Supplementary figures

Supplementary Figure S1. Orthology analysis. Bayesian phylogenetic analysis supporting orthology for investigated in this study. Red color refers to Xenacoelomorpha taxa and blue colour refers to N. vectensis. Bootstrap values were shown when equal or above 30%. Names of genes or , if available, follow the name of organism(s); otherwise the accession number is written. Asterisks indicate genes with a spatial expression by WMISH.

Supplementary Figure S2. Expression of amts, aquaporins, slc4 b, slc4 c, slc12 b, rootletin and plastin in I. pulchra. Whole mount in situ hybridization (WMISH) of (a) slc4 b (b) slc4 c (c) slc12 b (d) aquaporin a (e) aquaporin b (f) aquaporin c (g) aquaporin d (h) rootletin (i) amt 1 (j) amt 2 (k) amt 3 (l) amt 4 (m) amt 5 (n) amt 5 and (o) plastin in I. pulchra. The inset in panel d shows a different focal plane of the animal. Anterior is to the left. ad, anterior domain; ds, digestive syncytium; fg, female gonads; lpd, lateral parenchymal domain; pd, posterior domain; te, testis. Scale bar = 50 µm.

Supplementary Figure S3. Expression of amt, aquaporins, slc4 b, slc4 c, v- a2, v-atpase b2, stomatin/podocin c, stomatin/podocin d, rootletin and plastin in M. stichopi. Whole mount in situ hybridization (WMISH) of (a) stomatin/podocin d (b) stomatin/podocin e (c) slc4 b (d) slc4 c (e) slc26 b (f) aquaporin a (g) aquaporin b (h) aquaporin c (i) aquaporin d (j) aquaporin e (k) aquaporin f (l) rootletin (m) amt (n) v- ATPase a2 (o) v-ATPase b2 and (p) plastin in M. stichopi. The inset in panel j shows a lateral view of the indicated animal. Anterior is to the left. ad, anterior domain; ep, epidermis; dlr, distal lateral rows; fg, female gonads; glc, gut-lining cells; m, mouth; plr, proximal lateral rows; sc, subepidermal cells. Scale bar = 100 µm.

Supplementary Figure S4. Expression of amts, cd2ap, zo1 and ca in N. vectencis juvenile polyps. Whole mount in situ hybridization (WMISH) of (a) amt1 (b) amt2 (c) amt3 (d) amt4 (e) amt5 (f) amt6 (g) ca a1 (h) ca a2 (i) ca a3 (j) cd2ap and (k) zo1 in N. vectensis. Panels a’-a’’, b’, c’, d’, e’ and f show a higher magnification of the indicated domains in panels a, b, c, d, e and f, respectively. Anterior is to the left. bw, ect, ectoderm; endodermal body wall; mes, mesenteries; oe, oral ectoderm; p, pharynx; pd, posterior gastrodermal domain; ten, tentacles. Scale bar = 100 µm.

Supplementary Table 1. Summary of expression/role of excretion-related genes in metazoan and non metazoan taxa. Compilation of excretion-related expression/role data for metazoan and non metazoan taxa for genes investigated in this study. Data are based on this study unless stated otherwise. Question marks represent missing data.

Supplementary Table 2. GenBank accession numbers. GenBank accession numbers used in this study are listed.

S1 B.glabrata_Sns 9 1 H.sapiens_Nephrin

X.tropicalis_Nphs1

H.miamia_98054641

C.submaculatums_c17370 8 7 D.gymnopharyngeus_c10580

D.longitubus_c37893

D.longitubus_c36603

D.gymnopharyngeus_c10380

H.miamia_98022051

I.pulchra_nephrin/kirrel b *

8 9 I.pulchra_nephrin/kirrel c *

C.submaculatums_c17370 9 9

C.submaculatums_c15556 5 0 3 1 C.macropyga_5188.1

C.macropyga_2490.1

N.westbladi_51630 8 6

4 2 M.stichopi_nephrin/kirrel c *

X.bocki_12500.1 4 2 8 6 X.profunda_c18867

H.sapiens_KIRREL1

9 3 H.sapiens_KIRREL2

5 3 H.sapiens_KIRREL3 3 6 X.tropicalis_Kirrel

9 9 D.melanogaster_Dumbfounded 3 6 D.melanogaster_C-roughest

C.elegans_SIG2

M.stichopi_nephrin/kirrel a *

C.elegans_SIG1

I.pulchra_nephrin/kirrel a *

5 3 C.macropyga_2933.1

E.macrobursalium_c4372 3 0 C.submaculatums_c17306

D.longitubus_c38278

M.stichopi_nephrin/kirrel b * 3 1 X.profunda_13792.1 9 1 X.profunda_14967.1

X.bocki_5576.1

N.westbladi_48390.0

8 8 D.melanogaster_Hibris

D.melanogaster_Sns

9 9 IG-like domain H.sapiens_IGF1R

D.melanogaster_InR

0.8 X.bocki_20883.1 A.queenslandica_1IEJ07 51 49 D.melanogaster_Q9W1F7 99 100 X.tropicalis_stoml2 32 H.sapiens_stomatin 2 30 N.vectensis_91851 32 C.elegans_stoml-1 STOMATIN-2 100 A.queenslandica_1IFUT2 A.queenslandica_1IFXM9 77 100 D.longitubus_c33065 H.miamia_9800988 C.elegans_un24 96 100 H.miamia_9803130 68 C.macropyga_10774 100 STOMATIN-1 99 H.sapiens_stomatin 1 X.tropicalis_stoml1 N.vectensis_247670 32 74 D.melanogaster_Q8MZ13 D.melanogaster_mec2 100 N.vectensis_218685 N.vectensis_147236 X.bocki_1047.1 D.melanogaster_band7 56 M.stichopi_stomatin/podocin e * 92 N.westbladi_35920.0 N.westbladi_47675.0 100 X.tropicalis_nphs2 H.sapiens_podocin C.elegans_stom2

91 H.sapiens_band7 H.sapiens_stomatin H.sapiens_stoml-3 X.tropicalis_stoml-3

84 N.vectensis_98301 N.vectensis_41366 N.vectensis_164373 N.vectensis_98373

74 C.elegans_mec-2 C.elegans_stom4 C.elegans_stom6 56 C.elegans_stom5 C.elegans_unc-1 C.elegans_stom3 STOMATIN-3/PODOCIN D.gymnopharyngeus_c13414 SLIPINS 70 D.gymnopharyngeus_c2158 H.miamia_9800107 H.miamia_9800318 H.miamia_9803220

30 D.longitubus_c30579 D.longitubus_c36799 I.pulchra_stomatin/podocin c 80 C.macropyga_229.1 * C.submaculatum_c18531 E.macrobursalium_c8407 A.queenslandica_I1FPX0 C.elegans_stom1 30 I.pulchra_stomatin/podocin a * 90 I.pulchra_stomatin/podocin b * C.macropyga_14931.1 C.submaculatum_c17900

M.stichopi_stomatin/podocin a 74 * M.stichopi_stomatin/podocin b * M.stichopi_stomatin/podocin c * M.stichopi_stomatin/podocin d * 100 E.macrobursalium_c6060 C.macropyga_729.1 C.submaculatum_c19891 Sterreria_c17109 X.bocki_12758.1 63 N.westbladi_52579.0 N.westbladi_25494.0 59 H.miamia_9800081 H.miamia_9803037 A.queenslandica_IFPW1 9 H.miamia_9800396 100 C.albicans_paraslipin 100 P.tetraurelia_paraslipin T.thermophila_paraslipin PROKARYOTIC PARASLIPINS 2.0 T.adhaerens_B3S7T9

N.vectensis_zo1 *

C.elegans_zo1 4 3 100 D.melanogaster_pyd

S.purpuratus_782687.2

X.bocki_3789.1 5 8

C.macropyga_5972.1

4 7 3 4 D.gymnopharyngeus_c12822

D.gymnopharyngeus_c13251

100 D.longitubus_c38032

C.submaculatum_c19373 4 4

I.pulchra_zo1 *

H.miamia_98057262

M.stichopi_zo1 9 7 *

N.westbladi_51947.0

H.sapiens_ZO-1

9 9 H.sapiens_ZO-2

H.sapiens_ZO-3

H.sapiens_Dlg1 100 Disks large D.melanogaster_Dlg1

0.2 H.sapiens_cd2ap

A.queenslandica_XP_003386167.1 9 9

100 N.vectensis_cd2ap *

X.bocki_1192.1

4 6 4 6 M.stichopi_cd2ap *

5 1

N.westbladi_47339.0 9 0

7 4 N.westbladi_51312.0

D.melanogaster_cindr 4 7

I.pulchra_cd2ap 4 1 *

D.gymnopharyngeus_c14992

H.sapiens_Spectrin_a chain 9 4

H.sapiens_Spectrin_b chain 100

D.melanogaster_Spectrin_a chain 7 3

D.melanogaster_Spectrin_b chain

0.4 S.mediterranea_slc13a3 SLC1 S.mediterranea_slc1a-4

S.mediterranea_slc1a-2

H.sapiens_SLC1A2

I.pulchra_slc1b 33 4 7 *

M.stichopi_scl1

S.mediterranea_slc1a-3 30 I.pulchra_slc1a 9 9 * I.pulchra_slc1c *

N.vectensis_230013 3 8 H.sapiens_SLC1A5 9 2

H.sapiens_SLC1A4

N.vectensis_slc1a2_A7S331 3 7

H.sapiens_SLC1A7

H.sapiens_SLC1A6 9 0

H.sapiens_SLC1A3

H.sapiens_SLC1A1

S.mediterranea_slc1a-1

S.mediterranea_slc1a-5

H.sapiens_SLC13A1 9 7 SLC13 H.sapiens_SLC13A4

H.sapiens_SLC13A3

H.sapiens_SLC13A2 8 5

H.sapiens_SLC13A5

M.stichopi_slc13 a *

M.stichopi_slc13 b 8 7 *

M.stichopi_slc13 c *

5 0 M.stichopi_slc13 d *

9 7 N.vectensis_1563873

N.vectensis_1563939

I.pulchra_slc13 *

S.mediterranea_slc13a2

S.mediterranea_slc13a4

8 4 S.mediterranea_slc13a5

S.mediterranea_slc13a6

S.mediterranea_slc13a7 S.mediterranea_slc12a1 SLC12 6 7 S.mediterranea_slc12a4a

7 9 I.pulchra_Slc12 b *

8 6 H.sapiens_SLC12A6

H.sapiens_SLC12A4 8 9

H.sapiens_SLC12A5

H.sapiens_SLC12A7

3 7 S.mediterranea_slc12a4b

7 9 M.stichopi_Slc12 c

S.mediterranea_slc12a3 9 4

S.mediterranea_slc12a2

H.sapiens_SLC12A9

M.stichopi_Slc12 a *

9 3 S.mediterranea_slc12a5

H.sapiens_SLC12A8

N.vectensis_238013 30 6 5 N.vectensis_XM_0016413

N.vectensis_104399

H.sapiens_SLC12A1

6 3 H.sapiens_SLC12A2

H.sapiens_SLC12A3

I.pulchra_Slc12 a * 5 3

M.stichopi_Slc12 b *

S.mediterranea_slc5a-1 SLC5

S.mediterranea_slc5a-3

S.mediterranea_slc5a-4

8 3 H.sapiens_SLC5A5

H.sapiens_SLC5A6

H.sapiens_SLC5A8

H.sapiens_SLC5A12 7 9

H.sapiens_SLC5A7

S.mediterranea_slc5a-2

N.vectensis_89958

30 N.vectensis_31622 4 7

I.pulchra_SLC5A *

M.stichopi_SLC5A *

H.sapiens_SLC5A10 8 0

H.sapiens_SLC5A9

H.sapiens_SLC5A1

H.sapiens_SLC5A2

H.sapiens_SLC5A4

N.vectensis_SLC5a1_A7SQZ6

H.sapiens_SLC5A3

N.vectensis_1228981

8 2 N.vectensis_16302

I.pulchra_Slc5B *

M.stichopi_Slc5B *

H.sapiens_SLC5A11

5.0 H.sapiens_SLC8A2 SLC8 H.sapiens_SLC8A1

M.stichopi_slc8 *

3 5 S.mediterranea_slc8a3b

6 4 S.mediterranea_slc8a-2

S.mediterranea_slc8a4a 5 4 S.mediterranea_slc8a4b

S.mediterranea_slc8a-5

4 3 S.mediterranea_slc8a-1 S.mediterranea_slc8a3a

3 6 I.pulchra_slc8 *

9 0 N.vectensis_gi|1563681 N.vectensis_gi|1563970

N.vectensis_gi|1564001

H.sapiens_SLC8A3

M.stichopi_slc9 * SLC9 I.pulchra_slc9 *

N.vectensis_XP_0016262 6 5 100 N.vectensis_XM_0016261

4 6 H.sapiens_SLC9A1

H.sapiens_SLC9A2 6 0 H.sapiens_SLC9A3

H.sapiens_SLC9A4

H.sapiens_SLC9A5

S.mediterranea_slc9a-1 3 4 7 7 S.mediterranea_slc9a-4 6 4 S.mediterranea_slc9a-7

S.mediterranea_slc9a-8

9 9 S.mediterranea_slc9a-9 S.mediterranea_slc9a-3

9 3 S.mediterranea_slc9a-5

H.sapiens_SLC9A8

3 8 S.mediterranea_slc9a-2

H.sapiens_SLC9A6 5 2 6 4 H.sapiens_SLC9A7

H.sapiens_SLC9A9 3 3

N.vectensis_XP_0016327

5 4 N.vectensis_XM_0016326

N.vectensis_XM_0016350

N.vectensis_XP_0016351

4.0 S.mediterranea_slc4a-3 9 5 SLC4 S.mediterranea_slc4a-6 4 0 S.mediterranea_slc4a-7

I.pulchra_SLC4B *

7 7 I.pulchra_SLC4A * I.pulchra_SLC4C *

M.stichopi_SLC4B * 5 4 9 3 N.vectensis_XM_0016378 N.vectensis_XM_0016238

H.sapiens_SLC4A1 9 4 H.sapiens_SLC4A2

H.sapiens_SLC4A3

H.sapiens_SLC4A4 8 0 H.sapiens_SLC4A9

H.sapiens_SLC4A5

4 9 H.sapiens_SLC4A7 8 9 H.sapiens_SLC4A8 6 2 H.sapiens_SLC4A10 4 4 8 1 M.stichopi_SLC4B * M.stichopi_SLC4A 7 9 *

9 5 S.mediterranea_slc4a-1 S.mediterranea_slc4a-2

H.sapiens_SLC4A11

8 1 S.mediterranea_slc4a-4 S.mediterranea_slc4a-5 7 5 S.mediterranea_slc4a-8

S.mediterranea_slc4a-9

S.mediterranea_slc4a10

9 9 N.vectensis_SLC4A1_tr|A7S539| N.vectensis_SLC4A_tr|A7S542|

N.vectensis_SLC4A1_tr|A7SC64|

8 4 N.vectensis_SLC4A1_tr|A7SX54| 6 6 N.vectensis_SLC4A1_tr|A7SWE4|

N.vectensis_SLC4A_tr|A7SNT1|

3 6 N.vectensis_SLC4A_tr|A7S2I0|

A.queenslandica_SLC_tr|I1FF22

A.queenslandica_SLC_tr|I1FF19 5 4

A.queenslandica_SLC_tr|I1FS59

A.queenslandica_SLC_tr|I1FF21

9 9 H.sapiens_SLC26A1 H.sapiens_SLC26A2 SLC26

H.sapiens_SLC26A3

H.sapiens_Pendrin_SLC26A4

7 0 H.sapiens_Prestin_SLC26A5 H.sapiens_SLC26A6

H.sapiens_SLC26A8

H.sapiens_SLC26A9

M.stichopi_SLC26A * 3 9 4 7 H.sapiens_SLC26A10 H.sapiens_SLC26A7

S.mediterranea_slc26a2 9 7 I.pulchra_SLC26B

H.sapiens_SLC26A11

6 6 I.pulchra_SLC26A * M.stichopi_SLC26B *

N.vectensis_XP_0016417

S.mediterranea_slc26a5a

S.mediterranea_slc26a5b

8 8 S.mediterranea_slc26a6 S.mediterranea_slc26a7

S.mediterranea_slc26a9

S.mediterranea_slc26a10

S.mediterranea_slc26a3b 6 2 4 5 S.mediterranea_slc26a8

S.mediterranea_slc26a3a

S.mediterranea_slc26a4a

S.mediterranea_slc26a4b S.mediterranea_slc26a1

4.0 4 2 Ascoparia_20877.0 A.thaliana_PIP2-7 A.thaliana_PIP2-8 100 A.thaliana_PIP1-4 7 6 A.thaliana_PIP1-5 A.thaliana_PIP1-2 A.thaliana_PIP1-1 PIP A.thaliana_PIP1-3 A.thaliana_PIP2-3 A.thaliana_PIP2-2 A.thaliana_PIP2-1 A.thaliana_PIP2-4 A.thaliana_PIP2-5 AQ 1 A.thaliana_PIP2-6 9 2 X.laevis_AQ1 H.sapiens_AQ1 100 D.discoideum_Q8SSP2| D.discoideum_Q54FQ9| 9 8 C.gigas_AQ4 C.gigas_AQ2 A.thaliana_TIP12 A.thaliana_TIP41 A.thaliana_TIP21 A.thaliana_TIP11 A.thaliana_TIP22 A.thaliana_TIP23 8 8 A.thaliana_TIP51 A.thaliana_TIP13 Ascoparia_20941.0 TIP A.thaliana_TIP32 Ascoparia_8793.0 A.thaliana_TIP31 Ascoparia_12547.0 Ascoparia_7417.0 Ascoparia_8059.1 Ascoparia_25886.0 Ascoparia_8059.1 Sterreria_c16069 6 0 I.pulchra_AQ b S.domuncula_AQP * S.purpuratus_AQ8 9 7 X.laevis_AQ8 H.sapiens_AQ8 9 3 C.elegans_AQ4 C.elegans_AQ5 C.elegans_AQ6 100 M.stichopi_AQ e X.profunda_5191.1 * 100 X.bocki_6004.1 4 1 X.bocki_3609.1 AQ 8 9 6 X.profunda_16480.1 Ascoparia_18896.0 Ascoparia_19462.0 Sterreria_c23675 C.gigas_AQ8

100 D.discoideum_AQPB 8 8 M.stichopi_AQ b D.discoideum_AQPA D.discoideum_AQPC * N.vectensis_001637041.1 N.vectensis_001637090.1 N.vectensis_001620982.1 N.vectensis_001633058.1 X.bocki_30275.1 X.profunda_16190.1 X.bocki_11732.1 M.stichopi_AQ c C.elegans_AQ3 * 8 4 C.elegans_AQ8 3 3 C.elegans_AQ1 AQ 3,7,9,10 C.elegans_AQ7 C.elegans_AQ2 C.gigas_AQ9 X.laevis_AQ3 S.purpuratus_AQ3 S.purpuratus_AQ9 H.sapiens_AQ7 H.sapiens_AQ9 H.sapiens_AQ3 9 9 C.macropyga_15603.1 H.sapiens_AQ10 AQ 11,12 D.longitubus_c33092 D.longitubus_c29236 D.longitubus_c31442 7 5 N.vectensis_001647522.1 H.sapiens_AQ11 4 1 5 1 D.melanogaster_AQP 9 2 X.laevis_AQ12A 5 4 H.sapiens_AQ12A 9 9 H.sapiens_AQ12B S.purpuratus_W4XQ97| C.gigas_AQ10 9 5 A.thaliana_SIP21 A.thaliana_SIP11 A.thaliana_SIP12 SIP N.vectensis_001620411.1 A.thaliana_NIP2-1 5 1 A.thaliana_NIP12 A.thaliana_NIP11 8 9 A.thaliana_NIP71 A.thaliana_NIP61 A.thaliana_NIP51 NIP A.thaliana_NIP41 A.thaliana_NIP42 100 H.miamia_98039895 A.thaliana_NIP3-1 H.miamia_98046060 D.gymnopharyngeus_c12162 H.miamia_98013247 E.macrobursalium_c7828 I.pulchra_AQ c 7 6 * 100 I.pulchra_19947 3 4 I.pulchra_7476 I.pulchra_AQ d 9 7 * C.macropyga_16171.1 C.submaculatum_c17016 C.submaculatum_c13797 9 9 C.macropyga_18775.1 C.macropyga_11373.1 D.gymnopharyngeus_c13920 C.macropyga_14142.1 100 D.melanogaster_Eglp1 D.melanogaster_Eglp3 D.melanogaster_Eglp2 N.vectensis_001622599.1 D.melanogaster_Eglp4 4 1 D.melanogaster_Prip D.melanogaster_Drip C.gigas_AQ1 6 3 3 9 S.purpuratus_AQ2 S.purpuratus_AQ1 S.purpuratus_AQ4 H.sapiens_AQ4 C.gigas_AQ4 C.gigas_tr|K1QCC4| 8 7 X.bocki_16293.1 X.profunda_2887.1 C.gigas_AQ4_tr|K1QC31| X.bocki_2579.1 X.laevis_AQ5 9 2 H.sapiens_AQ2 H.sapiens_AQ5 AQ 2,4,5,6 H.sapiens_AQ6 C.macropyga_17222.1 M.stichopi_AQ a M.stichopi_AQ d * * S.purpuratus_tr|W4XVQ3| D.melanogaster_sp|P23645| 3 3 N.vectensis_001633162.1 N.vectensis_001633177.1 N.vectensis_001633137.1 M.stichopi_AQ f D.gymnopharyngeus_* c11428 C.submaculatum_c15544 7 8 C.macropyga_11010.1 C.macropyga_16428.1 C.macropyga_20222.1 I.pulchra_10429 I.pulchra_AQ a C.macropyga_1448*.1 C.macropyga_334.1 100

I.pulchra_Rootletin b

N.westbladi_5331

100 N.westbladi_5261

M.stichopi_Rootletin 5 9 *

X.bocki_1369.1

100 100

X,profunda_13778.1

9 3 D.melanogaster__Rootletin

6 9

H.sapiens_Rootletin

9 5

6 2 L.crocea_Rootletin

8 4 N.vectensis_165346

8 3 C.gigas_Rootletin

H.miamia_98025609 8 5

H.miamia_98034726

C.submaculatum_c8336

7 4

C.submaculatum_c22552 9 9

C.macropyga.2248.1

6 8 I.pulchra_Rootletin a *

D.gymnopharyngeus_c14489 9 8

D.longitubus_c38139

D.melanogaster_Tpm1 100 coiled coil domain

H.sapiens_Tpm1

0.3 Bacteria_A0A0D0ITJ4 Archaea_Q8TJ70 I.pulchra_amt4 * 100 Bacteria_A0A0T8GDZ1 I.pulchra_amt5 * I.pulchra_amt6 * H.miamia_98027843 5 3 9 1 H.miamia_98057167 H.miamia_98018981 C.macropyga_26515.1 C.macropyga_16173.1 C.macropyga_14995.1 5 6 C.macropyga_24654.1 N.westbladi_37503.0 C.submaculatum_c14126 B.floridae_amt_tr|C3YB79 4 8 C.gigas_amt_tr|K1RSL2 C.teleta_amt_tr|R7UG21 L.gigantea_amt_tr|V4CRP5 100 N.vectensis_amt7 * 3 8 N.vectensis_amt3 * N.vectensis_amt1 * B.floridae_amt_tr|C3YB74 3 8 C.teleta_amt_tr|R7UG21 L.gigantea_amt_tr|V3ZBD8 AMT2/3 B.floridae_amt_tr|C3YB73 C.gigas_amt_tr|K1QFY1 9 3 6 4 C.gigas_amt_tr|V3ZVE4 C.teleta_amt_tr|R7V3I9 C.teleta_amt_tr|R7TS58 S.purpuratus_AMT-2 T.adhaerens_amt_tr|B3RRT6 N.vectensis_amt2 * 4 3 9 9 C.elegans_AMT2 C.elegans_AMT3 N.vectensis_amt5 * M.stichopi_amt * A.mellifera_amt_tr|A0A088AMG9 A.mellifera_amt_tr|Q1L729 A.sinensis_amt_tr|A0A084W5B9 100 A.sinensis_amt_tr|Q7Z1M1 A.sinensis_amt_tr|W5J3B1 D.grimshawi_Dgri D.busckii_Dbus D.persimilis_Dper D.yakuba_Dyak D.melanogaster_amt D.sechellia_Dsec

9 9 BACTERIA

Archaea_Q8TJ70 C.macropyga_474.1 I.pulchra_amt2 *

5 0 ARCHAEA

4 2 8 2

5 6 BACTERIA

9 6 PLANTAE 4 7

9 6 FUNGI

3 0

6 9 C.gigas_amt_tr|K1R302 6 7 L.gigantea_amt_tr|V4AP67 5 5 100 C.elegans_AMT1 C.elegans_AMT4 C.gigas_amt_tr|K1QL97 I.pulchra_amt1 * I.pulchra_amt3 * 8 4 C.macropyga_4405.1 100 C.macropyga_10395.1 C.macropyga_24480.1 E.macrobursalium_c6720 D.longitubus_c31154 E.macrobursalium_c6510 D.gymnopharyngeus_c4043 100 T.adhaerens_amt_tr|B3SC87 T.adhaerens_amt_tr|B3SC46 S.purpuratus_AMT1 100 N.vectensis_amt4 * 7 3 N.vectensis_amt6 * AMT1/4 6 5 B.floridae_amt_tr|C3Z1G1 B.floridae_amt_tr|C3Y022 3 9 100 C.intestinalis_amt C.intestinalis_amt-1 C.intestinalis_amt-2 B.floridae_amt_r|C3Z1J5 N.westbladi_48661 C.macropyga_395.1 M. leidyi_ML10396a 5 0 100 PLANTAE

100 M. leidyi_ML00673a M. leidyi_ML018017a 5 1 L.gigantea.6764926 L.gigantea.6764347 C.gigas_Rh_typeB-A C.teleta_443691773 100 B.floridae_Rh_tr|D7UQE2 B.floridae_Rh_tr|D7UQE3 B.floridae_Rh_r|D7UQE4 9 8 C.intestinalis_Rh type C C.intestinalis_Rh type B 100 X.bocki_7955.1 X.profunda_10079.1 100 B.floridae_Rh_tr|D7UQE1 B.floridae_Rh_tr|D7UQE0 B.floridae_Rh_tr|D7UQD9 M.stichopi_Rh 9 2 * D.longitubus_c29820 100 6 2 D.longitubus_c34329 9 7 I.pulchra_Rh * C.macropyga_1268.1 C.submaculatum_c14702 C.submaculatum_c18521 S.purpuratus_Rh50 N.westbladi_55127.0 3 6 N.vectensis_Rh1 * Rhesus N.vectensis_Rh2 * N.vectensis_Rh3 * 3 6 N.westbladi_49524 7 1 H.sapiens_RHAG H.sapiens_RHBG H.sapiens_RHCG C.intestinalis_ Rh type A H.miamia_98054821 9 7 G.cydonium_Rh A.queenslandica_Rh_761911958 A.queenslandica_Rh_340386356 8 3 C.elegans_Rh-like_protein2 D_busckii_Rh50 C.elegans_Rh-like_protein1 3 3 D.simulans_Rh50 9 4 D.melanogaster_Rh50A D.melanogaster_Rh50B A.darlingi_Rh 9 8 A.gambiae_XP_321046.3 T.adhaerens_XP_002117932.1 T.adhaerens_XP_002117933.1 C.teleta_1443734385 A.mellifera_Rh-like

0.5 M.stichopi_27008.1 9 7 H.sapiens_aCA10 4 1 H.sapiens_aCA11 100 9 4 T.castaneum_aCA10D2A0V8 T.castaneum_aCA1D2A110 C.teleta_aCA_R7UAK2 M.stichopi_16170.1 8 5 I.pulchra_23555.1 E.macrobursalium_c6561 9 9 H.miamia_9805758 X.bocki_13708.1 X.bocki_25911.1 S.purpuratus_aCA10 aCA 10,11 N.vectensis_aCA_A7SHS9 A.queenslandica_I1G206 T.adhaerens_aCA_B3RWG7 Ascoparia_18043.0 9 6 C.submaculatum_c5059 3 3 E.macrobursalium_c1233 C.macropyga_13579.1 T.castaneum_aCA_A0A139WEP8 H.miamia_9803017 H.miamia_9804409 7 1 H.miamia_9804670

7 4 A.thaliana_aCA1,2,3,4,5,6,7,8

E.macrobursalium_c7687 E.macrobursalium_c4985 E.macrobursalium_c3860 7 7 C.macropyga_1531.1 C.macropyga_7849.1 C.macropyga_9483.1 I.pulchra_22278.1 4 1 I.pulchra_2042.1 A.queenslandica_aCA2 A.queenslandica_aCA_1GDV3 A.queenslandica_aCA_I1FTL5 7 1 A.queenslandica_aCA3 A.queenslandica_aCA1 A.queenslandica_aCA_I1FAY3 A.queenslandica_aCA_I1FAY4 A.queenslandica_aCA_I1FAY2 N.vectensis_aCA_A7SHT0 aCA 1,2,3,5,7,8,13 X.profunda_19114.2 3 5 T.castaneum_aCA7 T.castaneum_aCA2 T.castaneum_aCA3 T.adhaerens_aCA_B3RKE3 S.purpuratus_aCA2 M.stichopi_CA a2 4 1 3 7 9 8 * H.miamia_9802923 D.gymnopharyngeus_c131702 6 7 D.gymnopharyngeus_c131701 M.stichopi_CA a1 100 D.longitubus_c28413* 4 2 H.sapiens_aCA5B 4 0 H.sapiens_aCA7 H.sapiens_aCA5A H.sapiens_aCA1 6 2 H.sapiens_aCA13 H.sapiens_aCA3 H.sapiens_aCA2 X.profunda_10281.1 T.castaneum_aCA1 C.teleta_aCA_R7U445 N.vectensis_CA a2 N.vectensis_CA a1 * S.purpuratus_CA7 * 3 6 C.teleta_aCA_R7T953 X.bocki_1891.1 X.profunda_c9812 C.teleta_aCA_R7TR34 5 2 S.purpuratus_aCA8 3 0 X.bocki_46303.1 4 7 5 3 I.pulchra_CA a5 D.longitubus_c33567* I.pulchra_7996.1 X.bocki_29622.1 H.sapiens_aCA8 T.adhaerens_aCA_B3RVV0 8 0 T.adhaerens_aCA_B3RJD2 T.adhaerens_aCA_B3RXW0 C.teleta_R7TB34 C.teleta_R7UU94 alpha Carbonic Anhydrase S.purpuratus_CA12 N.vectensis_A7RR00 4 8 T.adhaerens_B3RKE0 9 7 T.adhaerens_B3RKE1 T.adhaerens_B3RKE2 X.profunda_22298.1 4 7 M.stichopi_9713.1 9 8 D.longitubus_c14121 D.longitubus_c35395 9 6 N.vectensis_CA a3 N.vectensis_A7RRH8*

S.purpuratus_CA14 8 0 S.purpuratus_CA12 S.purpuratus_CA4 S.purpuratus_CA1 S.purpuratus_CA5 100 S.purpuratus_Q0QBU7 * S.purpuratus_CA7 X.bocki_29916.1 N.westbladi_45772.0 7 3 T.castaneum_CA5 T.castaneum_CA9 T.castaneum_CA15 4 4 Sterreria_c22223 M.stichopi_CA a3 M.stichopi_CA a4 9 2 * S.purpuratus_CA4 * S.purpuratus_CA2 C.teleta_R7V5W2 4 2 C.teleta_R7UH28 5 7 H.sapiens_CA12 H.sapiens_CA9 H.sapiens_CA14 H.sapiens_CA6 9 7 Ascoparia_5478.0 C.teleta_R7U0D8 aCA 4,6,9,12,14 C.teleta_R7U704 9 7 Ascoparia_25649.0 H.miamia_9804217 H.miamia_9800827 H.sapiens_CA4 C.teleta_R7V8T6 100 C.teleta_R7TGU1 9 9 C.teleta_R7TGJ8 D.gymnopharyngeus_c10609 3 4 D.gymnopharyngeus_c11439 8 9 X.bocki_3894.1 X.profunda_8011.1 X.profunda_20645.1 X.bocki_4398.1 N.westbladi_39569.0 7 3 N.westbladi_25845.0 N.westbladi_50761.0 N.westbladi_12921.0 N.westbladi_45461.0 Ascoparia_2777.0 C.submaculatum_c13664 D.longitubus_c28511 C.macropyga_16271.1 E.macrobursalium_c491 E.macrobursalium_c122 7 2 I.pulchra_12647.1 I.pulchra_CA a4 I.pulchra_CA a1* 4 9 I.pulchra_CA a2* I.pulchra_CA a3* 9 9 * C.submaculatum_c16873 C.submaculatum_.c13257_ 3 0 N.westbladi_29328.0 C.macropyga_3418.1 9 2 C.macropyga_19581.1 C.macropyga_21507.1 C.macropyga_18799.1 C.macropyga_18136.1 N.vectensis_bCA_A7S717 8 2 T.adhaerens_bCA_B3S5Y1 S.purpuratus_bCA_W4XWD6 T.castaneum_bCA_D6WK56 8 5 C.teleta_bCA_R7TV57 100 A.thaliana_bCA5 5 8 A.thaliana_bCA6 6 9 A.thaliana_bCA2 A.thaliana_bCA1 A.thaliana_bCA3 100 A.thaliana_bCA4 beta Carbonic Anhydrase D.discoideum_bCA_Q555A3 D.discoideum_bCA_Q94473 99 D.purpureum_Na/K ATPase a_tr|F1A2S2

D.purpureum_Na/K ATPase a_tr|Q95024

61 A.queenslandica_XP_0114040

C.elegans_Na/K ATPase a_tr|G5EFV6 39 C.elegans_Na/K ATPase a_tr|P90735

M.stichopi_Na/K ATPase *

N.westbladi_52442.0

100 T.adhaerens_Na/K ATPase a_tr|B3RIH3|

I.pulchra_Na/K ATPase a1 *

D.longitubus_c37851

C.submaculatum_c18356 33 C.macropyga_93.1

I.pulchra_Na/K ATPase a2 *

H.miamia_98034285

N.vectensis_Na/K ATPase a1* 34

N.vectensis_Na/K ATPase a2*

100 X.profunda_6567.1

X.bocki_812.1 52 98 C.teleta_Na/K ATPase a_r|R7VBt Z9|

C.teleta_Na/K ATPase a_tr|R78FV1|

S.purpuratus_Na/K ATPase a_tr|WZ4CC9|

H.sapiens_ATP1A1

H.sapiens_ATP1A2

H.sapiens_ATP1A3

H.sapiens_ATP1A4

100 S.cerevisiae_Sodium transport ATPase 1

S.cerevisiae_Sodium transport ATPase 2

E.coli_Copper-exporting P-type ATPase A

100 B.subtilis_Copper-exporting P-type ATPase

48 H.sapiens_Copper-transporting ATPase

B.dorsalis_Copper-transporting ATPase

E.hirae_Copper-exporting P-type ATPase X.profunda_15609 X.bocki_1513.1 M.stichopi_5973.1 31 9 8 N.vectensis_tr|A7S1B9 N.vectensis_tr|A7T6V8 N.westbladi_51758 H.sapiens_V-type proton ATPase subunit B, isoform D.discoideum_V-type proton ATPase subunit E S.cerevisiae_V-type proton ATPase subunit E 7 4 v-ATPase E D.melanogaster_V-type proton ATPase subunit E H.sapiens_V-type proton ATPase subunit E1 H.sapiens_V-type proton ATPase subunit E2 D.discoideum_V-type proton ATPase subunit C D.melanogaster_V-type proton ATPase subunit C S.cerevisiae_V-type proton ATPase subunit C v-ATPase C N.vectensis_tr|A7RL79 7 1 A.queenslandica_tr|I1F6H1 T.adhaerens_tr|B3RKI5 3 1 C.teleta_tr|R7TXS8 H.sapiens_V-type proton ATPase subunit C1 H.sapiens_V-type proton ATPase subunit C2 S.purpuratus_tr|W4XSB2 M.stichopi_v-ATPase b2 * S.cerevisiae_V-type proton ATPase subunit B 4 0 D.discoideum_V-type proton ATPase subunit B I.pulchra_v-ATPase b * v-ATPase B M.stichopi_v-ATPase b1 * A.queenslandica _tr|I1GEG2 N.vectensis_v-ATPase b * T.adhaerens_tr|B3SAY3 3 9 D.melanogaster_V-type proton ATPase subunit B C.teleta_tr|R7TIR2 7 3 H.sapiens_V-type proton ATPase subunit B, kidney isoform D.melanogaster_V-type proton ATPase subunit d2 D.melanogaster_V-type proton ATPase subunit A isoform 2 D.discoideum_V-type proton ATPase subunit A H.sapiens_V-type proton ATPase subunit A D.melanogaster_V-type proton ATPase subunit A isoform1 S.cerevisiae_V-type proton ATPase subunit A v-ATPase A 8 6 C.teleta_tr|R7V2Q5 N.vectensis_v-ATPase a * T.adhaerens_tr|B3RW75 A.queenslandica_tr|I1FHW5 M.stichopi_v-ATPase a1 * M.stichopi_v-ATPase a2 * I.pulchra_v-ATPase a * H.sapiens_V-type proton ATPase subunit d2 D.melanogaster_V-type proton ATPase subunit d1 H.sapiens_V-type proton ATPase subunit d1 v-ATPase D 5 4 S.purpuratus_tr|W4YDE2 S.cerevisiae_V-type proton ATPase subunit d D.discoideum_V-type proton ATPase subunit d E.macrobursalium_c7821 C.submaculatum_c21601 I.pulchra_1691.1 I.pulchra_5737.1 D.longitubus_c35334 D.longitubus_c35800 D.longitubus_c28900 C.macropyga_487.1 C.teleta_tr|R7T5Y4 v-ATPase H D.melanogaster_V-type proton ATPase subunit H 6 3 N.vectensis_tr|A7S0D1 T.adhaerens_tr|B3S152 H.sapiens_V-type proton ATPase subunit H v-ATPase proton proteolipid subunit S.purpurarus_tr|W4XAH0 D.melanogaster_V-type proton ATPase 16 kDa proteolipid subunit 4 8 S.purpuratus_V-type proton ATPase proteolipid subunit 7 3 A.queenslandica_tr|I1E6C7 A.queenslandica_V-type proton ATPase proteolipid subunit N.vectensis_V-type proton ATPase proteolipid subunit C.teleta_V-type proton ATPase proteolipid subunit 3 4 T.adhaerens_V-type proton ATPase proteolipid subunit H.sapiens_V-type proton ATPase 21 kDa proteolipid subunit_VATL S.cerevisiae_V-type proton ATPase subunit c_VATL2 D.discoideum_-type proton ATPase proteolipid subunit S.cerevisiae_V-type proton ATPase subunit c_VATO N.vectensis_tr|A7RQU4 T.adhaerens _tr|B3S2K8 4 4 A.queenslandica_tr|I1FX72 S.purpuratus_tr|W4YMG9 H.sapiens_V-type proton ATPase 21 kDa proteolipid subunit_VATO C.teleta_tr|R7UJY2 S.cerevisiae_V-type proton ATPase subunit c_VATL1 H.sapiens_Plastin1

H.sapiens_Plastin2 7 3 H.sapiens_Plastin3 9 0

X.tropicalis_plastin3 100

N.vectensis_167354

3 1 N.westbladi_18736

C.gigas_plastin-3 6 0

C.elegans_plastin 4 4 4 4

T.castaneum_plastin-2-like

D.gymnopharyngeus_c14008

D.longitubus_c34538

C.macropyga_10271.1

C.macropyga_7071.1

5 9 C.submaculatum_c22181 8 5

N.westbladi_4196

I.pulchra_plastin1 *

I.pulchra_plastin2

E.macrobursalium_c6058

H.miamia_98050048

M.stichopi_plastin *

N.westbladi_1223

7 1 N.westbladi_4297

N.westbladi_5358

Ascoparia_11895.0

X.profunda_12269.1 9 2

X.bocki_218.1

D.melanogaster_a_actinin

H.sapiens_a_actinin

)

)

gut oocyte

, in

lateral

,

)

testis,

(sum. s of cells, of s ? ? ?

ovaries fat body, fat

distal muscle,

(Huang2007) al., et

lateral row pharynx, syncytium,testis, (Gomes2009) al., et

Aquaporins membrane epidermis, epidermis, eyes, pancreas, muscle, pancreas, eyes, (Campbell2008) al., et

digestive tract tract digestive

, in

lining cells, female gonads,

- (Abascal2014) al., et ubiquitous, brain ubiquitous, gut proximal ventral rowsof cells brain, kidney, blood, oocyte lung (Ishibashi2011) al., et osmoregulation (Abascal2014) al., et ? plasma (sum.in spores/ endoplasmic reticulum, endoplasmic reticulum, spores/ malpighian tubules, malpighian epidermis, pharynx, (Hwang2015) al., et neurons, , excretory intestine, hypodermis digestive parenchyme sum.

(

)

,

tudy

s

)

onads

, this

mouth,

skin, skin, lining cells - rowsof cells, (Weavers2009) al., et

erythrocyte membranes, erythrocyte Slipins ? ? ? ? gut (Lapatsina2012) al., et

in lateral

. (Greenand Young, 2008)

(Greenand Young, 2008) ( (Greenand Young, 2008)

nephrocytes neurons melanosensory (Zhang2004) al., et g female syncytium, digestive anterior cells, posterior parenchyme, domain distal domain,subepidermis, anterior epidemis, podocytes, sensoryneurons, ganglia root dorsal (sum ? ? ?

,

,

,

,

Table 1 Table

gonads

, proximal

,

, parenchyme (Weavers2009) al., et

Zo1 ? ? ? ? Mendoza et al., 2010) al., et Mendoza (Itoh et al., 2014) (Itohal., et (thisstudy), 2000) (Feial., et

(Weiand 2001)Ellis, (de rowsof cells (deMendoza 2010) al., et

(Seppa2008) al., et (Sugrueand Zieske, 1997) (deMendoza 2010) al., et

nephrocytes eye wing adult germline, (Djiane2011) al., et epithelia domain,female anterior cells posterior domain, anterior epithelium, gut femalegonads, mouth, lateral ectoderm ectoderm podocytes eye notochord, sheet, epithelial tube neural development, vascular (Bauer2010) al., et absent ? absent

,

,

Supplementary Supplementary

,

., 2016)

,

/Cin8

parenchyme (Yasinal et (Li et al., 2000) (Lial., et ,

d2ap (Weavers2009) al., et pancreas,

absent C ? ? ? ? absent ? (Shih1999) al., et (Eikenes2013) al., et gonads and tentacular ectoderm andtentacular (Johnson2008) al., et

nephrocytes nephrocytes eye germline sheet epithelial female domain, anterior subepidermis, femalegonads, mouth oral podocytes heart, brain, gland salivary

,

, ,

,

testis )

,

oocytes, ? lymph node ,

CNS, CNS,

muscle

l Kim Vu et al., 2015) al., et Vu Kim

lining cells, -

- cells

spleen,

(Thi

vulva (Weavers2009) al., et absent muscles, muscles, absent absent absent s, s,

(Nakamura2014) al., et (Liand He, 2015) Nephrin/Kirre (Strunkelnberg2001) al., et in axon

(Dworak2001) al., et al (Ramos1993) al., et sum. podocytes, podocytes, cardiovascular cells, pangreatic development, ( nephrocytes nephrocytes eye muscle CNS terminal cells stemcells rhogocytes (Kokkinopoulou2014) al., et neur (Wanner2011) al., et anterior neurons, femalegonads, cells posterior gutsubepidermis, femalegonads

/

a

bacteria/Archaea

Arthropoda Platyzoa Mollusca Annelida Nematoda Acoel Nemertodermatida Cnidaria Vertebrata Eu Filasterea Choanoflagellata Holomycota

, ,

,

), ),

,

b 2015) neurons, neurons, skin

,

, , gills

,

a,

, branchiae (Oka2001) al., et

s

midgut, midgut, ,

(Allan2005) al., et

, (Pietrement2006) al., et

antennal gland antennal (Wagner2004) al., et

i and Lin, 2014)

ATPase testis

Rodriguez et al., al., et Rodriguez fat body, fat - , -

? V trachea,

/endosome

Wada et al., 2006) al., et Wada (Gerber2016) al., et - (Gogarten1992) al., et

Nishi et al., 2001) al., et Nishi - , mesenteries, pharynx, , intestine, neuron (Toyomura2003) al., et (Patrick et al., 2006)(Patrick al., et

(Sun (Quijada (Hu2011) al., et 2016)(Thiel al., et (Weihrauch2012) al., et tubule and duct ganglia, (Weihrauchand O'Donnell, 2015)

(Li et al., 2016) (Lial., et (Moriyamaand Futai, 1990)

in (Jouhou2007; al., et Kawamura 2010) al., et

. rotonpump , Golgi vacuole, brain brain ranchiae pancreas kidney eye osteoclast (Shih2008) al., et (Nawata2007; al., et Weihrauch 2009) al., et p (Kawasaki gastroderm filaments septal sum branchiae branchiae mantle b epidermis hypodermis syncytium digestive epithelium gut malpighian tubules, malpighian hindgut, (Blaesse2010; al., et Tsa papilla anal ( organs Crusalis (Williamson2010a; al., et Williamson 2010b) al., et duct ovarioles, testis, brain, epidermis

),

)

gills ,

,

)

,

,

lining cells

epidermis,

- , oocytes

and ,

), ,

oral oral

& membrane) & , inner ear

fixation

lateral cells

, intestine,

Rodriguez et al., 2015) al., et Rodriguez

, mesenteries, 2

- (Bertucci2013) al., et calicoblastic cells calicoblastic (LeRoy 2014) al., et sol (Scimone2011) al., et , teeth , CO distal

? sum. in (Calhounand Zou, 2016) (Weihrauch2012) al., et (Quijada (Hu2011) al., et (Thiel et al., 2016)(Thiel al., et (

(Linser2009) al., et (Weihrauchand O'Donnell, 2015) (McKennaand Frost, 2014) (cyto

intercalated cells, tubule, (LeRoy 2014) al., et n

in i a

sensing system sensing , bones, muscle . .

2 lining cells, gut epithelium, acular ectoderm acular epidermis, epidermis, - A

CO C hindgut and midgut (sum branchiae tubules, malpighian (sum.in epidermis epidermis protonephridia mantle branchiae glands epidermal branchiae epidermis intestine (Adlimoghaddam2015) al., et gonadsdomain,female anterior gut cells, posterior parenchyme, gut sub tent study), (this gastroderm endoderm, aboral ectoderm brain kidney liver, erythrocytes, eye, duct, bladder urinary (sum (Nawata2007; al., et Weihrauch 2009) al., et photosynthesis (Smithand Ferry, 2000) (Elleucheand Poggeler, 2010)

,

, )

,

,

, , e

,

branchiae

,

,

, brain branchia

a , intestine

,

mesenteries,

Johnston’s

, , (Schnizler2002) al., et , rectum, (Roy2013) al., et (Yasuhara2000) al., et in

(Benito2002) al., et (Gerber2016) al., et

estis, liver estis,

. (Scimone2011) al., et

ATPase

al., 2006) al.,

t al., 2015; Worrell et al., 2008) (Weihrauch2012) al., et (sum (Thiel et al., 2016)(Thiel al., et (Hu2010; al., et Hu 2017) al., et , brain +

(Li et al., 2016) (Lial., et /K

(Li et al., 2014; (Lial., et Mallery, 1983) (Cruz2013) al., et + (Patricket Na tubules malpighian papillae anal hindgut, midgut, hearing of organ organs Crusalis testis, eye (Chintapalli2007) al., et (Weihrauch,2006; Weihrauch 1999) al., et epidermis protonephridia footmuscle, hepatopancreas (Ramnananand Storey, 2006) nerves, appendages, pancreatic nephridia mantle branchiae epidermis hypodermis (Adlimoghaddam2015) al., et testis epithelium gut endoderm pharyngeal pharynx filament, septal neurons, duct and tubule kidney (Garvin1985; al., et Wall and Koger, 1994) skin t heart, eye, gut, (Rahmane gills osmoregulation (Chan2010; al., et Saez2009) al., et osmoregulation (Chan2010; al., et Saez2009) al., et osmoregulation

,

,

, ),

,

eye ,

, , lining cells

trachea, - brain,

,

al., 2012) al.,

, hindgut 2016)

Rodriguez et al., 2015) al., et Rodriguez - , gastrointestinal tract (King2008) al., et , female gonads, r

(Huangand Ye, 2010) (Huangand Peng, 2005)

, midgut,

liver (Wu2010) al., et

Rh/AMTs (Weihrauchet (Hu2013) al., et (Quijada (Martin2011) al., et (Hu2014) al., et (Thiel al., et

, head (Takedaand Takemasa, 2015) salivary glands salivary thorax (sum.in , esophagael epithelia,

Kim Vu et al., 2015) al., et Vu Kim transport transporte (Nakada2007; al., et Nawata 2007) al., et (Cruz2013) al., et transport ,

- lining cells 3 3 3 body - dermis

alpighian tubules, ganglia, tubules, alpighian lood branchiae brain, (Chintapalli2007) al., et head m fat (Weihrauch,2006; Weihrauch 2009) al., et epi protonephridia of duct (Thi epidermis branchiae epidermis branchiae hypodermis gut ubiquitous testis, parenchyme, gut subepidermis, epidermis, tentacular ectodermal cells, pharynx mesenteries, gastroderm, b duct, kidney testis gills muscle skin NH NH (Marini2000; al., et Marini 1997) al., et NH

Arthropoda Arthropoda Platyzoa Mollusca Annelida Nematoda Acoela Nemertodermatida Cnidaria Vertebrata Eubacteria/Archaea Filasterea/ Choanoflagellata Holomycota

, this study)

,

SLC8 ? ? Flores et al., 1996) al., et Flores exchange lateral rows of cells

-

(Khananshvili,2013) 2+ (Caiand Lytton, 2004) Kim Vu et al., 2015) al., et Vu Kim Ca

- / + (Caiand Clapham, 2012)

retina,brain (Schwarzand Benzer, 1997) protonephridia (Thi neurons muscle, (Rasgado (Rosenthaland Gilly, 1993) intestine muscle, neurons, (Sharma2013) al., et femaleopening, genital domain anterior proximal kidney heart, brain, liver muscle, pancreas, (sum.in Na (Liao2012) al., et ( absent (Pittmanand Hirschi, 2016)

,

,

,

,

this study) )

,

brain, retina, brain, (Ahearn1985) al., et (Blaya1998) al., et

liver uterus, testis, uterus,

SLC5 ? absent (Freeman2003) al., et (Obi2011) al., et (Wright,2013) (Okuda2000) al., et (Hoglund2011) al., et (Hoglund2011) al., et Kim Vu et al., 2015) al., et Vu Kim - lining cells, female gonads stine stine - (Hoglund2011) al., et tubules malpighian (Stergiopoulos2009) al., et inte hepatopancreas cells glia protonephridia (Thi hepatopancreas edge mantle gills, (Hanquet2011) al., et bacteriocytes (Miyamoto2017) al., et neurons gonads female parenchyme, rowscells of lateral external gut intestine, kidney, glands, salivary heart, muscle, lung, placenta, (sum.in absent ( absent

,

,

ovary, )

, lining cells, anterior -

neurons influx

, - , heart

muscle

, neurons

Jennings et al 2007) al Jenningset (Linser2012) al., et

heart, pancreas, liver, pancreas, heart,

endodermand SLC4 ? (Hu2011) al., et

exchange,Cl calicoblastic ectoderm calicoblastic

lateral rows of cells 3

(Romero2013) al., et (Piermarini2007) al., et NO Kim Vu et al., 2015) al., et Vu Kim aboral / - (Lee2011) al., et 2 canal alimentary tubules malpighian (Yamahiro2008) al., et 2004)(Perrin al., et (Romero2000) al., et protonephridia (Thi ( branchiae lobe, optic neurons, heart, testis epidermis mesoderm, mesenchyme muscle, (Miyamoto2017) al., et (Munschand Deitmer, 1994) hypodermis, neurons, (Sherman2005) al., et gonads, female parenchyme, domain anterior cells, of rows lateral distal gut subepidermis, domain, proximal oral/ ectoderm, (Zoccola2015) al., et tubule, and duct kidney brain, testis, salivary gland, erythrocytes, intestine, heart, spleen retina, smooth lung, muscle, (sum.in gill NO (Parkerand Boron, 2013) ( transport borate (Parkerand Boron, 2013)

)

this study) ,

,

gonads,

head neurons, head

(Mano2007) al., et

nervous system nervous ? ? absent oglund et al., 2011) al., et oglund (Soustelle2002) al., et (Hirthand Deitmer, 2006)

(Grewer2014) al., et SLC1 pharynx, pharynx, (H Kim Vu et al., 2015) al., et Vu Kim central central cells -

sum. in (Hoglund2011) al., et eye, eye, (Besson1999; al., et Umesh 2003) al., et (Kucharski2000) al., et glia protonephridia (Thi system nervous (Hatakeyama2010) al., et nervoussystem, central cells glia muscle, canal excretory female parenchyme, domain anterior brain intestine, kidney, ( transport glytamate (Yernool2004) al., et ( absent

Arthropoda Arthropoda Platyzoa Mollusca Annelida Nematoda Acoela Nemertodermatida Cnidaria Vertebrata Eubacteria/Archaea Filasterea/ Choanoflagellata Holomycota

,

,

endothelial cells endothelial , this study) (Sherman2005) al., et

auditory organs auditory

) ,

Kim Vu et al., 2015) al., et Vu Kim )

(Alperand Sharma, 2013) - malpighian tubules malpighian , auditory organs , (Thi

? (Zoccola2015) al., et SLC26 dicarboxylic acid metabolism acid dicarboxylic (sum.in cochlear hair cells, pancreatic duct, duct, pancreatic cells, hair cochlear - 4 (Li et al., 2016) (Lial., et er andBoron,2013) er , C - 3 (Hwang,2009) (Hoglund2011) al., et ( (Park

(Hirata et al., 2012)(Hirata al., et cells epithelial gut ( (Weber2003) al., et protonephridia mantle wall, body intestine, midgut, neurons, muscle, cell excretory pharynx, femalegonads, testis tissues oral testis, intestine, tubule, proximal hepatocytes, myocytes,brain, cardiac cells, hair thyrocytes gill (Weber2003) al., et HCO (Compton2014 al., et ? ?

)

, this study)

anterior domain anterior

SLC13 ? ? (Halland Pajor, 2005)

(Bergeron2013) al., et

nephridia Kim Vu et al., 2015) al., et Vu Kim - (Saier et al., 1999) (Saieral., et

oot epidermis oot (Hoglund2011) al., et body, fat oenocytes, midgut (Inoue2002) al., et proto (Thi r (Miyamoto2017) al., et intestinal tract 2003) (Feial., et parenchyme, neurons intestine, small kidney, liver, placenta, brain (sum.in substrate carbondicarboxylate transport absent ( ? (Hoglund2011) al., et

,

)

, , glia cells

, 2011)

09)

(Tanis2009) al., et

(Sun2010) al., et

tubules of kidney, SLC12 ? ? ?

, (Li et al., 2014) (Lial., et (Arroyo2013) al., et

Kim Vu et al., 2015) al., et Vu Kim - lining cells, female gonads, (Hwang,20

- (Hoglund al., et (Hoglund2011) al., et (Hoglund2011) al., et

sum. in cord, nerve ventral gland, salivary pad anal gut, tubules malpighian (Piermarini2011) al., et (Leiserson2011) al., et protonephridia (Thi intestine, neurons, muscle, cell excretory (Spencer2011) al., et gonads, female parenchyme, domain anterior gut testis gill intestine ubiquitous bone brain, neurons, ( ? (Gagnonand Delpire, 2013) ? (Gagnonand Delpire, 2013) ?

)

)

, ,

e

, this study)

, pancreas, regulationof , sperm, , intestine ,

brain skin

(Brett et al., 2005) (Brettal., et , neurons , metabolism, (Brett et al., 2005) (Brettal., et

skeletal muscl skeletal ? ? lateral rows of cells

(Donowitz2013) al., et SLC9 (Blaesse2010) al., et (Li et al., 2016) (Lial., et

Kim Vu et al., 2015) al., et Vu Kim - (Weihrauch1998) al., et (Hwang,2009)

regulation (Hoglund2011) al., et

(

midgut midgut gill tubules malpighian (Kang'ethe2007) al., et protonephridia (Thi mantle intestine, hypodermis, cell excretory (Nehrkeand Melvin, 2002) mouth epithelium, gut proximal gill cells, stomach,endothelial cardiac kidney, of tubule distal epididymis, bladder, gall myocytes, thymus, ovary, gland, salivary osteoclasts, (sum.in ph tolerance salt ? trafficking vacuole ph cytosolic

Arthropoda Arthropoda Platyzoa Mollusca Annelida Nematoda Acoela Nemertodermatida Cnidaria Vertebrata Eubacteria/Archaea Filasterea/ Choanoflagellata Holomycota

)

neurons

(Yangand Li,2006)

in , ciliogenesis

. sensory Soczka and Jarman, 2015) Jarman, and Soczka

- um absent absent absent Rootletin ? ? ? s s ( s rootletsof brain, oviduct,

lining cells, gonopore - rootlet, cilary (Styczynska ofprotonephridiaflame cells (Scimone2011) al., et sensoryneurons (Mohan2013) al., et femalegonads, oocytes gut ciliary trachea, photoreceptors, tubule and duct cells of kidney, centriole

Arthropoda Arthropoda Platyzoa Mollusca Annelida Nematoda Acoela Nemertodermatida Cnidaria Vertebrata Eubacteria/Archaea Filasterea/ Choanoflagellata Holomycota

References

Abascal, F., Irisarri, I. and Zardoya, R. (2014). Diversity and evolution of membrane intrinsic proteins. Biochim Biophys Acta 1840, 1468-81. Adlimoghaddam, A., Boeckstaens, M., Marini, A. M., Treberg, J. R., Brassinga, A. K. C. and Weihrauch, D. (2015). Ammonia excretion in Caenorhabditis elegans: mechanism and evidence of ammonia transport of the Rhesus protein CeRhr-1. Journal of Experimental Biology 218, 675-683. Ahearn, G. A., Grover, M. L. and Dunn, R. E. (1985). Glucose transport by lobster hepatopancreatic brush-border membrane vesicles. American Journal of Physiology 248, R133-41. Allan, A. K., Du, J., Davies, S. A. and Dow, J. A. (2005). Genome-wide survey of V-ATPase genes in Drosophila reveals a conserved renal phenotype for lethal alleles. Physiol Genomics 22, 128-38. Alper, S. L. and Sharma, A. K. (2013). The SLC26 gene family of anion transporters and channels. Mol Aspects Med 34, 494-515. Arroyo, J. P., Kahle, K. T. and Gamba, G. (2013). The SLC12 family of electroneutral cation- coupled chloride cotransporters. Mol Aspects Med 34, 288-98. Bauer, H., Zweimueller-Mayer, J., Steinbacher, P., Lametschwandtner, A. and Bauer, H. C. (2010). The dual role of zonula occludens (ZO) proteins. J Biomed Biotechnol 2010, 402593. Benito, B., Garciadeblas, B. and Rodriguez-Navarro, A. (2002). Potassium- or sodium- efflux ATPase, a key in the evolution of fungi. Microbiology 148, 933-41. Bergeron, M. J., Clemencon, B., Hediger, M. A. and Markovich, D. (2013). SLC13 family of Na(+)-coupled di- and tri-carboxylate/sulfate transporters. Mol Aspects Med 34, 299-312. Bertucci, A., Moya, A., Tambutte, S., Allemand, D., Supuran, C. T. and Zoccola, D. (2013). Carbonic anhydrases in anthozoan corals-A review. Bioorganic & Medicinal Chemistry 21, 1437-1450. Besson, M. T., Soustelle, L. and Birman, S. (1999). Identification and structural characterization of two genes encoding glutamate transporter homologues differently expressed in the nervous system of Drosophila melanogaster. FEBS Lett 443, 97-104. Blaesse, A. K., Broehan, G., Meyer, H., Merzendorfer, H. and Weihrauch, D. (2010). Ammonia uptake in Manduca sexta midgut is mediated by an amiloride sensitive cation/proton exchanger: Transport studies and mRNA expression analysis of NHE7, 9, NHE8, and V-ATPase (subunit D). Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology 157, 364-376. Blaya, J. A., Muriana, F. J., Ruiz-Gutierrez, V., Vazquez, C. M. and Bolufer, J. (1998). Folate transport by prawn hepatopancreas brush-border membrane vesicles. Biosci Rep 18, 9-17. Brett, C. L., Donowitz, M. and Rao, R. (2005). Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol 288, C223-39. Cai, X. and Clapham, D. E. (2012). Ancestral Ca2+ signaling machinery in early animal and fungal evolution. Mol Biol Evol 29, 91-100. Cai, X. and Lytton, J. (2004). The cation/Ca(2+) exchanger superfamily: phylogenetic analysis and structural implications. Mol Biol Evol 21, 1692-703. Calhoun, S. and Zou, E. (2016). Epidermal carbonic anhydrase activity and exoskeletal metal content during the molting cycle of the blue crab, Callinectes sapidus. J Exp Zool A Ecol Genet Physiol 325, 200-8. Campbell, E. M., Ball, A., Hoppler, S. and Bowman, A. S. (2008). Invertebrate aquaporins: a review. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology 178, 935-55. Chan, H., Babayan, V., Blyumin, E., Gandhi, C., Hak, K., Harake, D., Kumar, K., Lee, P., Li, T. T., Liu, H. Y. et al. (2010). The p-type ATPase superfamily. J Mol Microbiol Biotechnol 19, 5-104. Chintapalli, V. R., Wang, J. and Dow, J. A. (2007). Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 39, 715-20. Compton, E. L., Page, K., Findlay, H. E., Haertlein, M., Moulin, M., Zachariae, U., Norman, D. G., Gabel, F. and Javelle, A. (2014). Conserved structure and domain organization among bacterial Slc26 transporters. Biochem J 463, 297-307. Cruz, M. J., Sourial, M. M., Treberg, J. R., Fehsenfeld, S., Adlimoghaddam, A. and Weihrauch, D. (2013). Cutaneous nitrogen excretion in the African clawed frog Xenopus laevis: effects of high environmental ammonia (HEA). Aquat Toxicol 136-137, 1-12. de Mendoza, A., Suga, H. and Ruiz-Trillo, I. (2010). Evolution of the MAGUK protein gene family in premetazoan lineages. BMC Evol Biol 10, 93. Djiane, A., Shimizu, H., Wilkin, M., Mazleyrat, S., Jennings, M. D., Avis, J., Bray, S. and Baron, M. (2011). Su(dx) E3 ubiquitin ligase-dependent and -independent functions of polychaetoid, the Drosophila ZO-1 homologue. J Cell Biol 192, 189-200. Donowitz, M., Ming Tse, C. and Fuster, D. (2013). SLC9/NHE gene family, a plasma membrane and organellar family of Na(+)/H(+) exchangers. Mol Aspects Med 34, 236-51. Dworak, H. A., Charles, M. A., Pellerano, L. B. and Sink, H. (2001). Characterization of Drosophila hibris, a gene related to human nephrin. Development 128, 4265-76. Eikenes, A. H., Brech, A., Stenmark, H. and Haglund, K. (2013). Spatiotemporal control of Cindr at ring canals during incomplete cytokinesis in the Drosophila male germline. Dev Biol 377, 9-20. Elleuche, S. and Poggeler, S. (2010). Carbonic anhydrases in fungi. Microbiology 156, 23-9. Fei, K., Yan, L., Zhang, J. and Sarras, M. P., Jr. (2000). Molecular and biological characterization of a zonula occludens-1 homologue in Hydra vulgaris, named HZO-1. Dev Genes Evol 210, 611-6. Fei, Y. J., Inoue, K. and Ganapathy, V. (2003). Structural and functional characteristics of two sodium-coupled dicarboxylate transporters (ceNaDC1 and ceNaDC2) from Caenorhabditis elegans and their relevance to life span. J Biol Chem 278, 6136-44. Freeman, M. R., Delrow, J., Kim, J., Johnson, E. and Doe, C. Q. (2003). Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function. Neuron 38, 567-80. Gagnon, K. B. and Delpire, E. (2013). Physiology of SLC12 transporters: lessons from inherited human genetic mutations and genetically engineered mouse knockouts. American Journal of Physiology-Cell Physiology 304, C693-C714. Garvin, J. L., Burg, M. B. and Knepper, M. A. (1985). Ammonium replaces potassium in supporting sodium transport by the Na-K-ATPase of renal proximal straight tubules. American Journal of Physiology 249, F785-8. Gerber, L., Lee, C. E., Grousset, E., Blondeau-Bidet, E., Boucheker, N. B., Lorin-Nebel, C., Charmantier-Daures, M. and Charmantier, G. (2016). The Legs Have It: In Situ Expression of Ion Transporters V-Type H(+)-ATPase and Na(+)/K(+)-ATPase in the Osmoregulatory Leg Organs of the Invading Copepod Eurytemora affinis. Physiological and Biochemical Zoology 89, 233-50. Gogarten, J. P., Starke, T., Kibak, H., Fishman, J. and Taiz, L. (1992). Evolution and isoforms of V-ATPase subunits. Journal of Experimental Biology 172, 137-47. Gomes, D., Agasse, A., Thiebaud, P., Delrot, S., Geros, H. and Chaumont, F. (2009). Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim Biophys Acta 1788, 1213-28. Green, J. B. and Young, J. P. (2008). Slipins: ancient origin, duplication and diversification of the stomatin protein family. BMC Evol Biol 8, 44. Grewer, C., Gameiro, A. and Rauen, T. (2014). SLC1 glutamate transporters. Pflugers Arch 466, 3-24. Hall, J. A. and Pajor, A. M. (2005). Functional characterization of a Na(+)-coupled dicarboxylate carrier protein from Staphylococcus aureus. J Bacteriol 187, 5189-94. Hanquet, A. C., Jouaux, A., Heude, C., Mathieu, M. and Kellner, K. (2011). A sodium glucose co-transporter (SGLT) for glucose transport into Crassostrea gigas vesicular cells: Impact of alimentation on its expression. Aquaculture 313, 123-128. Hatakeyama, D., Mita, K., Kobayashi, S., Sadamoto, H., Fujito, Y., Hiripi, L., Elekes, K. and Ito, E. (2010). Glutamate Transporters in the Central Nervous System of a Pond Snail. Journal of Neuroscience Research 88, 1374-1386. Hirata, T., Czapar, A., Brin, L., Haritonova, A., Bondeson, D. P., Linser, P., Cabrero, P., Thompson, J., Dow, J. A. and Romero, M. F. (2012). Ion and solute transport by Prestin in Drosophila and Anopheles. J Insect Physiol 58, 563-9. Hirth, I. C. and Deitmer, J. W. (2006). 5-Hydroxytryptamine-mediated increase in glutamate uptake by the leech giant glial cell. Glia 54, 786-94. Hoglund, P. J., Nordstrom, K. J., Schioth, H. B. and Fredriksson, R. (2011). The solute carrier families have a remarkably long evolutionary history with the majority of the human families present before divergence of Bilaterian species. Mol Biol Evol 28, 1531-41. Hu, M. Y., Casties, I., Stumpp, M., Ortega-Martinez, O. and Dupont, S. (2014). Energy metabolism and regeneration are impaired by seawater acidification in the infaunal brittlestar Amphiura filiformis. Journal of Experimental Biology 217, 2411-21. Hu, M. Y., Lee, J. R., Lin, L. Y., Shih, T. H., Stumpp, M., Lee, M. F., Hwang, P. P. and Tseng, Y. C. (2013). Development in a naturally acidified environment: Na+/H+-exchanger 3-based proton secretion leads to CO2 tolerance in cephalopod embryos. Frontiers in Zoology 10, 51. Hu, M. Y., Sucre, E., Charmantier-Daures, M., Charmantier, G., Lucassen, M., Himmerkus, N. and Melzner, F. (2010). Localization of ion-regulatory epithelia in embryos and hatchlings of two cephalopods. Cell Tissue Res 339, 571-83. Hu, M. Y., Sung, P. H., Guh, Y. J., Lee, J. R., Hwang, P. P., Weihrauch, D. and Tseng, Y. C. (2017). Perfused Gills Reveal Fundamental Principles of pH Regulation and Ammonia Homeostasis in the Cephalopod Octopus vulgaris. Front Physiol 8, 162. Hu, M. Y., Tseng, Y. C., Stumpp, M., Gutowska, M. A., Kiko, R., Lucassen, M. and Melzner, F. (2011). Elevated seawater PCO(2) differentially affects branchial acid-base transporters over the course of development in the cephalopod Sepia officinalis. Am J Physiol Regul Integr Comp Physiol 300, R1100-14. Huang, C. G., Lamitina, T., Agre, P. and Strange, K. (2007). Functional analysis of the aquaporin gene family in Caenorhabditis elegans. Am J Physiol Cell Physiol 292, C1867-73. Huang, C. H. and Peng, J. (2005). Evolutionary conservation and diversification of Rh family genes and proteins. Proc Natl Acad Sci U S A 102, 15512-7. Huang, C. H. and Ye, M. (2010). The Rh protein family: gene evolution, membrane biology, and disease association. Cell Mol Life Sci 67, 1203-18. Hwang, B., An, Y., Agata, K. and Umesono, Y. (2015). Two distinct roles of the yorkie/yap gene during homeostasis in the planarian Dugesia japonica. Dev Growth Differ 57, 209-17. Hwang, P. P. (2009). Ion uptake and acid secretion in zebrafish (Danio rerio). Journal of Experimental Biology 212, 1745-52. Inoue, K., Fei, Y. J., Huang, W., Zhuang, L., Chen, Z. and Ganapathy, V. (2002). Functional identity of Drosophila melanogaster Indy as a cation-independent, electroneutral transporter for tricarboxylic acid-cycle intermediates. Biochem J 367, 313-9. Ishibashi, K., Kondo, S., Hara, S. and Morishita, Y. (2011). The evolutionary aspects of aquaporin family. Am J Physiol Regul Integr Comp Physiol 300, R566-76. Itoh, M., Nakadate, K., Horibata, Y., Matsusaka, T., Xu, J., Hunziker, W. and Sugimoto, H. (2014). The structural and functional organization of the podocyte filtration slits is regulated by Tjp1/ZO-1. PLoS One 9, e106621. Johnson, R. I., Seppa, M. J. and Cagan, R. L. (2008). The Drosophila CD2AP/CIN85 orthologue Cindr regulates junctions and cytoskeleton dynamics during tissue patterning. Journal of cell biolog 180, 1191-204. Jouhou, H., Yamamoto, K., Homma, A., Hara, M., Kaneko, A. and Yamada, M. (2007). Depolarization of isolated horizontal cells of fish acidifies their immediate surrounding by activating V-ATPase. J Physiol 585, 401-12. Kang'ethe, W., Aimanova, K. G., Pullikuth, A. K. and Gill, S. S. (2007). NHE8 mediates amiloride-sensitive Na(+)/H(+) exchange across mosquito Malpighian tubules and catalyzes Na(+) and K(+) transport in reconstituted proteoliposomes. American Journal of Physiology- Renal Physiology 292, F1501-F1512. Kawamura, N., Tabata, H., Sun-Wada, G. H. and Wada, Y. (2010). Optic nerve compression and retinal degeneration in Tcirg1 mutant mice lacking the vacuolar-type H-ATPase a3 subunit. PLoS One 5, e12086. Kawasaki-Nishi, S., Nishi, T. and Forgac, M. (2001). Yeast V-ATPase complexes containing different isoforms of the 100-kDa a-subunit differ in coupling efficiency and in vivo dissociation. J Biol Chem 276, 17941-8. Khananshvili, D. (2013). The SLC8 gene family of sodium-calcium exchangers (NCX) - structure, function, and regulation in health and disease. Mol Aspects Med 34, 220-35. King, N., Westbrook, M. J., Young, S. L., Kuo, A., Abedin, M., Chapman, J., Fairclough, S., Hellsten, U., Isogai, Y., Letunic, I. et al. (2008). The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451, 783-8. Kokkinopoulou, M., Guler, M. A., Lieb, B., Barbeck, M., Ghanaati, S. and Markl, J. (2014). 3D-ultrastructure, functions and stress responses of gastropod (Biomphalaria glabrata) rhogocytes. PLoS One 9, e101078. Kucharski, R., Ball, E. E., Hayward, D. C. and Maleszka, R. (2000). Molecular cloning and expression analysis of a cDNA encoding a glutamate transporter in the honeybee brain. Gene 242, 399-405. Lapatsina, L., Brand, J., Poole, K., Daumke, O. and Lewin, G. R. (2012). Stomatin-domain proteins. Eur J Cell Biol 91, 240-5. Le Roy, N., Jackson, D. J., Marie, B., Ramos-Silva, P. and Marin, F. (2014). The evolution of metazoan alpha-carbonic anhydrases and their roles in calcium carbonate biomineralization. Frontiers in Zoology 11. Lee, Y. C., Yan, J. J., Cruz, S. A., Horng, J. L. and Hwang, P. P. (2011). Anion exchanger 1b, but not sodium-bicarbonate cotransporter 1b, plays a role in transport functions of zebrafish H+-ATPase-rich cells. Am J Physiol Cell Physiol 300, C295-307. Leiserson, W. M., Forbush, B. and Keshishian, H. (2011). Drosophila glia use a conserved cotransporter mechanism to regulate extracellular volume. Glia 59, 320-32. Li, C., Ruotsalainen, V., Tryggvason, K., Shaw, A. S. and Miner, J. H. (2000). CD2AP is expressed with nephrin in developing podocytes and is found widely in mature kidney and elsewhere. Am J Physiol Renal Physiol 279, F785-92. Li, S., Liu, C., Huang, J., Liu, Y., Zhang, S., Zheng, G., Xie, L. and Zhang, R. (2016). Transcriptome and biomineralization responses of the pearl oyster Pinctada fucata to elevated CO2 and temperature. Sci Rep 6, 18943. Li, X. and He, J. C. (2015). An update: the role of Nephrin inside and outside the kidney. Science China-Life sciences 58, 649-57. Li, Z., Lui, E. Y., Wilson, J. M., Ip, Y. K., Lin, Q., Lam, T. J. and Lam, S. H. (2014). Expression of key ion transporters in the gill and esophageal-gastrointestinal tract of euryhaline Mozambique tilapia Oreochromis mossambicus acclimated to fresh water, seawater and hypersaline water. PLoS One 9, e87591. Liao, J., Li, H., Zeng, W., Sauer, D. B., Belmares, R. and Jiang, Y. (2012). Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger. Science 335, 686-90. Linser, P. J., Neira Oviedo, M., Hirata, T., Seron, T. J., Smith, K. E., Piermarini, P. M. and Romero, M. F. (2012). Slc4-like anion transporters of the larval mosquito alimentary canal. J Insect Physiol 58, 551-62. Linser, P. J., Smith, K. E., Seron, T. J. and Neira Oviedo, M. (2009). Carbonic anhydrases and anion transport in mosquito midgut pH regulation. Journal of Experimental Biology 212, 1662-71. Mallery, C. H. (1983). A carrier enzyme basis for ammonium excretion in teleost gill. NH+4- stimulated Na-dependent ATPase activity in Opsanus beta. Comp Biochem Physiol A Comp Physiol 74, 889-97. Mano, I., Straud, S. and Driscoll, M. (2007). Caenorhabditis elegans glutamate transporters influence synaptic function and behavior at sites distant from the synapse. J Biol Chem 282, 34412-9. Marini, A. M., Matassi, G., Raynal, V., Andre, B., Cartron, J. P. and Cherif-Zahar, B. (2000). The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nat Genet 26, 341-4. Marini, A. M., Soussi-Boudekou, S., Vissers, S. and Andre, B. (1997). A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 17, 4282-93. Martin, M., Fehsenfeld, S., Sourial, M. M. and Weihrauch, D. (2011). Effects of high environmental ammonia on branchial ammonia excretion rates and tissue Rh-protein mRNA expression levels in seawater acclimated Dungeness crab Metacarcinus magister. Comp Biochem Physiol A Mol Integr Physiol 160, 267-77. McKenna, R. and Frost, S. C. (2014). Overview of the carbonic anhydrase family. Subcell Biochem 75, 3-5. Miyamoto, N., Yoshida, M. A., Koga, H. and Fujiwara, Y. (2017). Genetic mechanisms of bone digestion and nutrient absorption in the bone-eating worm Osedax japonicus inferred from transcriptome and analyses. BMC Evol Biol 17, 17. Mohan, S., Timbers, T. A., Kennedy, J., Blacque, O. E. and Leroux, M. R. (2013). Striated rootlet and nonfilamentous forms of rootletin maintain ciliary function. Curr Biol 23, 2016- 22. Moriyama, Y. and Futai, M. (1990). H(+)-ATPase, a primary pump for accumulation of neurotransmitters, is a major constituent of brain synaptic vesicles. Biochem Biophys Res Commun 173, 443-8. Munsch, T. and Deitmer, J. W. (1994). Sodium-bicarbonate cotransport current in identified leech glial cells. J Physiol 474, 43-53. Nakada, T., Westhoff, C. M., Kato, A. and Hirose, S. (2007). Ammonia secretion from fish gill depends on a set of Rh glycoproteins. FASEB J 21, 1067-74. Nakamura, T., Takagi, S., Matsumoto, M., Tashiro, F., Sakai, T. and Ichimura, K. (2014). Expression of Nephrin Homologue in the Freshwater Planarian, Dugesia japonica. Acta Histochem Cytochem 47, 303-10. Nawata, C. M., Hung, C. C., Tsui, T. K., Wilson, J. M., Wright, P. A. and Wood, C. M. (2007). Ammonia excretion in rainbow trout (Oncorhynchus mykiss): evidence for Rh glycoprotein and H+-ATPase involvement. Physiol Genomics 31, 463-74. Nehrke, K. and Melvin, J. E. (2002). The NHX family of Na+-H+ exchangers in Caenorhabditis elegans. J Biol Chem 277, 29036-44. Obi, I. E., Sterling, K. M. and Ahearn, G. A. (2011). Transepithelial D-glucose and D-fructose transport across the American lobster, Homarus americanus, intestine. Journal of Experimental Biology 214, 2337-44. Oka, T., Toyomura, T., Honjo, K., Wada, Y. and Futai, M. (2001). Four subunit a isoforms of Caenorhabditis elegans vacuolar H+-ATPase. Cell-specific expression during development. J Biol Chem 276, 33079-85. Okuda, T., Haga, T., Kanai, Y., Endou, H., Ishihara, T. and Katsura, I. (2000). Identification and characterization of the high-affinity choline transporter. Nat Neurosci 3, 120-5. Parker, M. D. and Boron, W. F. (2013). The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 93, 803-959. Patrick, M. L., Aimanova, K., Sanders, H. R. and Gill, S. S. (2006). P-type Na+/K+-ATPase and V-type H+-ATPase expression patterns in the osmoregulatory organs of larval and adult mosquito Aedes aegypti. Journal of Experimental Biology 209, 4638-51. Perrin, L., Monier, B., Ponzielli, R., Astier, M. and Semeriva, M. (2004). Drosophila cardiac tube organogenesis requires multiple phases of Hox activity. Dev Biol 272, 419-31. Piermarini, P. M., Choi, I. and Boron, W. F. (2007). Cloning and characterization of an electrogenic Na/HCO3- cotransporter from the squid giant fiber lobe. Am J Physiol Cell Physiol 292, C2032-45. Piermarini, P. M., Hine, R. M., Schepel, M., Miyauchi, J. and Beyenbach, K. W. (2011). Role of an apical K,Cl cotransporter in urine formation by renal tubules of the yellow fever mosquito (Aedes aegypti). Am J Physiol Regul Integr Comp Physiol 301, R1318-37. Pietrement, C., Sun-Wada, G. H., Silva, N. D., McKee, M., Marshansky, V., Brown, D., Futai, M. and Breton, S. (2006). Distinct expression patterns of different subunit isoforms of the V-ATPase in the rat epididymis. Biol Reprod 74, 185-94. Pittman, J. K. and Hirschi, K. D. (2016). Phylogenetic analysis and protein structure modelling identifies distinct Ca(2+)/Cation antiporters and conservation of gene family structure within Arabidopsis and rice species. Rice (N Y) 9, 3. Quijada-Rodriguez, A. R., Treberg, J. R. and Weihrauch, D. (2015). Mechanism of ammonia excretion in the freshwater leech Nephelopsis obscura: characterization of a primitive Rh protein and effects of high environmental ammonia. American journal of physiology-Regulatory, integrative and comparative physiology 309, R692-705. Rahman, M. M., Tae, H. J., Cho, H. S., Shin, G. W. and Park, B. Y. (2015). Developmental expression analysis of Na, K-ATPase alpha subunits in Xenopus. Dev Genes Evol 225, 105-11. Ramnanan, C. J. and Storey, K. B. (2006). Suppression of Na+/K+-ATPase activity during estivation in the land snail Otala lactea. Journal of Experimental Biology 209, 677-688. Ramos, R. G., Igloi, G. L., Lichte, B., Baumann, U., Maier, D., Schneider, T., Brandstatter, J. H., Frohlich, A. and Fischbach, K. F. (1993). The irregular chiasm C-roughest of Drosophila, which affects axonal projections and programmed cell death, encodes a novel immunoglobulin-like protein. Genes Dev 7, 2533-47. Rasgado-Flores, H., Espinosa-Tanguma, R., Tie, J. and DeSantiago, J. (1996). Voltage dependence of Na-Ca exchange in barnacle muscle cells. I. Na-Na exchange activated by alpha-chymotrypsin. Ann N Y Acad Sci 779, 236-48. Romero, M. F., Chen, A. P., Parker, M. D. and Boron, W. F. (2013). The SLC4 family of bicarbonate (HCO(3)(-)) transporters. Mol Aspects Med 34, 159-82. Romero, M. F., Henry, D., Nelson, S., Harte, P. J., Dillon, A. K. and Sciortino, C. M. (2000). Cloning and characterization of a Na+-driven anion exchanger (NDAE1). A new bicarbonate transporter. J Biol Chem 275, 24552-9. Rosenthal, J. J. and Gilly, W. F. (1993). Amino acid sequence of a putative sodium channel expressed in the giant axon of the squid Loligo opalescens. Proc Natl Acad Sci U S A 90, 10026-30. Roy, M., Sivan-Loukianova, E. and Eberl, D. F. (2013). Cell-type-specific roles of Na+/K+ ATPase subunits in Drosophila auditory mechanosensation. Proc Natl Acad Sci U S A 110, 181-6. Saez, A. G., Lozano, E. and Zaldivar-Riveron, A. (2009). Evolutionary history of Na,K- and their osmoregulatory role. Genetica 136, 479-90. Saier, M. H., Jr., Eng, B. H., Fard, S., Garg, J., Haggerty, D. A., Hutchinson, W. J., Jack, D. L., Lai, E. C., Liu, H. J., Nusinew, D. P. et al. (1999). Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim Biophys Acta 1422, 1-56. Schnizler, M., Krumm, S. and Clauss, W. (2002). Annelid epithelia as models for electrogenic Na+ transport. Biochim Biophys Acta 1566, 84-91. Schwarz, E. M. and Benzer, S. (1997). Calx, a Na-Ca exchanger gene of Drosophila melanogaster. Proc Natl Acad Sci U S A 94, 10249-10254. Scimone, M. L., Srivastava, M., Bell, G. W. and Reddien, P. W. (2011). A regulatory program for excretory system regeneration in planarians. Development 138, 4387-98. Seppa, M. J., Johnson, R. I., Bao, S. and Cagan, R. L. (2008). Polychaetoid controls patterning by modulating adhesion in the Drosophila pupal retina. Dev Biol 318, 1-16. Sharma, V., He, C., Sacca-Schaeffer, J., Brzozowski, E., Martin-Herranz, D. E., Mendelowitz, Z., Fitzpatrick, D. A. and O'Halloran, D. M. (2013). Insight into the Family of Na+/Ca2+ Exchangers of Caenorhabditis elegans. Genetics 195, 611-+. Sherman, T., Chernova, M. N., Clark, J. S., Jiang, L., Alper, S. L. and Nehrke, K. (2005). The abts and sulp families of anion transporters from Caenorhabditis elegans. Am J Physiol Cell Physiol 289, C341-51. Shih, N. Y., Li, J., Karpitskii, V., Nguyen, A., Dustin, M. L., Kanagawa, O., Miner, J. H. and Shaw, A. S. (1999). Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science 286, 312-5. Shih, T. H., Horng, J. L., Hwang, P. P. and Lin, L. Y. (2008). Ammonia excretion by the skin of zebrafish (Danio rerio) larvae. American Journal of Physiology - Cell Physiology 295, C1625- 32. Smith, K. S. and Ferry, J. G. (2000). Prokaryotic carbonic anhydrases. FEMS Microbiology Review 24, 335-66. Soustelle, L., Besson, M. T., Rival, T. and Birman, S. (2002). Terminal glial differentiation involves regulated expression of the excitatory amino acid transporters in the Drosophila embryonic CNS. Dev Biol 248, 294-306. Spencer, W. C., Zeller, G., Watson, J. D., Henz, S. R., Watkins, K. L., McWhirter, R. D., Petersen, S., Sreedharan, V. T., Widmer, C., Jo, J. et al. (2011). A spatial and temporal map of C. elegans gene expression. Genome Res 21, 325-41. Stergiopoulos, K., Cabrero, P., Davies, S. A. and Dow, J. A. (2009). Salty dog, an SLC5 symporter, modulates Drosophila response to salt stress. Physiol Genomics 37, 1-11. Strunkelnberg, M., Bonengel, B., Moda, L. M., Hertenstein, A., de Couet, H. G., Ramos, R. G. and Fischbach, K. F. (2001). rst and its paralogue kirre act redundantly during embryonic muscle development in Drosophila. Development 128, 4229-39. Styczynska-Soczka, K. and Jarman, A. P. (2015). The Drosophila homologue of Rootletin is required for mechanosensory function and ciliary rootlet formation in chordotonal sensory neurons. Cilia 4, 9. Sugrue, S. P. and Zieske, J. D. (1997). ZO1 in corneal epithelium: association to the zonula occludens and adherens junctions. Exp Eye Res 64, 11-20. Sun, Q., Tian, E., Turner, R. J. and Ten Hagen, K. G. (2010). Developmental and functional studies of the SLC12 gene family members from Drosophila melanogaster. Am J Physiol Cell Physiol 298, C26-37. Sun-Wada, G. H., Toyomura, T., Murata, Y., Yamamoto, A., Futai, M. and Wada, Y. (2006). The a3 isoform of V-ATPase regulates insulin secretion from pancreatic beta-cells. Journal of Cell Science 119, 4531-40. Takeda, K. and Takemasa, T. (2015). Expression of ammonia transporters Rhbg and Rhcg in mouse skeletal muscle and the effect of 6-week training on these proteins. Physiol Rep 3. Tanis, J. E., Bellemer, A., Moresco, J. J., Forbush, B. and Koelle, M. R. (2009). The Potassium Chloride Cotransporter KCC-2 Coordinates Development of Inhibitory Neurotransmission and Synapse Structure in Caenorhabditis elegans. Journal of Neuroscience 29, 9943-9954. Thi-Kim Vu, H., Rink, J. C., McKinney, S. A., McClain, M., Lakshmanaperumal, N., Alexander, R. and Sanchez Alvarado, A. (2015). Stem cells and fluid flow drive cyst formation in an invertebrate excretory organ. Elife 4. Thiel, D., Hugenschutt, M., Meyer, H., Paululat, A., Quijada-Rodriguez, A. R., Purschke, G. and Weihrauch, D. (2016). Ammonia excretion in the marine polychaete Eurythoe complanata (Annelida). Journal of Experimental Biology 220, 425-436. Toyomura, T., Murata, Y., Yamamoto, A., Oka, T., Sun-Wada, G. H., Wada, Y. and Futai, M. (2003). From lysosomes to the plasma membrane: localization of vacuolar-type H+ - ATPase with the a3 isoform during osteoclast differentiation. J Biol Chem 278, 22023-30. Tsai, J. R. and Lin, H. C. (2014). Functional anatomy and ion regulatory mechanisms of the antennal gland in a semi-terrestrial crab, Ocypode stimpsoni. Biol Open 3, 409-17. Umesh, A., Cohen, B. N., Ross, L. S. and Gill, S. S. (2003). Functional characterization of a glutamate/aspartate transporter from the mosquito Aedes aegypti. Journal of Experimental Biology 206, 2241-55. Wagner, C. A., Finberg, K. E., Breton, S., Marshansky, V., Brown, D. and Geibel, J. P. (2004). Renal vacuolar H+-ATPase. Physiol Rev 84, 1263-314. Wall, S. M. and Koger, L. M. (1994). NH+4 transport mediated by Na(+)-K(+)-ATPase in rat inner medullary collecting duct. The American journal of physiology 267, F660-70. Wanner, N., Noutsou, F., Baumeister, R., Walz, G., Huber, T. B. and Neumann-Haefelin, E. (2011). Functional and spatial analysis of C. elegans SYG-1 and SYG-2, orthologs of the Neph/nephrin cell adhesion module directing selective synaptogenesis. PLoS One 6, e23598. Weavers, H., Prieto-Sanchez, S., Grawe, F., Garcia-Lopez, A., Artero, R., Wilsch- Brauninger, M., Ruiz-Gomez, M., Skaer, H. and Denholm, B. (2009). The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm. Nature 457, 322-6. Weber, T., Gopfert, M. C., Winter, H., Zimmermann, U., Kohler, H., Meier, A., Hendrich, O., Rohbock, K., Robert, D. and Knipper, M. (2003). Expression of prestin-homologous solute carrier (SLC26) in auditory organs of nonmammalian vertebrates and insects. Proc Natl Acad Sci U S A 100, 7690-5. Wei, X. and Ellis, H. M. (2001). Localization of the Drosophila MAGUK protein Polychaetoid is controlled by alternative splicing. Mech Dev 100, 217-31. Weihrauch, D. (2006). Active ammonia absorption in the midgut of the tobacco hornworm Manduca sexta L.: Transport studies and mRNA expression analysis of a Rhesus-like ammonia transporter. Insect Biochemistry and Molecular Biology 36, 808-821. Weihrauch, D., Becker, W., Postel, U., Luck-Kopp, S. and Siebers, D. (1999). Potential of active excretion of ammonia in three different haline species of crabs. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology 169, 25-37. Weihrauch, D., Becker, W., Postel, U., Riestenpatt, S. and Siebers, D. (1998). Active excretion of ammonia across the gills of the shore crab Carcinus maenas and its relation to osmoregulatory ion uptake. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology 168, 364-376. Weihrauch, D., Chan, A. C., Meyer, H., Doring, C., Sourial, M. and O'Donnell, M. J. (2012). Ammonia excretion in the freshwater planarian Schmidtea mediterranea. Journal of Experimental Biology 215, 3242-53. Weihrauch, D. and O'Donnell, M. J. (2015). Links between Osmoregulation and Nitrogen- Excretion in Insects and Crustaceans. Integrative and Comparative Biology 55, 816-29. Weihrauch, D., Wilkie, M. P. and Walsh, P. J. (2009). Ammonia and urea transporters in gills of fish and aquatic crustaceans. Journal of Experimental Biology 212, 1716-30. Williamson, W. R., Wang, D., Haberman, A. S. and Hiesinger, P. R. (2010a). A dual function of V0-ATPase a1 provides an endolysosomal degradation mechanism in Drosophila melanogaster photoreceptors. J Cell Biol 189, 885-99. Williamson, W. R., Yang, T., Terman, J. R. and Hiesinger, P. R. (2010b). Guidance receptor degradation is required for neuronal connectivity in the Drosophila nervous system. PLoS Biol 8, e1000553. Worrell, R. T., Merk, L. and Matthews, J. B. (2008). Ammonium transport in the colonic crypt cell line, T84: role for Rhesus glycoproteins and NKCC1. American journal of physiology-Gastrointestinal and liver physiology 294, G429-40. Wright, E. M. (2013). Glucose transport families SLC5 and SLC50. Mol Aspects Med 34, 183- 196. Wu, Y., Zheng, X., Zhang, M., He, A., Li, Z. and Zhan, X. (2010). Cloning and functional expression of Rh50-like glycoprotein, a putative ammonia channel, in Aedes albopictus mosquitoes. J Insect Physiol 56, 1599-610. Yamahiro, A., Piermarini, P. M. and Beyenbach, K. W. (2008). Identification of Na-driven anion exchanger (NDAE) splice variants from Malpighian (renal) tubules of the adult yellow- fever mosquito. Faseb Journal 22. Yang, J. and Li, T. (2006). Focus on molecules: rootletin. Exp Eye Res 83, 1-2. Yasin, H. W., van Rensburg, S. H., Feiler, C. E. and Johnson, R. I. (2016). The adaptor protein Cindr regulates JNK activity to maintain epithelial sheet integrity. Dev Biol 410, 135- 49. Yasuhara, J. C., Baumann, O. and Takeyasu, K. (2000). Localization of Na/K-ATPase in developing and adult Drosophila melanogaster photoreceptors. Cell Tissue Res 300, 239-49. Yernool, D., Boudker, O., Jin, Y. and Gouaux, E. (2004). Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431, 811-8. Zhang, S., Arnadottir, J., Keller, C., Caldwell, G. A., Yao, C. A. and Chalfie, M. (2004). MEC- 2 is recruited to the putative mechanosensory complex in C. elegans touch receptor neurons through its stomatin-like domain. Curr Biol 14, 1888-96. Zoccola, D., Ganot, P., Bertucci, A., Caminiti-Segonds, N., Techer, N., Voolstra, C. R., Aranda, M., Tambutte, E., Allemand, D., Casey, J. R. et al. (2015). Bicarbonate transporters in corals point towards a key step in the evolution of cnidarian calcification. Sci Rep 5, 9983.

Supplementary Table 2

Accession numbers of reference sequences used in Supplementary Figure S2

AMT/RH (N.vectensis A7SSQ4amt4) (N.vectensis A7RH04amt6) (N.vectensis A7SQ16amt3) (N.vectensis A7S731amt1) (N.vectensis A7S3L2amt7) (N.vectensis A7RNC3amt2) (N.vectensis A7SGD4amt5) (N.vectensis XM_001622754.1Rh1) (N.vectensis 156375209Rh2) (N.vectensis 156369780Rh3) (B.floridae C3Z1J5) (B.floridae C3Y022) (B.floridae C3YB73) (B.floridae C3Z1G1) (B.floridae D7UQE4) (B.floridae D7UQE3) (B.floridae D7UQE2) (B.floridae D7UQE0) (B.floridae D7UQE1) (B.floridae D7UQD9) (B.floridae C3YB74) (B.floridae C3YB79) (C.gigas K1R302) (C.gigas K1QL97) (C.gigas K1QFY1) (C.gigas K1PJE2) (C.gigas K1RSL2) (C.intestinalis Q5VHU3) (C.intestinalis Q6XZ10) (C.intestinalis Q6XZ09) (C.intestinalis Q6XZ08) (C.intestinalis Q5VHU5) (C.intestinalis Q5VHU4) (T. adhaerens B3SC87) (T. adhaerens B3SC46) (T. adhaerens 196016156) (T. adhaerens 196016158) (T. adhaerens B3RRT6) (C.elegans spP54145) (C.elegans Q17663) (C.elegans Q9N2M5) (C.elegans Q20605) (C.elegans Q9N2M4) (C.elegans Q21565) (S.purpuratus W4Y0G6) (S.purpuratus W4YF70) (S.purpuratus W4Y3R7) (L.gigantea V4CRP5) (L.gigantea V3ZVE4) (L.gigantea V4AP67) (L.gigantea V3ZBD8) (L.gigantea 676492623) (L.gigantea 676434770) (C.teleta R7TS58) (C.teleta R7V3I9) (C.teleta R7U542) (C.teleta 443734385) (C.teleta 443691773) (C.teleta R7UG21) (H.sapiens Q02094) (H.sapiens Q9UBD6) (H.sapiens Q9H310) (M.leidyi ML10396a) (M.leidyi ML00673a) (M.leidyi ML018017a) (A.mellifera Q1L729) (A.mellifera Q38SD4) (D.sechellia B4HDZ9) (D.yakuba A0A0R1E419) (D.persimilis B4GLA6) (D.busckii A0A0M3QYI4) (D.melanogaster M9PEN8) (D.melanogaster Q9VFA9) (D.busckii A0A0M4E893) (D.pseudoobscura pseudoobscura Q4VUH9) (A.gambiae 118793733) (A.gambiae Q7Z1M1) (A. sinensis A0A084W5B9) (A.darling W5J3B1) (A.darling 568253901) (G.cydonium c.2546950) (A.queenslandica 761911958) (A.queenslandica 340386356) (G.pyriformis U3LYH9) (G.pyriformis U3LY22) (G.pyriformis U3LZ95) (H.cylindrosporum Q96UX9) (H.cylindrosporum Q96UY0) (H.cylindrosporum Q8NKD5) (S.pombe Q9C0V1) (S.pombe Q9US00) (S.cerevisiae P41948) (S.cerevisiae P40260) (S.cerevisiae P53390) (O.sativa Q8S230) (O.sativa Q8S233) (O.sativa Q84KJ7) (A.thaliana Q9M6N7) (O.sativa Q84KJ6) (O.sativa Q69T29) (O.sativa Q851M9) (O.sativa Q7XQ12) (O.sativa A0A0P0WCF8) (O.sativa Q6K9G1) (O.sativa Q6K9G3) (A.thaliana Q9ZPJ8) (A.thaliana Q9SQH9) (A.thaliana Q9LK16) (A.thaliana P54144) (A.thaliana Q9SVT8) (Archaea Q8TIE5 [Methanosarcina) (Archaea Q8TZ86 [Methanopyrus) (Archaea A0A075IBT0 [marine thaumarchaeote) (Archaea A0A075HAR1 [marine thaumarchaeote) (Archaea A0A075I7G1 [marine thaumarchaeote) (Archaea G4RK28 [Thermoproteus) (Archaea A0A075GR62 [marine thaumarchaeote) (Archaea A0A075GM15 [marine thaumarchaeote) (Archaea A0A075FUF3 [marine thaumarchaeote) (Archaea A0A075H4I2 [marine thaumarchaeote) (Archaea A0A075HUT8 [marine thaumarchaeote) (Archaea Q8TJ70 [Methanosarcina) (Archaea A0A075ICL8 [marine euryarchaeote) (Archaea A0A089ZF16 [Methanobacterium) (Bacteria 769129665 [Lachnospiraceae) (Bacteria 736086132 [Lachnospiraceae) (Bacteria E0RUI [Butyrivibrio) (Bacteria 769141800 [Lachnospiraceae) (Bacteria 769173412[Clostridium) (Bacteria 291528577 [Eubacterium]) (Bacteria 737671611 [Lachnospiraceae) (Bacteria 736431606 [Butyrivibrio) (Bacteria 490181861 [Clostridium) (Bacteria 932916429 [Anaerostipes) (Bacteria 736105025 [Lachnospiraceae) (Bacteria 769254574 [Lachnospiraceae) (Bacteria 551041730 [Lachnospiraceae) (Bacteria Q07429 [Bacillus) (Bacteria O66515 [Aquifex) (Bacteria A0A0D0ITJ4 [Pseudomonas) (Bacteria P69681 [Escherichia)

SLC (S.mediterranea.slc26a-2|m.283_sm.slc26a-2| g.283 sm.slc26a-2:109-1878) (S.mediterranea.slc13a- 4|m.264_sm.slc13a-4| g.264 sm.slc13a-4:3-1787) (S.mediterranea.slc1a-3|m.5_sm.slc1a-3| g.5 sm.slc1a-3:155-1555) (S.mediterranea.slc1a-1|m.1_sm.slc1a-1| g.1 sm.slc1a-1:238-567) (S.mediterranea.slc4a-1|m.16_Sm.slc4a-1| g.16 Sm.slc4a-1:107-3799) (S.mediterranea.slc4a-2|m.25_Sm.slc4a-2| g.25 Sm.slc4a-2:37-2943) (S.mediterranea.slc1a- 4|m.10_sm.slc1a-4| g.10 sm.slc1a-4:1-1443) (S.mediterranea.slc1a-5|m.12_sm.slc1a-5| g.12 sm.slc1a-5:202-1548) (S.mediterranea.slc1a-2|m.3_sm.slc1a-2| g.3 sm.slc1a-2:103-1890) (S.mediterranea.slc4a-6|m.55_Sm.slc4a-6| g.55 Sm.slc4a-6:17-3538) (S.mediterranea.slc4a-7|m.60_Sm.slc4a-7| g.60 Sm.slc4a-7:69-3083) (S.mediterranea.slc4a- 3|m.34_Sm.slc4a-3| g.34 Sm.slc4a-3:94-5439) (S.mediterranea.slc4a-4|m.46_Sm.slc4a-4| g.46 Sm.slc4a-4:296-2971) (S.mediterranea.slc4a-8|m.67_Sm.slc4a-8| g.67 Sm.slc4a-8:119-2866) (S.mediterranea.slc4a-5|m.52_Sm.slc4a-5| g.52 Sm.slc4a-5:50-2626) (S.mediterranea.slc4a-9|m.75_Sm.slc4a-9| g.75 Sm.slc4a-9:1-1545) (S.mediterranea.slc4a- 10|m.78_Sm.slc4a-10| g.78 Sm.slc4a-10:3-509) (S.mediterranea.slc26a-7|m.313_sm.slc26a-7| g.313 sm.slc26a-7:240- 2279) (S.mediterranea.slc26a-10|m.334_sm.slc26a-10| g.334 sm.slc26a-10:284-1114) (S.mediterranea.slc26a- 6|m.308_sm.slc26a-6| g.308 sm.slc26a-6:145-2025) (S.mediterranea.slc26a-9|m.330_sm.slc26a-9| g.330 sm.slc26a- 9:1-1161) (S.mediterranea.slc26a-5|m.303_sm.slc26a-5| g.303 sm.slc26a-5:128-1189) (S.mediterranea.slc26a- 4|m.297_sm.slc26a-4| g.297 sm.slc26a-4:279-1808) (S.mediterranea.slc26a-8|m.320_sm.slc26a-8| g.320 sm.slc26a- 8:55-2334) (S.mediterranea.slc26a-3|m.289_sm.slc26a-3| g.289 sm.slc26a-3:757-2277) (S.mediterranea.slc26a- 1|m.280_sm.slc26a-1| g.280 sm.slc26a-1:28-2529) (S.mediterranea.slc26a-5|m.304_sm.slc26a-5| g.304 sm.slc26a- 5:1237-2172) (S.mediterranea.slc26a-4|m.298_sm.slc26a-4| g.298 sm.slc26a-4:1690-2163) (S.mediterranea.slc26a- 3|m.290_sm.slc26a-3| g.290 sm.slc26a-3:1-489) (S.mediterranea.slc13a-6|m.275_sm.slc13a-6| g.275 sm.slc13a-6:54- 1754) (S.mediterranea.slc13a-5|m.267_sm.slc13a-5| g.267 sm.slc13a-5:88-1785) (S.mediterranea.slc13a- 7|m.278_sm.slc13a-7| g.278 sm.slc13a-7:41-1714) (S.mediterranea.slc13a-3|m.259_sm.slc13a-3| g.259 sm.slc13a- 3:69-1811) (S.mediterranea.slc13a-2|m.255_sm.slc13a-2| g.255 sm.slc13a-2:15-287) (S.mediterranea.slc12a- 2|m.218_sm.slc12a-2| g.218 sm.slc12a-2:30-3044) (S.mediterranea.slc12a-3|m.229_sm.slc12a-3| g.229 sm.slc12a- 3:759-1625) (S.mediterranea.slc12a-4|m.234_sm.slc12a-4| g.234 sm.slc12a-4:327-2621) (S.mediterranea.slc12a- 1|m.210_sm.slc12a-1| g.210 sm.slc12a-1:86-3280) (S.mediterranea.slc12a-5|m.244_sm.slc12a-5| g.244 sm.slc12a- 5:187-2193) (S.mediterranea.slc12a-4|m.235_sm.slc12a-4| g.235 sm.slc12a-4:2647-3723) (S.mediterranea.slc9a- 1|m.159_sm.slc9a-1| g.159 sm.slc9a-1:132-2207) (S.mediterranea.slc9a-4|m.174_sm.slc9a-4| g.174 sm.slc9a-4:112- 2274) (S.mediterranea.slc9a-7|m.191_sm.slc9a-7| g.191 sm.slc9a-7:31-1950) (S.mediterranea.slc9a- 8|m.196_sm.slc9a-8| g.196 sm.slc9a-8:3-1991) (S.mediterranea.slc9a-2|m.162_sm.slc9a-2| g.162 sm.slc9a-2:45-2078) (S.mediterranea.slc9a-5|m.180_sm.slc9a-5| g.180 sm.slc9a-5:94-2115) (S.mediterranea.slc9a-3|m.166_sm.slc9a-3| g.166 sm.slc9a-3:34-2712) (S.mediterranea.slc9a-9|m.199_sm.slc9a-9| g.199 sm.slc9a-9:889-2871) (S.mediterranea.slc8a-1|m.113_Sm.slc8a-1| g.113 Sm.slc8a-1:350-3103) (S.mediterranea.slc8a-2|m.124_Sm.slc8a-2| g.124 Sm.slc8a-2:82-2637) (S.mediterranea.slc8a-4|m.139_Sm.slc8a-4| g.139 Sm.slc8a-4:354-2546) (S.mediterranea.slc8a-5|m.149_Sm.slc8a-5| g.149 Sm.slc8a-5:68-2665) (S.mediterranea.slc8a-3|m.132_Sm.slc8a-3| g.132 Sm.slc8a-3:1114-2832) (S.mediterranea.slc8a-3|m.133_Sm.slc8a-3| g.133 Sm.slc8a-3:123-1193) (S.mediterranea.slc8a-4|m.140_Sm.slc8a-4| g.140 Sm.slc8a-4:1-450) (S.mediterranea.slc5a-2|m.86_Sm.slc5a-2| g.86 Sm.slc5a-2:62-1897) (S.mediterranea.slc5a-1|m.80_Sm.slc5a-1| g.80 Sm.slc5a-1:66-1862) (S.mediterranea.slc5a- 3|m.97_Sm.slc5a-3| g.97 Sm.slc5a-3:53-1801) (S.mediterranea.slc5a-4|m.102_Sm.slc5a-4| g.102 Sm.slc5a-4:22-1860) (N.vectensis 173595) (N.vectensis 230013) (N.vectensis 1 228981) (N.vectensis 16302) (N.vectensis XP_001636607.1) (N.vectensis 156223712) (N.vectensis 89958) (N.vectensis 31622) (N.vectensis XP_001634186.1) (N.vectensis 156221266) (N.vectensis 238013) (N.vectensis 104399) (N.vectensis A7SQZ6) (N.vectensis A7S331) (N.vectensis XM_001623843.1) (N.vectensis XM_001637857.1) (N.vectensis XP_001641754.1) (N.vectensis XM_001641374.1) (N.vectensis XM_001626153.1) (N.vectensis XP_001626203.1) (N.vectensis XM_001632684.1) (N.vectensis XP_001632734.1) (N.vectensis XM_001635065.1) (N.vectensis XP_001635115.1) (N.vectensis A7SNT1) (N.vectensis A7SHZ4) (N.vectensis A7S542) (N.vectensis A7SC64) (N.vectensis A7S539) (N.vectensis A7SX54) (N.vectensis A7SWE4) (N.vectensis A7S2I0) (N.vectensis XP_001638856.1) (N.vectensis 156225980) (N.vectensis XP_001627572.1) (N.vectensis 156214486) (N.vectensis XP_001637705.1) (N.vectensis 156224819) (A.mediterranea A0A1J0SZ44) (A.mediterranea A0A1J0SLW4) (A.mediterranea A0A1J0TAF6) (A.queenslandica I1FF21) (A.queenslandica I1FF19) (A.queenslandica I1FF22) (A.queenslandica I1FS59) (H.sapiens P43004) (H.sapiens P43003) (H.sapiens P48664) (H.sapiens O00341) (H.sapiens P43005) (H.sapiens P43007) (H.sapiens Q15758) (H.sapiens Q2Y0W8) (H.sapiens Q6U841) (H.sapiens Q9Y6M7) (H.sapiens Q9Y6M7) (H.sapiens Q9Y6M7) (H.sapiens Q9Y6M7) (H.sapiens Q9Y6R1) (H.sapiens Q9BY07) (H.sapiens Q96Q91) (H.sapiens P04920) (H.sapiens P48751) (H.sapiens P02730) (H.sapiens Q8NBS3) (H.sapiens P50443) (H.sapiens Q9H2B4) (H.sapiens O43511) (H.sapiens P40879) (H.sapiens P58743) (H.sapiens Q9BXS9) (H.sapiens Q7LBE3) (H.sapiens Q96RN1) (H.sapiens Q8TE54) (H.sapiens Q86WA9) (H.sapiens Q8NG04) (H.sapiens Q13183) (H.sapiens Q86YT5) (H.sapiens Q8WWT9) (H.sapiens Q9BZW2) (H.sapiens Q9UKG4) (H.sapiens P55011) (H.sapiens Q13621) (H.sapiens P55017) (H.sapiens Q9BXP2) (H.sapiens Q9UHW9) (H.sapiens Q9UP95) (H.sapiens Q9H2X9) (H.sapiens Q9Y666) (H.sapiens A0AV02) (H.sapiens Q9UBY0) (H.sapiens Q6AI14) (H.sapiens P19634) (H.sapiens P48764) (H.sapiens Q14940) (H.sapiens Q92581) (H.sapiens Q96T83) (H.sapiens Q8IVB4) (H.sapiens Q9Y2E8) (H.sapiens P32418) (H.sapiens P57103) (H.sapiens Q9UPR5) (H.sapiens P13866) (H.sapiens Q9NY91) (H.sapiens P31639) (H.sapiens Q2M3M2) (H.sapiens A0PJK1) (H.sapiens Q8WWX8) (H.sapiens P53794) (H.sapiens Q8N695) (H.sapiens Q1EHB4) (H.sapiens Q92911) (H.sapiens Q9Y289) (H.sapiens Q9GZV3)

AQUAPORINS (A.thaliana P43287) (A.thaliana P30302) (A.thaliana P43286) (A.thaliana Q9FF53) (A.thaliana Q9SV31) (A.thaliana P93004) (A.thaliana Q9ZVX8) (A.thaliana Q9ZV07) (A.thaliana P61837) (A.thaliana Q06611) (A.thaliana Q08733) (A.thaliana Q39196) (A.thaliana Q8LAA6) (A.thaliana A8MRW1) (A.thaliana P25818) (A.thaliana Q41963) (A.thaliana O82598) (A.thaliana Q41951) (A.thaliana Q41975) (A.thaliana Q9FGL2) (A.thaliana P26587) (A.thaliana O22588) (A.thaliana O82316) (A.thaliana Q9STX9) (A.thaliana Q8VZW1) (A.thaliana Q8LFP7) (A.thaliana Q8W037) (A.thaliana Q8W036) (A.thaliana Q9FIZ9) (A.thaliana Q9C6T0) (A.thaliana Q9SV84) (A.thaliana Q9SAI4) (A.thaliana Q8LAI1) (A.thaliana Q9M8W5) (A.thaliana Q9FK43) (A.thaliana Q9M1K3) (X.laevis Q6IP27) (X.laevis Q0PCW5) (X.laevis Q4KL84) (X.laevis Q6IRR9) (X.laevis Q63ZK8) (H.sapiens P29972) (H.sapiens P41181) (H.sapiens P55064) (H.sapiens Q13520) (H.sapiens P55087) (H.sapiens O94778) (H.sapiens Q92482) (H.sapiens O43315) (H.sapiens Q96PS8) (H.sapiens O14520) (H.sapiens Q8IXF9) (H.sapiens A6NM10) (H.sapiens Q8NBQ7) (C.gigas K1QNC6) (C.gigas K1RM00) (C.gigas K1QC31) (C.gigas K1QSP9) (C.gigas K1R4H0) (C.gigas K1RGW0) (C.gigas K1RAK5) (C.gigas K1QUZ8) (C.gigas K1QBQ1) (C.gigas K1QV92) (C.gigas K1QP58) (C.gigas K1PA25) (C.gigas K1QCC4) (C.gigas K1QMA6) (C.gigas K1RA04) (D.melanogaster Q9V5Z7) (D.melanogaster H6V591) (D.melanogaster P23645) (D.melanogaster A1Z8L8) (D.melanogaster A0A0C4DHF9) (D.melanogaster H8F4Q9) (D.melanogaster Q9W1M3) (D.melanogaster Q8T0N8) (D.melanogaster H5V8H0) (D.melanogaster Q8MLR2) (D.melanogaster Q9W1M4) (D.melanogaster E1JH55) (C.elegans H2FLH4) (C.elegans D5MCS1) (C.elegans Q18352) (C.elegans G5EEK0) (C.elegans Q18469) (C.elegans Q7Z137) (C.elegans Q7Z138) (C.elegans Q9XW36) (C.elegans A0A061ADS9) (C.elegans Q17571) (C.elegans Q7JMQ6) (C.elegans Q19949) (C.elegans Q8IG23) (C.elegans Q21473) (S.purpuratus W4Y8N5) (S.purpuratus W4ZGE5) (S.purpuratus W4Z8B2) (S.purpuratus W4XM79) (S.purpuratus W4Y910) (S.purpuratus W4Z759) (S.purpuratus W4YZV5) (S.purpuratus W4YZV4) (S.purpuratus W4XQ97) (S.purpuratus W4XXY7) (S.domuncula F8K9X4) (D.discoideum Q9U8P7) (D.discoideum Q54V53) (D.discoideum Q54WT8) (D.discoideum Q8SSP2) (D.discoideum Q54FQ9) (D.discoideum Q7KY01) (N.vectensis XM_001633137.1) (N.vectensis XM_001633177.1) (N.vectensis XM_001637040.1) (N.vectensis XM_001633162.1) (N.vectensis XM_001633008.1) (N.vectensis XM_001622599.1) (N.vectensis XM_001637041.1) (N.vectensis XM_001620411.1)

SLIPINS (C.elegans Q27433GN) (C.elegans Q19958) (C.elegans Q21190) (C.elegans Q22165) (C.elegans Q19200) (C.elegans Q20657) (C.elegans G5ED76) (C.elegans H2FLJ1) (C.elegans Q9XWC6) (C.elegans H2L024) (D.melanogaster Q9VZA4) (D.melanogaster Q8MZ13) (D.melanogaster Q9VWL0) (D.melanogaster Q9W1F7) (H.sapiens Q9NP85) (H.sapiens P27105) (H.sapiens Q9UJZ1) (H.sapiens A0A024R882) (H.sapiens Q8TAV4) (H.sapiens Q9UBI4) (X.tropicalis Q6GLC6) (X.tropicalis Q6P362) (X.tropicalis F6VV69) (X.tropicalis F6WE98) (N.vectensis jgi|Nemve1|91851) (N.vectensis jgi|Nemve1|247670) (N.vectensis jgi|Nemve1|41366) (N.vectensis jgi|Nemve1|218685) (N.vectensis jgi|Nemve1|147236) (N.vectensis jgi|Nemve1|98373) (N.vectensis jgi|Nemve1|164373) (N.vectensis jgi|Nemve1|98301) (Bacteria A0E8T9 [Paramecium) (Bacteria Q5A411 [Candida) (Bacteria I7M6K2 [Tetrahymena) (A.queenslandica I1FPX0) (A.queenslandica I1FPW9) (A.queenslandica I1EJ07) (A.queenslandica I1FUT2) (A.queenslandica I1FXM9)

CD2AP (H.sapiens Q9Y5K6) (D.melanogaster Q9Y154) (A.queenslandica XP_003386167.1) (N.vectensis XP_001630773.1) (H.sapiens P02549) (H.sapiens P11277) (D.melanogaster P13395) (D.melanogaster Q00963)

NEPHRIN/KIRRE (H.sapiens Q96J84) (H.sapiens Q8IZU9) (H.sapiens Q6UWL6) (H.sapiens O60500) (X.tropicalis F7EAD2) (X.tropicalis O60500) (D.melanogaster Q08180) (D.melanogaster Q9N9Y9) (D.melanogaster Q9V787) (D.melanogaster Q9V4Y0) (C.elegans B1Q236) (C.elegans Q9U3P2) (B.glabrata A0A075T6F5) (H.sapiens P08069) (D.melanogaster P09208)

ZO1 (H.sapiens Q07157) (H.sapiens Q9UDY2) (H.sapiens Q2VPE5) (D.melanogaster Q94880) (T.adhaerens B3S7T9) (C.elegans Q8I103) (S.purpuratus XP_782687.2) (N.vectensis A7S398) (D.melanogaster P31007) (M.musculus Q62108)

CA (N.vectensis A7S717) (N.vectensis A6QR78) (N.vectensis A7S2D8 CA a1) (N.vectensis A7S717) (N.vectensis A6QR78) (N.vectensis A7S2D8 CA a1) (N.vectensis A7RR00) (N.vectensis A7T609) (N.vectensis A7SKA8 CA a3) (N.vectensis A7S762) (N.vectensis A7RRH8) (N.vectensis A7SHS9 CA a2) (N.vectensis A7SKA8 CA a3) (N.vectensis A7SHT0) (N.vectensis A7RR00) (N.vectensis A7T609) (N.vectensis A7S762) (N.vectensis A7RRH8) (N.vectensis A7SHS9 CA a2) (N.vectensis A7SHT0) (H.sapiens P00918) (H.sapiens P22748) (H.sapiens Q16790) (H.sapiens O43570) (H.sapiens P00915) (H.sapiens P23280) (H.sapiens P07451) (H.sapiens Q9ULX7) (H.sapiens P43166) (H.sapiens P35219) (H.sapiens P35218) (H.sapiens Q8N1Q1) (H.sapiens Q9Y2D0) (H.sapiens O75493) (H.sapiens Q9NS85) (T.castaneum D6WK56) (T.castaneum A0A139WMN7) (T.castaneum D7EIC1) (T.castaneum D6WET4) (T.castaneum D6W9D30) (T.castaneum D6W9D0) (T.castaneum D2A0V8) (T.castaneum D2A110) (T.castaneum D6W9D1) (T.castaneum A0A139WMC5) (T.castaneum A0A139WEP8) (D.discoideum Q94473) (D.discoideum Q555A3) (A.queenslandica A6QR77) (A.queenslandica A6QR75) (A.queenslandica A6QR76) (A.queenslandica I1FTL5) (A.queenslandica I1FAY4) (A.queenslandica I1FAY2) (A.queenslandica I1GDV3) (T.adhaerens B3S5Y1) (T.adhaerens B3RXW0) (T.adhaerens B3RJD2) (T.adhaerens B3RKE3) (T.adhaerens B3RWG7) (T.adhaerens B3RKE2) (T.adhaerens B3RVV0) (T.adhaerens B3RKE1) (T.adhaerens B3RKE0) (C.teleta R7TV57) (C.teleta R7V5W2) (C.teleta R7V8T6) (C.teleta R7U704) (C.teleta R7U445) (C.teleta R7T953) (C.teleta R7TGJ8) (C.teleta R7TR34) (C.teleta R7UH28) (C.teleta R7TGU1) (C.teleta R7U0D8) (C.teleta R7TB34) (C.teleta R7UAK2) (C.teleta R7UU94) (S.purpuratus W4XWD6) (S.purpuratus W4XCN3) (S.purpuratus Q0QBU7) (S.purpuratus W4Y9V4) (S.purpuratus W4YCH9) (S.purpuratus W4YNP4) (S.purpuratus W4Y433) (S.purpuratus W4Z2K3) (S.purpuratus W4XZM3) (S.purpuratus W4YCI0) (S.purpuratus W4XYY9) (S.purpuratus W4Y1C9) (S.purpuratus W4ZF00) (S.purpuratus W4YLR9) (S.purpuratus W4XL56) (S.purpuratus W4ZC38) (S.purpuratus W4ZE90) (S.purpuratus W4XBF4) (S.purpuratus W4Z9I4) (S.purpuratus W4YB71) (A.thaliana P27140) (A.thaliana O04846) (A.thaliana Q94CE4) (A.thaliana P42737) (A.thaliana F4IHR4) (A.thaliana F4JIK2) (A.thaliana Q9FYE3) (A.thaliana Q9ZUC2) (A.thaliana Q9FM99) (A.thaliana Q8L817) (A.thaliana Q9C6F5) (A.thaliana Q9SUB4) (A.thaliana F4HUC4) (A.thaliana Q94CE3)

V-ATPASE (N.vectensis A7T6V8) (N.vectensis A7S1B9) (N.vectensis A7RQU4) (N.vectensis A7RS13proton ATPase proteolipid subunit) (N.vectensis A7S0D1) (N.vectensis A7RL79) (N.vectensis A7S0L1V-atpaseB) (N.vectensis A7SRN1 V-atpaseA) (T.adhaerens B3SAY3) (T.adhaerens B3RW75) (T.adhaerens B3S152) (T.adhaerens B3RKI5) (T.adhaerens B3S2K8) (T.adhaerens B3RX83) (C.teleta R7TIR2) (C.teleta R7V2Q5) (C.teleta R7UJY2) (C.teleta R7T5Y4) (C.teleta R7UEK7) (C.teleta R7TXS8) (A.queenslandica I1GEG2) (A.queenslandica I1E6C7) (A.queenslandica I1FGG0) (A.queenslandica I1F6H1) (A.queenslandica I1FX72) (A.queenslandica I1FHW5) (H.sapiens P15313) (H.sapiens Q9UI12) (H.sapiens P38606) (H.sapiens P21281) (H.sapiens P61421) (H.sapiens P27449) (H.sapiens P36543) (H.sapiens Q8NEY4) (H.sapiens Q99437) (H.sapiens Q8N8Y2) (H.sapiens Q96A05) (H.sapiens P21283) (S.cerevisiae P23968) (S.cerevisiae P16140) (S.cerevisiae P31412) (S.cerevisiae P17255) (S.cerevisiae P25515) (S.cerevisiae P32842) (S.cerevisiae P22203) (S.cerevisiae P32366) (D.melanogaster Q27331) (D.melanogaster P48602) (D.melanogaster P31409) (D.melanogaster P54611) (D.melanogaster Q9V7N5) (D.melanogaster Q9V3J1) (D.melanogaster Q9W4P5) (D.melanogaster P23380) (D.melanogaster Q9VCQ3) (D.discoideum P54641) (D.discoideum P54647) (D.discoideum Q76NU1) (D.discoideum P54648) (D.discoideum P54642) (D.discoideum O00780) (S.purpuratus W4XSB2) (S.purpuratus W4XAH0) (S.purpuratus W4YDE2) (S.purpuratus W4ZEI6) (S.purpuratus W4YMG9)

NA/K ATPASE (D.purpureum F1A2S2) (D.purpureum Q95024) (A.queenslandica XP_0114040) (C.elegans G5EFV6) (C.elegans P90735) (T.adhaerens B3RIH3) (N.vectensis A7S6M1Na/K ATPaseA2) (N.vectensis A7SII2Na/K ATPaseA1) (H.sapiens P50993) (H.sapiens P13637) (H.sapiens P05023) (H.sapiens Q13733) (H.sapiens Q04656) (C.teleta R7V8F1) (C.teleta R7VBZ9) (S.purpuratus W4ZCC9) (S.cerevisiae P13587) (S.cerevisiae Q01896) (E.coli Q59385) (B.subtilis O32220) (B.dorsalis A0A034VY80) (E.hirae P05425)

ROOTLETIN (H.sapiens Q5TZA2) (D.melanogaster Q9VCD1) (L.crocea A0A0F8CVI6) (C.gigas K1QGF9) (N.vectensis 165346) (H.sapiens P09493) (D.melanogaster P06754)

PLASTIN (H.sapiens P13796) (H.sapiens P13797) (H.sapiens Q14651) (T.castaneum A0A139WPL5) (C.elegans U4PMA7) (X.tropicalis Q504Q2) (C.gigas K1R2D6) (N.vectensis jgi|Nemve1|167354) (H.sapiens P12814) (D.melanogaster P18091)

Accession numbers of transcripts from Xenacoelomorph transcriptomes used in Supplementary Figure S2

AMT/RH (H.miamia 98027843) (H.miamia 98057167) (H.miamia 98018981) (H.miamia 98054821) (C.macropyga 395.1) (C.macropyga 24654.1) (C.macropyga 14995.1) (C.macropyga 16173.1) (C.macropyga 10395.1) (C.macropyga 4405.1) (C.macropyga 1268.1) (C.macropyga 474.1) (I.pulchra 17191.1amt5) (I.pulchra 22424.1amt2) (I.pulchra 15010.1amt4) (I.pulchra 35272.1amt6) (I.pulchra 3446.1Rh) (I.pulchra 8667.1amt3) (I.pulchra 9476.1amt1) (X.bocki 7955.1) (X.profunda 10079.1) (M.stichopi 7327.1Rh) (M.stichopi 22314.1amt) (N.westbladi 55127.0) (N.westbladi 37503.0) (N.westbladi 48661.0) (N.westbladi 49524.0) (D.longitubus c31154) (D.longitubus c29820) (D.longitubus c34329) (D.gymnopharyngeus c4043) (C.submaculatum c14126) (C.submaculatum c14702) (C.submaculatum c18521)

SLC (I.pulchra 12372.1SLC12a) (I.pulchra 8886.1SLC12b) (I.pulchra 10040.1SLC9) (I.pulchra 8649.1SLC8) (I.pulchra 13252.1SLC13) (I.pulchra 6460.1SLC4c) (I.pulchra 15145.1SLC4a) (I.pulchra 17707.1SLC4b) (I.pulchra 11412.1SLC5a) (I.pulchra 25325.1SLC5b) (I.pulchra 5795.1SLC26a) (I.pulchra 5099.1SLC26b) (I.pulchra 17762.1SLC1b) (I.pulchra 5285.1SLC1a) (I.pulchra 1359.1SLC1c) (M.stichopi 1129.1SLC26b) (M.stichopi 18197.1SLC26a) (M.stichopi 11423.1SLC12c) (M.stichopi 25290.1 SLC12b) (M.stichopi 12379.1SLC12a) (M.stichopi 6906.1SLC13a) (M.stichopi 24659.1SLC13b) (M.stichopi 19295.1SLC13c) (M.stichopi 18299.1SLC13d) (M.stichopi 5799.1SLC4b) (M.stichopi 7282.1SLC4c) (M.stichopi 18993.1SLC4a) (M.stichopi 7085.1) (M.stichopi 11587.1) (M.stichopi 8391.1SLC5a) (M.stichopi 22651.1SLC5b) (M.stichopi 20595.1SLC1)

AQUAPORINS (Ascoparia sp. 20877.0) (Ascoparia sp. 19462.0) (Ascoparia sp 12547.0) (Ascoparia sp 7417.0) (Ascoparia sp 25886.0) (Ascoparia sp 20941.0) (X.bocki 30275.1) (X.bocki 11732.1) (X.bocki 16293.1) (X.bocki 2579.1) (X.bocki 3609.1) (X.bocki 6004.1) (X.profunda 16190.1) (X.profunda 2887.1) (X.profunda 5191.1) (X.profunda 16480.1) (C.macropyga 11373.1) (C.macropyga 18775.1) (C.macropyga 14142.1) (C.macropyga 16171.1) (C.macropyga 11010.1) (C.macropyga 20222.1) (C.macropyga 16428.1) (C.macropyga 1448.1) (C.macropyga 17222.1) (C.macropyga 15603.1) (E.macrobursalium c7828) (C.submaculatum c13797) (C.submaculatum c17016) (C.submaculatum c15544) (Sterreria sp. c23675) (Sterreria sp. c16069) (D.gymnopharyngeus c13920) (D.gymnopharyngeus c11428) (D.longitubus c31442) (D.longitubus c33092) (D.longitubus c29236) (H.miamia 98039895) (H.miamia 98046060) (H.miamia 98013247) (M.stichopi. 20229AQf) (M.stichopi 7238AQd) (M.stichopi 9653AQc) (M.stichopi 11719AQe) (M.stichopi 16317AQa) (M.stichopi 24323AQb) (I.pulchra 42598AQb) (I.pulchra 28723AQf) (I.pulchra 4312AQa) (I.pulchra 1616AQc) (I.pulchra 21547AQe) (I.pulchra 44478AQd) (I.pulchra 42138AQg)

SLIPINS (X.bocki 20883.1) (X.bocki 12758.1) (X.bocki 1047.1) (Ascoparia sp. 9383.0) (Ascoparia sp. 17607.0) (Ascoparia sp. 20287.1) (Ascoparia sp. 28149.0) (Sterreria sp. c17109) (C.macropyga 229.1) (C.macropyga 14931.1) (C.macropyga 729.1) (C.macropyga 10774.1) (C.submaculatum c17900) (C.submaculatum c18531) (C.submaculatum c19891) (N.westbladi 47675.) (N.westbladi 52579.0) (N.westbladi 25494.0) (I.pulchra 4222.1Stomatin/podocinA) (I.pulchra 8048.1 Stomatin/podocinB) (I.pulchra 1122.1Stomatin/podocinC) (M.stichopi 2017.2Stomatin/podocinE) (M.stichopi 4077.1Stomatin/podocinD) (M.stichopi 4083.1Stomatin/podocinC) (M.stichopi 4165.1Stomatin/podocinB) (M.stichopi 7738.1Stomatin/podocinA) (D.gymnopharyngeus c2158) (D.gymnopharyngeus c13414) (D.longitubus c30579) (D.longitubus c33065) (D.longitubus c36799) (E.macrobursalium c5714) (E.macrobursalium c6060) (E.macrobursalium c8407) (H.miamia 98000817) (H.miamia 98001079) (H.miamia 98003185) (H.miamia 98003968) (H.miamia 98009885) (H.miamia 98030377) (H.miamia 98031305) (H.miamia 98032202)

CD2AP (I.pulchra 2785.1) (X.bocki 1192.1) (M.stichopi 4919.1) (N.westbladi 47339.0) (N.westbladi 51312.0) (D.gymnopharyngeus c14992)

NEPHRIN/KIRRE (H.miamia 9805464) (H.miamia 98022051) (C.macropyga 2490.1) (C.macropyga 2933.1) (C.macropyga 5188.1) (I.pulchra 16124.1Nephrin/KirreC) (I.pulchra 13602.1Nephrin/KirreB) (I.pulchra 14166.1Nephrin/KirreA) (X.bocki 5576.1) (X.bocki 12500.1) (X.profunda c18867) (X.profunda 14967.1) (X.profunda 13792.1) (M.stichopi 19607.1Nephrin/KirreB) (M.stichopi 2457.1Nephrin/KirreC) (M.stichopi 17803.1Nephrin/KirreA) (N.westbladi 48390.0) (N.westbladi 51630.0) (D.longitubus c36603) (D.longitubus c38278) (D.longitubus c37893) (D.gymnopharyngeus c10380) (D.gymnopharyngeus c10580) (C.submaculatum c17370) (C.submaculatum c15556) (C.submaculatum c17370) (C.submaculatum c17306) (E.macrobursalium c4372)

ZO1 (H.miamia 98057262) (C.macropyga 5972.1) (I.pulchra 8350.1) (X.bocki 3789.1) (M.stichopi 7010.1) (N.westbladi 51947.0) (D.longitubus c38032) (D.gymnopharyngeus c12822) (D.gymnopharyngeus c13251) (C.submaculatum c19373)

CA (Ascoparia sp. 5478.0) (Ascoparia sp. 18043.0) (Ascoparia sp. 25649.0) (Ascoparia sp. 2777.0) (C.submaculatum c1687) (C.submaculatum c13257) (C.submaculatum c5059) (C.submaculatum c13664) (D.gymnopharyngeus c13170) (D.gymnopharyngeus c10609) (D.gymnopharyngeus c11439) (D.gymnopharyngeus c13170) (C.macropyga 16271.1) (C.macropyga 3418.1) (C.macropyga 19581.1) (C.macropyga 21507.1) (C.macropyga 18799.1) (C.macropyga 18136.1) (C.macropyga 13579.1) (C.macropyga 7849.1) (C.macropyga 1531.1) (C.macropyga 9483.1) (D.longitubus c35395) (D.longitubus c14121) (D.longitubus c28511) (D.longitubus c28413) (D.longitubus c33567) (E.macrobursalium c491) (E.macrobursalium c1233) (E.macrobursalium c7687) (E.macrobursalium c4985) (E.macrobursalium c122) (E.macrobursalium c6561) (E.macrobursalium c3860) (N.westbladi 29328.0) (N.westbladi 45461.0) (N.westbladi 39569.0) (N.westbladi 25845.0) (N.westbladi 45772.0) (N.westbladi 12921.0) (N.westbladi 50761.0) (H.miamia 98030173) (H.miamia 98042177) (H.miamia 98029235) (H.miamia 98046701) (H.miamia 98057584) (H.miamia 98008272) (H.miamia 98044099) (Sterreria sp. c22223) (X.profunda 20645.1) (X.profunda 8011.1) (X.profunda c9812) (X.profunda 22298.1) (X.profunda 10281.1) (X.profunda 19114.2) (X.bocki 3894.1) (X.bocki 4398.1) (X.bocki 1891.1) (X.bocki 13708.1) (X.bocki 25911.1) (X.bocki 46303.1) (X.bocki 29622.1) (X.bocki 29916.1) (I.pulchra 8550.1CA a1) (I.pulchra 9669.1CA a2) (I.pulchra 804.1CA a3) (I.pulchra 16851.1 CA a4) (I.pulchra 7996.1) (I.pulchra 12647.1) (I.pulchra 23555.1) (I.pulchra 11814.1) (I.pulchra 2042.1) (I.pulchra 22278.1) (I.pulchra 8550.1) (I.pulchra 804.1) (M.stichopi 5190.1CA a1) (M.stichopi 11897.1CA a2) (M.stichopi 6199.1CA a4) (M.stichopi 3473.1CA a3) (M.stichopi 16170.1) (M.stichopi 9713.1) (M.stichopi 27008.1)

V-ATPASE (X.bocki 1513.1) (X.profunda 15609) (N.westbladi 51758) (I.pulchra 1691.1) (I.pulchra 5737.1) (I.pulchra 679.1V- atpaseA) (I.pulchra 551.1V-atpaseB) (E.macrobursalium c7821) (C.macropyga 487.1) (D.longitubus c35334) (D.longitubus c35800) (D.longitubus c28900) (C.submaculatum c21601) (M.stichopi 4596.1V-atpaseA1) (M.stichopi 367.1V-atpaseA2) (M.stichopi 24471.1V-atpaseB2) (M.stichopi 4970.1V-atpaseB1) (M.stichopi 5973.1)

NA/K ATPASE (H.miamia 98034285) (D.longitubus c37851) (C.submaculatum c18356) (C.macropyga 93.1) (X.bocki 812.1) (X.profunda 6567.1) (N.westbladi 52442.0) (M.stichopi 4323.1) (I.pulchra 596.1Na/K ATPaseA1) (I.pulchra 878.1Na/K ATPaseA2)

ROOTLETIN (H.miamia 98034726) (H.miamia 98025609) (C.macropyga 334.1) (C.macropyga 2248.1) (I.pulchra 1370.1RootletinA) (I.pulchra 8665.1RootletinB) (X.bocki 1369.1) (X.profunda 13778.1) (M.stichopi 6121.1) (N.westbladi 52618.0) (N.westbladi 53315.0) (D.longitubus c38139) (D.longitubus c36319) (D.gymnopharyngeus c14489) (D.gymnopharyngeus c14855) (C.submaculatum c22552) (E.macrobursalium c8336) (E.macrobursalium c8299)

PLASTIN (Ascoparia sp. 11895.0) (H.miamia 98050048) (C.macropyga 10271.1) (C.macropyga 7071.1) (I.pulchra 2082.1plastin2) (I.pulchra 3803.1plastin1) (X.bocki 218.1) (X.profunda 12269.1) (M.stichopi 4034.1) (N.westbladi 41968.0) (N.westbladi 42975.0) (N.westbladi 18736.0) (N.westbladi 53583.0) (D.longitubus c34538) (D.gymnopharyngeus c14008) (C.submaculatum c22181) (E.macrobursalium c6058)