batteries Review Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges Florian Holtstiege 1, Peer Bärmann 1, Roman Nölle 1, Martin Winter 1,2,* and Tobias Placke 1,* ID 1 University of Münster, MEET Battery Research Center, Institute of Physical Chemistry, Corrensstraße 46, 48149 Münster, Germany; fl
[email protected] (F.H.);
[email protected] (P.B.);
[email protected] (R.N.) 2 Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich, Corrensstraße 46, 48149 Münster, Germany * Correspondence:
[email protected] or
[email protected] (M.W.);
[email protected] (T.P.); Tel.: +49-251-83-36826 (M.W.); +49-251-83-36031 (T.P.) Received: 23 December 2017; Accepted: 17 January 2018; Published: 23 January 2018 Abstract: In order to meet the sophisticated demands for large-scale applications such as electro-mobility, next generation energy storage technologies require advanced electrode active materials with enhanced gravimetric and volumetric capacities to achieve increased gravimetric energy and volumetric energy densities. However, most of these materials suffer from high 1st cycle active lithium losses, e.g., caused by solid electrolyte interphase (SEI) formation, which in turn hinder their broad commercial use so far. In general, the loss of active lithium permanently decreases the available energy by the consumption of lithium from the positive electrode material. Pre-lithiation is considered as a highly appealing technique to compensate for active lithium losses and, therefore, to increase the practical energy density. Various pre-lithiation techniques have been evaluated so far, including electrochemical and chemical pre-lithiation, pre-lithiation with the help of additives or the pre-lithiation by direct contact to lithium metal.