragilis and/or Ophiocomina nigra brittlestar beds on sublittoral mixed sediment MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Eliane De-Bastos & Jacqueline Hill 2016-01-28 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/1068]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: De-Bastos, E.S.R. & Hill, J., 2016. [Ophiothrix fragilis] and/or [Ophiocomina nigra] brittlestar beds on sublittoral mixed sediment. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinhab.1068.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here.
    [Show full text]
  • Report on the Development of a Marine Landscape Classification for the Irish Sea
    Irish Sea Pilot - Report on the development of a marine landscape classification for the Irish Sea 7. Appendix II: RV Lough Foyle cruise (Irish) Sea Mounds (NW Irish Sea) Habitat Mapping Introduction and methods All surveys were undertaken aboard the RV Lough Foyle (DARD) during June 2003. Acoustic surveys A RoxAnn™ acoustic ground discrimination survey (AGDS) was undertaken of the main survey area between 1st and 3rd June 2003, by A. Mitchell. Two additional RoxAnn™ datasets were collected by M. Service on 23rd June 2003 during the multibeam sonar survey. All RoxAnn™ datasets were obtained using a hull-mounted 38kHz transducer, a GroundMaster RoxAnn™ signal processor combined with RoxMap software, saving at a rate of between 1 and 5s intervals. An Atlas differential Geographical Positioning Systems (dGPS), providing positional information, was integrated via the RoxMap laptop. Track spacing varied between 500m for the large area and 100m for the multibeam survey areas. Multibeam sonar datasets were collected for two of the (Irish) Sea Mounds on 23rd June 2003, using an EM2000 Multibeam Echosounder (MBES, Kongsberg Simrad Ltd; operators: J. Hancock and C. Harper.). The sonar has a frequency of 200kHz and a ping rate of 10Hz. It operates with 111 roll-stabilised beams per ping with a 1.5 degree beam width along-track and 2.5 degree beam width across-track. The system has an angular coverage of 120 degrees. In addition to bathymetric coverage, the system has an integrated seabed imaging capability through a combination of phase and amplitude detection (referred to here as ‘backscatter’). The EM2000 was deployed with the following ancillary parts: • Seapath 200 – this provides real-time heading, attitude, position and velocity solutions with a 1pps timing clock for update of the sonar together with full differential corrections supplied by the IALA GPS network.
    [Show full text]
  • Toxic Effects of Ammonia Exposure on Growth Performance, Hematological
    Shin et al. Fisheries and Aquatic Sciences (2016) 19:44 DOI 10.1186/s41240-016-0044-6 RESEARCH ARTICLE Open Access Toxic effects of ammonia exposure on growth performance, hematological parameters, and plasma components in rockfish, Sebastes schlegelii, during thermal stress Ki Won Shin2, Shin-Hu Kim1, Jun-Hwan Kim1, Seong Don Hwang2 and Ju-Chan Kang1* Abstract Rockfish, Sebastes schlegelii (mean length 14.53 ± 1.14 cm and mean weight 38.36 ± 3.45 g), were exposed for 4 weeks with the different levels of ammonia in the concentrations of 0, 0.1, 0.5, and 1.0 mg/L at 19 and 24 °C. The indicators of growth performance such as daily length gain, daily weight gain, condition factor, and hematosomatic index were significantly reduced by the ammonia exposure and high temperature. The ammonia exposure induced a significant decrease in hematological parameters, such as red blood cell (RBC) count, white blood cell (WBC) count, hemoglobin (Hb), and hematocrit (Ht), whose trend was more remarkable at 24 °C. Mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) were also notably decreased by the ammonia exposure. Blood ammonia concentration was considerably increased by the ammonia concentration exposure. In the serum components, the glucose, glutamic oxalate transaminase (GOT), and glutamic pyruvate transaminase (GPT) were substantially increased by the ammonia exposure, whereas total protein was significantly decreased. But, the calcium and magnesium were not considerably changed. Key words: Ammonia, Hematological parameters, Growth performance, Plasma components, Rockfish Background performance decrease, tissue erosion and degeneration, Ammonia is one of the nitrogenous wastes especially in immune suppression, and high mortality in aquatic ani- water.
    [Show full text]
  • Non-Destructive Morphological Observations of the Fleshy Brittle Star, Asteronyx Loveni Using Micro-Computed Tomography (Echinodermata, Ophiuroidea, Euryalida)
    A peer-reviewed open-access journal ZooKeys 663: 1–19 (2017) µCT description of Asteronyx loveni 1 doi: 10.3897/zookeys.663.11413 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Non-destructive morphological observations of the fleshy brittle star, Asteronyx loveni using micro-computed tomography (Echinodermata, Ophiuroidea, Euryalida) Masanori Okanishi1, Toshihiko Fujita2, Yu Maekawa3, Takenori Sasaki3 1 Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, 310-8512 Japan 2 National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki, 305-0005 Japan 3 University Museum, The Uni- versity of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033 Japan Corresponding author: Masanori Okanishi ([email protected]) Academic editor: Y. Samyn | Received 6 December 2016 | Accepted 23 February 2017 | Published 27 March 2017 http://zoobank.org/58DC6268-7129-4412-84C8-DCE3C68A7EC3 Citation: Okanishi M, Fujita T, Maekawa Y, Sasaki T (2017) Non-destructive morphological observations of the fleshy brittle star, Asteronyx loveni using micro-computed tomography (Echinodermata, Ophiuroidea, Euryalida). ZooKeys 663: 1–19. https://doi.org/10.3897/zookeys.663.11413 Abstract The first morphological observation of a euryalid brittle star,Asteronyx loveni, using non-destructive X- ray micro-computed tomography (µCT) was performed. The body of euryalids is covered by thick skin, and it is very difficult to observe the ossicles without dissolving the skin. Computed tomography with micrometer resolution (approximately 4.5–15.4 µm) was used to construct 3D images of skeletal ossicles and soft tissues in the ophiuroid’s body. Shape and positional arrangement of taxonomically important ossicles were clearly observed without any damage to the body.
    [Show full text]
  • Annual Macrofauna Production in a Hard-Bottom Reef Community
    J. mar. biol. Ass. U.K. (1985), 65, 713-735 713 Printed in Great Britain ANNUAL MACROFAUNA PRODUCTION IN A HARD-BOTTOM REEF COMMUNITY C. L. GEORGE AND R. M. WARWICK Natural Environment Research Council, Institute for Marine Environment Research, Prospect Place, The Hoe, Plymouth PLi 3DH (Figs. 1-6) Estimates of annual production of the major component species of macrofauna comprising a hard-bottom community at a depth of 41 m in the Bristol Channel have been made. The sea-bed in this region is covered with extensive reefs of the tube-building polychaete Sabellaria spinulosa. Total production is 34-1 g dry wt m~2 y"1, the mean annual biomass 245 g m~2 and the P/B ratio 14. Production is overwhelmingly dominated by the suspension-feeding brittlestar Ophio- thrix fragilis, resulting in a strongly concave species production-rank curve. In addition, there is a diverse fauna of nestling species with slow growth rates which reach maturity at a small body size: production rates for these species are low, but accurate production estimates are sometimes difficult. It is suggested that slow growth rates and small size may result partly from the physical restriction of the reef interstices but principally from the fact that Ophiothrix monopolizes the suspended food resource with an umbrella of feeding arms, and that the infauna of the reef is thus resource-limited. The production ecology at this site is compared with that of other benthic communities in the Bristol Channel. We have limited the detailed presentation of data to a few typical examples; however, data for other species of size frequency, biomass and production are available on request from the authors.
    [Show full text]
  • Echinodermata, Ophiuroidea)
    Vol. 16: 105–113, 2012 AQUATIC BIOLOGY Published online July 19 doi: 10.3354/ab00435 Aquat Biol Slow arm regeneration in the Antarctic brittle star Ophiura crassa (Echinodermata, Ophiuroidea) Melody S. Clark*, Terri Souster British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK ABSTRACT: Regeneration of arms in brittle stars is thought to proceed slowly in low temperature environments. Here a survey of natural arm damage and arm regeneration rates is documented in the Antarctic brittle star Ophiura crassa. This relatively small ophiuroid, a detritivore found amongst red macroalgae, displays high levels of natural arm damage and repair. This is largely thought to be due to ice damage in the shallow waters it inhabits. The time scale of arm regener- ation was measured in an aquarium-based 10 mo experiment. There was a delayed regeneration phase of 7 mo before arm growth was detectable in this species. This is 2 mo longer than the longest time previously described, which was in another Antarctic ophiuroid, Ophionotus victo- riae. The subsequent regeneration of arms in O. crassa occurred at a rate of approximately 0.16 mm mo−1. To date, this is the slowest regeneration rate known of any ophiuroid. The confir- mation that such a long delay before arm regeneration occurs in a second Antarctic species pro- vides strong evidence that this phenomenon is yet another characteristic feature of Southern Ocean species, along with deferred maturity, slowed growth and development rates. It is unclear whether delayed initial regeneration phases are adaptations to, or limitations of, low temperature environments.
    [Show full text]
  • Multiple Fetal Nutritional Patterns Before Parturition in Viviparous Fish Sebastes Schlegelii (Hilgendorf, 1880)
    ORIGINAL RESEARCH published: 14 January 2021 doi: 10.3389/fmars.2020.571946 Multiple Fetal Nutritional Patterns Before Parturition in Viviparous Fish Sebastes schlegelii (Hilgendorf, 1880) Du Tengfei 1,2,3†, Xiao Yongshuang 1,2,4†, Zhao Haixia 1,2,3, Zhou Li 1,2,3, Liu Qinghua 1,2, Wang Xueying 1,2, Li Jun 1,2,4*, Xu Shihong 1,2, Wang Yanfeng 1,2, Yu Jiachen 1,2,3, Wu Lele 1,2,3, Wang Yunong 1,2,3 and Gao Guang 1,2,3 1 The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China, 2 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China, 3 University of Chinese Academy of Sciences, Beijing, China, 4 Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China Sebastes schlegelii is a commercially important fish with a special viviparous reproductive system that is cultured in near-shore seawater net cages in East Asia. In the gonadal Edited by: development of the species, the gonad of males mature before those of females, which Antonio Trincone, mature after mating. Mating in male/female fishes occurs in October of each year. Then, Consiglio Nazionale delle Ricerche (CNR), Italy females undergoing oocyte maturation complete fertilization using stored sperm in March Reviewed by: of the following year. The pregnancy is completed when larvae are produced in the Angela Cuttitta, ovary. It has been reported that embryonic nutrient supply originates entirely from the National Research Council (CNR), Italy female viviparous reproductive systems.
    [Show full text]
  • Marine Ecology Progress Series 525:127
    Vol. 525: 127–141, 2015 MARINE ECOLOGY PROGRESS SERIES Published April 9 doi: 10.3354/meps11169 Mar Ecol Prog Ser Trophic niche of two co-occurring ophiuroid species in impacted coastal systems, derived from fatty acid and stable isotope analyses Aline Blanchet-Aurigny1,*, Stanislas F. Dubois1, Claudie Quéré2, Monique Guillou3, Fabrice Pernet2 1IFREMER, Laboratoire d’Ecologie Benthique, Département Océanographie et Dynamique des Ecosystèmes, Centre de Bretagne, BP70, 29280 Plouzané, France 2IFREMER, Laboratoire de Physiologie Fonctionnelle des Organismes Marins, LEMAR UMR CNRS IRD 6539, Centre de Bretagne, BP70, 29280 Plouzané, France 3Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, LEMAR UMR CNRS IRD 6539, place Nicolas Copernic, 29280 Plouzané, France ABSTRACT: The trophic niches of 2 common co-occurring ophiuroids, Ophiocomina nigra and Ophiothrix fragilis (Echinodermata, Ophiuroidea), in 2 contrasting coastal systems of Brittany (France) were investigated. We used a combination of fatty acid biomarkers derived from neutral lipids and stable isotopic compositions to explore the contributions of oceanic versus continental inputs to the ophiuroids’ diet. We investigated 2 different systems with an inshore versus offshore comparison. We sampled potential food sources and surveyed organisms every 2 mo for 1 yr. Spatio-temporal variations in stable isotopes and fatty acid profiles of the ophiuroids were gener- ally low compared to interspecific differences. Fatty acid markers showed that both ophiuroids relied on diatom inputs. However, a more δ15N-enriched isotopic composition as well as a more balanced plant- versus animal-derived fatty acid composition in O. nigra suggest that a broader range of food sources are being used by this species irrespective of location or sampling time.
    [Show full text]
  • Diet Analysis of Black Rockfish (Sebastes Melanops) from Stomach Contents Off the Coast of Newport, Oregon
    Diet analysis of Black Rockfish (Sebastes melanops) from stomach contents off the coast of Newport, Oregon by Renee Doran A THESIS submitted to Oregon State University Honors College in partial fulfillment of the requirements for the degree of Honors Baccalaureate of Science in Biology: Marine Biology Option (Honors Scholar) Presented November 16, 2020 Commencement June 2021 1 2 AN ABSTRACT OF THE THESIS OF Renee Doran for the degree of Honors Baccalaureate of Science in Biology: Marine Biology Option presented on November 16, 2020. Title: Diet analysis of Black Rockfish (Sebastes melanops) from stomach contents off the coast of Newport, Oregon Abstract approved:_____________________________________________________ Scott Heppell Black Rockfish are important commercial and recreational species and understanding their biology is useful in developing best management practices. A common means to assess diet in both freshwater and marine fishes is stomach content analysis, which can determine diet composition and infer foraging behaviors. We conducted a stomach content analysis on 263 Black Rockfish stomachs from fish caught off Newport, Oregon in March and June through September. We enumerated and identified prey taxa to determine an index of relative importance (IRI) for prey groups. We processed stomachs and recorded prey weight, number of prey, and prey variation per stomach and measured total (filleted) length and sex for each sample. We found crab megalopa had the highest IRI but were not significantly more important than other prey groups. We did not find a significant difference in the diet habits of male and female fish; although, female fish had on average higher prey weight, number of prey, and variety of prey per stomach.
    [Show full text]
  • The Colours of Ophiocomina Nigra (Abildgaard) 1
    J. mar. biol. Ass. U.K. (1962) 42, 1-8 Printed in Great Britain THE COLOURS OF OPHIOCOMINA NIGRA (ABILDGAARD) 1. COLOUR VARIATION AND ITS RELATION TO DISTRIBUTION By A. R. FONTAINE Department of Zoology and Comparative Anatomy, Oxford* Colour characters can be of importance in ophiuroid taxonomy, especially at the species level. In particular the family Ophiocomidae, in which the traditional morphological characters are notoriously variable, provides many examples of related species which are best separated by body colour or colour patterns. The usefulness of the colour characters is weakened by an incom• plete knowledge of the extent of colour variation within each species and a total lack of information concerning the influence of environmental factors on coloration. In addition, there is little knowledge of the chemistry of pigmenta• tion or of the cytology and anatomical disposition of pigments responsible for external coloration of ophiuroids generally. These studies were undertaken in order to gather some information on the colour biology of one species of ophiocomid, Ophiocomina nigra (Abildgaard), in the belief that a thorough knowledge of various aspects of pigmentation of one ophiuroid species will contribute towards an evaluation of the role of colour in the functional biology of the family, at least, and may help to clarify the position of colour characters in ophiuroid systematics generally. This present report describes the colour variations of O. nigra, a scheme of colour classification for the species, and the relationship between colour variation and distribution in depth. Further reports will deal with the chemistry and physiology of pigmentation. DISTRIBUTION Ophiocomina nigra ranges from the Azores to northern Norway, occurring abundantly around the British Isles and rarely in the Mediterranean.
    [Show full text]
  • Dracunculoidea: Guyanemidae): New Morphological Aspects and Emendation of the Generic Diagnosis
    FOLIA PARASITOLOGICA 57[4]: 289–294, 2010 © Institute of Parasitology, Biology Centre ASCR ISSN 0015-5683 (print), ISSN 1803-6465 (online) http://www.paru.cas.cz/folia/ Males of Ichthyofilaria argentinensis Incorvaia, 1999 and I. bergensis (Wülker, 1930) (Dracunculoidea: Guyanemidae): new morphological aspects and emendation of the generic diagnosis Delfina M.P. Cantatore1,2, Paolo Merella3 and Juan T. Timi1,2 1 Laboratorio de Parasitología, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, Mar del Plata (7600), Argentina; 2 Concejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; 3 Sezione di Parassitologia e Malattie Parassitarie, Dipartimento di Biologia Animale, Università di Sassari, Via Vienna 2, Sassari (07100), Italy Abstract: The adult male of dracunculoid nematode Ichthyofilaria argentinensis Incorvaia, 1999 (Guyanemidae) is described for the first time based on specimens found in the swimbladder of its type host,Merluccius hubbsi Marini (Merlucciidae), caught off the coast of Buenos Aires, Argentina (western Atlantic Ocean). In addition, the males of Ichthyofilaria bergensis (Wülker, 1930) Køie, 1993 are redescribed from specimens collected from the body cavity and visceral surface of Molva macrophthalma (Rafinesque) (Lotidae) caught in the western Mediterranean Sea, off the coast of Sardinia. Light and scanning electron microscopy examinations revealed some new morphological features for the genus, such as a pair of deirids located near the end of muscular oesophagus, the body wall conspicuously twisted immediately anterior to the cloaca, the presence of a copulatory plate, one pair of adcloacal papillae and a pair of phasmids situated on the posterior half of the tail.
    [Show full text]