Yukawa Potential Orbital Energy: Its Relation to Orbital Mean Motion As Well to the Graviton Mediating the Interaction in Celestial Bodies

Total Page:16

File Type:pdf, Size:1020Kb

Yukawa Potential Orbital Energy: Its Relation to Orbital Mean Motion As Well to the Graviton Mediating the Interaction in Celestial Bodies Wilfrid Laurier University Scholars Commons @ Laurier Physics and Computer Science Faculty Publications Physics and Computer Science 9-25-2018 Yukawa Potential Orbital Energy: Its Relation to Orbital Mean Motion as well to the Graviton Mediating the Interaction in Celestial Bodies Connor Martz Wilfrid Laurier University, [email protected] Sheldon Van Middelkoop Western University Ioannis Gkigkitzis East Carolina University, [email protected] Ioannis Haranas Wilfrid Laurier University, [email protected] Ilias S. Kotsireas Wilfrid Laurier University, [email protected] Follow this and additional works at: https://scholars.wlu.ca/phys_faculty Part of the Astrophysics and Astronomy Commons, and the Physics Commons Recommended Citation C. Martz, S. Van Middelkoop, I. Gkigkitzis, I. Haranas, and I. Kotsireas, "Yukawa Potential Orbital Energy: Its Relation to Orbital Mean Motion as well to the Graviton Mediating the Interaction in Celestial Bodies," Advances in Mathematical Physics, vol. 2019, Article ID 6765827, 10 pages, https://doi.org/10.1155/ 2019/6765827 This Article is brought to you for free and open access by the Physics and Computer Science at Scholars Commons @ Laurier. It has been accepted for inclusion in Physics and Computer Science Faculty Publications by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. Hindawi Advances in Mathematical Physics Volume 2019, Article ID 6765827, 10 pages https://doi.org/10.1155/2019/6765827 Research Article Yukawa Potential Orbital Energy: Its Relation to Orbital Mean Motion as well to the Graviton Mediating the Interaction in Celestial Bodies Connor Martz,1 Sheldon Van Middelkoop,2 Ioannis Gkigkitzis,3 Ioannis Haranas ,4 and Ilias Kotsireas4 1 University of Waterloo, Department of Physics and Astronomy, Waterloo, ON, N2L-3G1, Canada 2University of Western Ontario, Department of Physics and Astronomy, London, ON N6A-3K7, Canada 3NOVA, Department of Mathematics, 8333 Little River Turnpike, Annandale, VA 22003, USA 4Wilfrid Laurier University, Department of Physics and Computer Science, Waterloo, ON, N2L-3C5, Canada Correspondence should be addressed to Ioannis Haranas; [email protected] Received 25 September 2018; Revised 25 November 2018; Accepted 4 December 2018; Published 1 January 2019 Academic Editor: Eugen Radu Copyright © 2019 Connor Martz et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Research on gravitational theories involves several contemporary modifed models that predict the existence of a non-Newtonian Yukawa-type correction to the classical gravitational potential. In this paper we consider a Yukawa potential and we calculate the time rate of change of the orbital energy as a function of the orbital mean motion for circular and elliptical orbits. In both cases we fnd that there is a logarithmic dependence of the orbital energy on the mean motion. Using that, we derive an expression for the mean motion as a function of the Yukawa orbital energy, as well as specifc Yukawa potential parameters. Furthermore, various special cases are examined. Lastly, expressions for the Yukawa range � and coupling constant � are also derived. Finally, an expression for the mass of the graviton ��� mediating the interaction is calculated using the expression its Compton wavelength (i.e., the potential range �). Numerical estimates for the mass of the graviton mediating the interaction are fnally obtained at various eccentricity values and in particular at the perihelion and aphelion points of Mercury’s orbit around the sun. 1. Introduction through the interaction of a Yukawa potential. Terefore, the experimental and observational search for such deviation Any scientist will agree that Einstein’s general relativity theory might result in new type of physics [3]. (GR) is one of the most mathematically elegant theories In a recent paper by Haranas et al. (2018), the authors invented in the human history. Even though the theory examinedustparticleorbitsundertheinfuenceofPoynting- explains many physical phenomena, it is unable to shed light Robertson efect in which Newtonian gravity has been on the problem of the observed accelerating universe. To do modifed by a Yukawa term. Similarly, in Mukherjee and that, GR introduces a cosmological constant lambda Λ as well Sounda [4], the authors investigate the orbits resulting from as the so-called dark energy. Various gravitational theories various coupling constants � (alpha) of a Yukawa correc- exist today which try to explain the observed acceleration of tion to the Newtonian potential. Quite ofen in celestial the universe [1]. Tese gravitational theories are nonsymmet- mechanics, a Yukawa-type potential is proposed to modify ric, scalar-tensor, quantum gravitational, or �(�) theories of the Newtonian gravity [5–9] (Iorio 2007), and its efect on gravity, etc. As a common denominator in the weak limit, all various gravitational, astrophysical, and orbital scenarios is theories result in a Yukawa type of gravitational potential. In examined. In this contribution, we examine the time rate of a paper by Chan [2], the authors put forward the idea that the Yukawa orbital energy of circular and elliptical orbits, observational evidence for the existence of cold dark matter and from that we derive relations for the orbital energy as a particles in the cores of dwarf galaxies could be explained function of mean motion � of the orbiting body. To relate � 2 Advances in Mathematical Physics � ⟨�⟩ and to the orbital parameters of the secondary, expressions E = ⟨�⟩ + ⟨�⟩ = . (3) are derived that relate them to various orbital parameters. 2 � In particular, considering the expression for ,weobtain Anticipating small perturbations, we can add the average a Lambert function that relates the mass of the graviton value of the perturbing term to the average of the Newtonian along the orbit of the secondary to the Yukawa parameters, potential to that of the perturbative term making also use that eccentric anomaly, orbital energy, and eccentricity. Tis is the semimajor axis � is the average value of the radial distance done using the already derived expression for lambda and � along the orbit; we can further write that as substituting it into the corresponding equation for the range � � ��� of graviton and then solving for its mass ��.Itiswell E ≅− (1 + ��−�/�) known that if gravitation is propagated by a massive feld, 2� (4) the velocity of the gravitational waves (gravitons) will depend upon their frequency, and the efective Newtonian potential Now rewriting (1) only the Yukawa orbital energy we have is −1 −�/��� will have a Yukawa form, i.e., �(�) ∝ � � ,where��� = ��� ℏ/� � E =− (��−�/�). �� is the graviton Compton wavelength. Today’s research 2� (5) for the mass of the graviton includes both theoretical and observational work. For example, in Stavridis and Will [10] Next diferentiating (5) with respect to time we obtain that the authors try to bound the graviton mass using gravitational the total time rate of the energy of the Yukawa correction is efects and their efect in the spin precessions of massive hole E ��� � �� binaries. Similarly, in Mureika and Mann [11], the authors d = [� (1 + )�−�/�] . 2 (6) use an entropic gravity approach to estimate a bound for d� 2� � �� the mass of the graviton. Finally, in Zacharov et al. [12], the authors consider Yukawa gravity interactions of S2 star 3. Circular Orbits orbits near the galactic plane to improve expectations for graviton mass bounds. At this point we must say that in To examine the case of circular orbits, namely, we let the � today’s gravity research various methods have been employed eccentricity 0 =0andr = a,(6)becomes in the determination of the graviton mass. Our motivation dE ��� � −�/� �� for paper emanates from the fact that this work can serve as = [� (1 + )� ] . (7) � 2�2 � �� another possible observational test in setting solar system as d � well as binary system bounds on graviton mass ��,where Next, following Haranas et al. [9], we consider the unper- the bound depends on the mass of the source, which in this turbed relative orbit of the secondary body, in this case case is a sun like type of star. a Keplerian ellipse. If � is the semimajor axis, �0 is its eccentricity and � is its mean motion. On the unperturbed 2. The Yukawa Potential Keplerian ellipse, this law is expressed as [15] 2 3 Let us consider a two-body problem, where a secondary body �� = � � . (8) of mass � orbits under the infuence of a primary body of mass �. With the potential being central, the two-body Diferentiating (8) w.r.t. time, the rate of change of the mean problem can be reduced to a central-force problem, and the motion can then be expressed as motion of the secondary body can be examined. Te efects d� 3� d� of gravity on the secondary in the presence of a Yukawa =− , (9) correction can be described by the modifed potential energy d� 2� d� per unit mass [13]. from which we obtain that �� � (�) =− (1 + ��−�/�), (1) d� 2� d� � =− . (10) � 3� � In (1), � denotes the distance between the centers of the d d two bodies, � is the Newtonian gravitational constant, �= Terefore, substituting (10) in (7) and simplifying, we obtain ��/���,where� and � are the coupling constants of the dE ��� � −�/� new force to the bodies relative to the gravitational one, and =− [� (1+ ) � ] . (11) � is the range of this interaction (ibid. 2016). Next, let us now d� 3�� � write down an expression of the orbital energy by making � use of the virial theorem which states that for a bounded Next defning the potential energy at semimajor to be unperturbed system the following relation holds [14]: 1 1 ��� � (�) =− ( ) , ⟨�⟩ 3 � 3 � (12) ⟨�⟩ =− (2) 2 the Newtonian part of the potential, (11) can written as � where is the time average on the system’s kinetic energy and follows: � the time average of the system’s potential energy. Terefore, dE �� (�) � −�/� conservation of energy implies that the total energy is equal =− [� (1 + )� ]. (13) to (ibid.
Recommended publications
  • Arxiv:1406.7795V2 [Hep-Ph] 24 Apr 2017 Mass Renormalization in a Toy Model with Spontaneously Broken Symmetry
    UWThPh-2014-16 Mass renormalization in a toy model with spontaneously broken symmetry W. Grimus∗, P.O. Ludl† and L. Nogu´es‡ University of Vienna, Faculty of Physics Boltzmanngasse 5, A–1090 Vienna, Austria April 24, 2017 Abstract We discuss renormalization in a toy model with one fermion field and one real scalar field ϕ, featuring a spontaneously broken discrete symmetry which forbids a fermion mass term and a ϕ3 term in the Lagrangian. We employ a renormalization scheme which uses the MS scheme for the Yukawa and quartic scalar couplings and renormalizes the vacuum expectation value of ϕ by requiring that the one-point function of the shifted field is zero. In this scheme, the tadpole contributions to the fermion and scalar selfenergies are canceled by choice of the renormalization parameter δv of the vacuum expectation value. However, δv and, therefore, the tadpole contributions reenter the scheme via the mass renormalization of the scalar, in which place they are indispensable for obtaining finiteness. We emphasize that the above renormalization scheme provides a clear formulation of the hierarchy problem and allows a straightforward generalization to an arbitrary number of fermion and arXiv:1406.7795v2 [hep-ph] 24 Apr 2017 scalar fields. ∗E-mail: [email protected] †E-mail: [email protected] ‡E-mail: [email protected] 1 1 Introduction Our toy model is described by the Lagrangian 1 1 = iχ¯ γµ∂ χ + y χT C−1χ ϕ + H.c. + (∂ ϕ)(∂µϕ) V (ϕ) (1) L L µ L 2 L L 2 µ − with the scalar potential 1 1 V (ϕ)= µ2ϕ2 + λϕ4.
    [Show full text]
  • Appendix a Orbits
    Appendix A Orbits As discussed in the Introduction, a good ¯rst approximation for satellite motion is obtained by assuming the spacecraft is a point mass or spherical body moving in the gravitational ¯eld of a spherical planet. This leads to the classical two-body problem. Since we use the term body to refer to a spacecraft of ¯nite size (as in rigid body), it may be more appropriate to call this the two-particle problem, but I will use the term two-body problem in its classical sense. The basic elements of orbital dynamics are captured in Kepler's three laws which he published in the 17th century. His laws were for the orbital motion of the planets about the Sun, but are also applicable to the motion of satellites about planets. The three laws are: 1. The orbit of each planet is an ellipse with the Sun at one focus. 2. The line joining the planet to the Sun sweeps out equal areas in equal times. 3. The square of the period of a planet is proportional to the cube of its mean distance to the sun. The ¯rst law applies to most spacecraft, but it is also possible for spacecraft to travel in parabolic and hyperbolic orbits, in which case the period is in¯nite and the 3rd law does not apply. However, the 2nd law applies to all two-body motion. Newton's 2nd law and his law of universal gravitation provide the tools for generalizing Kepler's laws to non-elliptical orbits, as well as for proving Kepler's laws.
    [Show full text]
  • A Chiral Symmetric Calculation of Pion-Nucleon Scattering
    . s.-q3 4 4t' A Chiral Symmetric Calculation of Pion-Nucleon Scattering UNeOo M Sc (Rangoon University) A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy at the University of Adelaide Department of Physics and Mathematical Physics University of Adelaide South Australia February 1993 Aword""l,. ng3 Contents List of Figures v List of Tables IX Abstract xt Acknowledgements xll Declaration XIV 1 Introduction 1 2 Chiral Symmetry in Nuclear Physics 7 2.1 Introduction . 7 2.2 Pseudoscalar and Pseudovector pion-nucleon interactions 8 2.2.1 The S-wave interaction 8 2.3 Soft-pion Theorems L2 2.3.1 Partially Conserved Axial Current(PCAC) T2 2.3.2 Adler's Consistency condition l4 2.4 The Sigma Model 16 2.4.I The Linear Sigma, Mocìel 16 2.4.2 Broken Symmetry Mode 18 2.4.3 Correction to the S-wave amplitude . 19 2.4.4 The Non-linear sigma model 2.5 Summary 3 Relativistic Two-Body Propagators 3.1 Introduction . 3.2 Bethe-Salpeter Equation 3.3 Relativistic Two Particle Propagators 3.3.1 Blankenbecler-Sugar Method 3.3.2 Instantaneous-interaction approximation 3.4 Short Range Structure in the Propagators 3.5 Smooth Propagators 3.6 The One Body Limit 3.7 One Body Limit, the R factor 3.8 Application to the zr.lú system 3.9 Summary 4 The Formalisrn 4.r Introduction - 4.2 Interactions in the Cloudy Bag Model . 4.2.1 Vertex Functions 4.2.2 The Weinberg-Tomozawa Term 4.3 Higher order graphs 4.3.1 The Cross Box Interaction 4.3.2 Loop diagram 4.3.3 The Chiral Partner of the Sigma Diagram 4.3.4 Sigma like diagrams 4.3.5 The Contact Interaction 4.3.6 The Interaction for Diagram h .
    [Show full text]
  • Higgs Mechanism and Debye Screening in the Generalized Electrodynamics
    Higgs Mechanism and Debye Screening in the Generalized Electrodynamics C. A. Bonin1,∗ G. B. de Gracia2,y A. A. Nogueira3,z and B. M. Pimentel2x 1Department of Mathematics & Statistics, State University of Ponta Grossa (DEMAT/UEPG), Avenida Carlos Cavalcanti 4748,84030-900 Ponta Grossa, PR, Brazil 2 Instituto de F´ısica Teorica´ (IFT), Universidade Estadual Paulista Rua Dr. Bento Teobaldo Ferraz 271, Bloco II Barra Funda, CEP 01140-070 Sao˜ Paulo, SP, Brazil 3Universidade Federal de Goias,´ Instituto de F´ısica, Av. Esperanc¸a, 74690-900, Goiania,ˆ Goias,´ Brasil September 12, 2019 Abstract In this work we study the Higgs mechanism and the Debye shielding for the Bopp-Podolsky theory of electrodynamics. We find that not only the massless sector of the Podolsky theory acquires a mass in both these phenomena, but also that its massive sector has its mass changed. Furthermore, we find a mathematical analogy in the way these masses change between these two mechanisms. Besides exploring the behaviour of the screened potentials, we find a temperature for which the presence of the generalized gauge field may be experimentally detected. Keywords: Quantum Field Theory; Finite Temperature; Spontaneous Symmetry Breaking, Debye Screening arXiv:1909.04731v1 [hep-th] 10 Sep 2019 ∗[email protected] [email protected] [email protected] (corresponding author) [email protected] 1 1 Introduction The mechanisms behind mass generation for particles play a crucial role in the advancement of our understanding of the fundamental forces of Nature. For instance, our current description of three out of five fundamental interactions is through the action of gauge fields [1].
    [Show full text]
  • Fermion Potential, Yukawa and Photon Exchange Copyright C 2007 by Joel A
    Last Latexed: October 24, 2013 at 10:23 1 Lecture 15 Oct. 24, 2013 Fermion Potential, Yukawa and Photon Exchange Copyright c 2007 by Joel A. Shapiro Last week we learned how to calculate cross sections in terms of the S- matrix or the invariant matrix element . Last time we learned, pretty M much, how to evaluate in terms of matrix element of the time ordered product of free fields (i.e.M interaction representation fields) between states given na¨ıvely by creation and annihilation operators for the incoming and outgoing particles. Today we are going to address the first “real” applications. First we will consider the low energy scattering of two different fermions • each coupled to a single scalar field, as proposed by Yukawa to explain the nuclear potential1. Then we will give Feynman rules for the electromagnetic field, that is, • for photons. This will not be rigorously derived until next semester, but we can motivate a set of correct rules, which will get elaborated as we go on. Finally, we will couple the fermions with photons instead of Yukawa • scalar particles, and see that this differs from the Yukawa case not only because the photon is massless, and therefore the range of the Coulomb potential is infinite, but also in being repulsive between two identical particles, and attractive only between particle - antiparticle pairs. We also see that gravity should, like the Yukawa potential, be always attractive. Read Peskin and Schroeder pp. 118–126. Let us consider the scattering of two distinguishable fermions 1This is often mentioned as a great success, with the known range of the nuclear potential predicting the existance of the pion.
    [Show full text]
  • Strongly Coupled Fermions on the Lattice
    Syracuse University SURFACE Dissertations - ALL SURFACE December 2019 Strongly coupled fermions on the lattice Nouman Tariq Butt Syracuse University Follow this and additional works at: https://surface.syr.edu/etd Part of the Physical Sciences and Mathematics Commons Recommended Citation Butt, Nouman Tariq, "Strongly coupled fermions on the lattice" (2019). Dissertations - ALL. 1113. https://surface.syr.edu/etd/1113 This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact [email protected]. Abstract Since its inception with the pioneering work of Ken Wilson, lattice field theory has come a long way. Lattice formulations have enabled us to probe the non-perturbative structure of theories such as QCD and have also helped in exploring the phase structure and classification of phase transitions in a variety of other strongly coupled theories of interest to both high energy and condensed matter theorists. The lattice approach to QCD has led to an understanding of quark confinement, chiral sym- metry breaking and hadronic physics. Correlation functions of hadronic operators and scattering matrix of hadronic states can be calculated in terms of fundamental quark and gluon degrees of freedom. Since lat- tice QCD is the only well-understood method for studying the low-energy regime of QCD, it can provide a solid foundation for the understanding of nucleonic structure and interaction directly from QCD. Despite these successes problems remain. In particular, the study of chiral gauge theories on the lattice is an out- standing problem of great importance owing to its theoretical implications and for its relevance to the electroweak sector of the Standard Model.
    [Show full text]
  • Optimized Probes of the CP Nature of the Top Quark Yukawa Coupling at Hadron Colliders
    S S symmetry Article Optimized Probes of the CP Nature of the Top Quark Yukawa Coupling at Hadron Colliders Darius A. Faroughy 1, Blaž Bortolato 2, Jernej F. Kamenik 2,3,* , Nejc Košnik 2,3 and Aleks Smolkoviˇc 2 1 Physik-Institut, Universitat Zurich, CH-8057 Zurich, Switzerland; [email protected] 2 Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; [email protected] (B.B.); [email protected] (N.K.); [email protected] (A.S.) 3 Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia * Correspondence: [email protected] Abstract: We summarize our recent proposals for probing the CP-odd ik˜t¯g5th interaction at the LHC and its projected upgrades directly using associated on-shell Higgs boson and top quark or top quark pair production. We first recount how to construct a CP-odd observable based on top quark polarization in Wb ! th scattering with optimal linear sensitivity to k˜. For the corresponding hadronic process pp ! thj we then present a method of extracting the phase-space dependent weight function that allows to retain close to optimal sensitivity to k˜. For the case of top quark pair production in association with the Higgs boson, pp ! tth¯ , with semileptonically decaying tops, we instead show how one can construct manifestly CP-odd observables that rely solely on measuring the momenta of the Higgs boson and the leptons and b-jets from the decaying tops without having to distinguish the charge of the b-jets. Finally, we introduce machine learning (ML) and non-ML techniques to study the phase-space optimization of such CP-odd observables.
    [Show full text]
  • Perturbation Theory in Celestial Mechanics
    Perturbation Theory in Celestial Mechanics Alessandra Celletti Dipartimento di Matematica Universit`adi Roma Tor Vergata Via della Ricerca Scientifica 1, I-00133 Roma (Italy) ([email protected]) December 8, 2007 Contents 1 Glossary 2 2 Definition 2 3 Introduction 2 4 Classical perturbation theory 4 4.1 The classical theory . 4 4.2 The precession of the perihelion of Mercury . 6 4.2.1 Delaunay action–angle variables . 6 4.2.2 The restricted, planar, circular, three–body problem . 7 4.2.3 Expansion of the perturbing function . 7 4.2.4 Computation of the precession of the perihelion . 8 5 Resonant perturbation theory 9 5.1 The resonant theory . 9 5.2 Three–body resonance . 10 5.3 Degenerate perturbation theory . 11 5.4 The precession of the equinoxes . 12 6 Invariant tori 14 6.1 Invariant KAM surfaces . 14 6.2 Rotational tori for the spin–orbit problem . 15 6.3 Librational tori for the spin–orbit problem . 16 6.4 Rotational tori for the restricted three–body problem . 17 6.5 Planetary problem . 18 7 Periodic orbits 18 7.1 Construction of periodic orbits . 18 7.2 The libration in longitude of the Moon . 20 1 8 Future directions 20 9 Bibliography 21 9.1 Books and Reviews . 21 9.2 Primary Literature . 22 1 Glossary KAM theory: it provides the persistence of quasi–periodic motions under a small perturbation of an integrable system. KAM theory can be applied under quite general assumptions, i.e. a non– degeneracy of the integrable system and a diophantine condition of the frequency of motion.
    [Show full text]
  • New Closed-Form Solutions for Optimal Impulsive Control of Spacecraft Relative Motion
    New Closed-Form Solutions for Optimal Impulsive Control of Spacecraft Relative Motion Michelle Chernick∗ and Simone D'Amicoy Aeronautics and Astronautics, Stanford University, Stanford, California, 94305, USA This paper addresses the fuel-optimal guidance and control of the relative motion for formation-flying and rendezvous using impulsive maneuvers. To meet the requirements of future multi-satellite missions, closed-form solutions of the inverse relative dynamics are sought in arbitrary orbits. Time constraints dictated by mission operations and relevant perturbations acting on the formation are taken into account by splitting the optimal recon- figuration in a guidance (long-term) and control (short-term) layer. Both problems are cast in relative orbit element space which allows the simple inclusion of secular and long-periodic perturbations through a state transition matrix and the translation of the fuel-optimal optimization into a minimum-length path-planning problem. Due to the proper choice of state variables, both guidance and control problems can be solved (semi-)analytically leading to optimal, predictable maneuvering schemes for simple on-board implementation. Besides generalizing previous work, this paper finds four new in-plane and out-of-plane (semi-)analytical solutions to the optimal control problem in the cases of unperturbed ec- centric and perturbed near-circular orbits. A general delta-v lower bound is formulated which provides insight into the optimality of the control solutions, and a strong analogy between elliptic Hohmann transfers and formation-flying control is established. Finally, the functionality, performance, and benefits of the new impulsive maneuvering schemes are rigorously assessed through numerical integration of the equations of motion and a systematic comparison with primer vector optimal control.
    [Show full text]
  • SATELLITES ORBIT ELEMENTS : EPHEMERIS, Keplerian ELEMENTS, STATE VECTORS
    www.myreaders.info www.myreaders.info Return to Website SATELLITES ORBIT ELEMENTS : EPHEMERIS, Keplerian ELEMENTS, STATE VECTORS RC Chakraborty (Retd), Former Director, DRDO, Delhi & Visiting Professor, JUET, Guna, www.myreaders.info, [email protected], www.myreaders.info/html/orbital_mechanics.html, Revised Dec. 16, 2015 (This is Sec. 5, pp 164 - 192, of Orbital Mechanics - Model & Simulation Software (OM-MSS), Sec 1 to 10, pp 1 - 402.) OM-MSS Page 164 OM-MSS Section - 5 -------------------------------------------------------------------------------------------------------43 www.myreaders.info SATELLITES ORBIT ELEMENTS : EPHEMERIS, Keplerian ELEMENTS, STATE VECTORS Satellite Ephemeris is Expressed either by 'Keplerian elements' or by 'State Vectors', that uniquely identify a specific orbit. A satellite is an object that moves around a larger object. Thousands of Satellites launched into orbit around Earth. First, look into the Preliminaries about 'Satellite Orbit', before moving to Satellite Ephemeris data and conversion utilities of the OM-MSS software. (a) Satellite : An artificial object, intentionally placed into orbit. Thousands of Satellites have been launched into orbit around Earth. A few Satellites called Space Probes have been placed into orbit around Moon, Mercury, Venus, Mars, Jupiter, Saturn, etc. The Motion of a Satellite is a direct consequence of the Gravity of a body (earth), around which the satellite travels without any propulsion. The Moon is the Earth's only natural Satellite, moves around Earth in the same kind of orbit. (b) Earth Gravity and Satellite Motion : As satellite move around Earth, it is pulled in by the gravitational force (centripetal) of the Earth. Contrary to this pull, the rotating motion of satellite around Earth has an associated force (centrifugal) which pushes it away from the Earth.
    [Show full text]
  • Satellite Splat II: an Inelastic Collision with a Surface-Launched Projectile and the Maximum Orbital Radius for Planetary Impact
    European Journal of Physics Eur. J. Phys. 37 (2016) 045004 (10pp) doi:10.1088/0143-0807/37/4/045004 Satellite splat II: an inelastic collision with a surface-launched projectile and the maximum orbital radius for planetary impact Philip R Blanco1,2,4 and Carl E Mungan3 1 Department of Physics and Astronomy, Grossmont College, El Cajon, CA 92020- 1765, USA 2 Department of Astronomy, San Diego State University, San Diego, CA 92182- 1221, USA 3 Physics Department, US Naval Academy, Annapolis, MD 21402-1363, USA E-mail: [email protected] Received 26 January 2016, revised 3 April 2016 Accepted for publication 14 April 2016 Published 16 May 2016 Abstract Starting with conservation of energy and angular momentum, we derive a convenient method for determining the periapsis distance of an orbiting object, by expressing its velocity components in terms of the local circular speed. This relation is used to extend the results of our previous paper, examining the effects of an adhesive inelastic collision between a projectile launched from the surface of a planet (of radius R) and an equal-mass satellite in a circular orbit of radius rs. We show that there is a maximum orbital radius rs ≈ 18.9R beyond which such a collision cannot cause the satellite to impact the planet. The difficulty of bringing down a satellite in a high orbit with a surface- launched projectile provides a useful topic for a discussion of orbital angular momentum and energy. The material is suitable for an undergraduate inter- mediate mechanics course. Keywords: orbital motion, momentum conservation, energy conservation, angular momentum, ballistics (Some figures may appear in colour only in the online journal) 4 Author to whom any correspondence should be addressed.
    [Show full text]
  • Spontaneous Symmetry Breaking in the Higgs Mechanism
    Spontaneous symmetry breaking in the Higgs mechanism August 2012 Abstract The Higgs mechanism is very powerful: it furnishes a description of the elec- troweak theory in the Standard Model which has a convincing experimental ver- ification. But although the Higgs mechanism had been applied successfully, the conceptual background is not clear. The Higgs mechanism is often presented as spontaneous breaking of a local gauge symmetry. But a local gauge symmetry is rooted in redundancy of description: gauge transformations connect states that cannot be physically distinguished. A gauge symmetry is therefore not a sym- metry of nature, but of our description of nature. The spontaneous breaking of such a symmetry cannot be expected to have physical e↵ects since asymmetries are not reflected in the physics. If spontaneous gauge symmetry breaking cannot have physical e↵ects, this causes conceptual problems for the Higgs mechanism, if taken to be described as spontaneous gauge symmetry breaking. In a gauge invariant theory, gauge fixing is necessary to retrieve the physics from the theory. This means that also in a theory with spontaneous gauge sym- metry breaking, a gauge should be fixed. But gauge fixing itself breaks the gauge symmetry, and thereby obscures the spontaneous breaking of the symmetry. It suggests that spontaneous gauge symmetry breaking is not part of the physics, but an unphysical artifact of the redundancy in description. However, the Higgs mechanism can be formulated in a gauge independent way, without spontaneous symmetry breaking. The same outcome as in the account with spontaneous symmetry breaking is obtained. It is concluded that even though spontaneous gauge symmetry breaking cannot have physical consequences, the Higgs mechanism is not in conceptual danger.
    [Show full text]