Lipopolysaccharide-Induced Lung Injury Microvascular Permeability In

Total Page:16

File Type:pdf, Size:1020Kb

Lipopolysaccharide-Induced Lung Injury Microvascular Permeability In Adenosine Receptor A1 Regulates Polymorphonuclear Cell Trafficking and Microvascular Permeability in Lipopolysaccharide-Induced Lung Injury This information is current as of October 1, 2021. Kristian-Christos Ngamsri, Rosalyn Wagner, Irene Vollmer, Stefanie Stark and Jörg Reutershan J Immunol 2010; 185:4374-4384; Prepublished online 20 August 2010; doi: 10.4049/jimmunol.1000433 Downloaded from http://www.jimmunol.org/content/185/7/4374 References This article cites 53 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/185/7/4374.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 1, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Adenosine Receptor A1 Regulates Polymorphonuclear Cell Trafficking and Microvascular Permeability in Lipopolysaccharide-Induced Lung Injury Kristian-Christos Ngamsri, Rosalyn Wagner, Irene Vollmer, Stefanie Stark, and Jo¨rg Reutershan Extracellular adenosine and adenosine receptors are critically involved in various inflammatory pathways. Adenosine receptor A1 (A1AR) has been implicated in mediating transmigration of leukocytes to sites of inflammation. This study was designed to char- acterize the role of A1AR in a murine model of LPS-induced lung injury. LPS-induced transmigration of polymorphonuclear cells (PMNs) and microvascular permeability was elevated in A1AR2/2 mice. Pretreatment of wild-type mice with the specific A1AR agonist 29Me–2-chloro-N6-cyclopentyladenosine attenuated PMN accumulation in the interstitium and alveolar space as well as microvascular permeability. Lower PMN counts in the lungs of pretreated wild-type mice were associated with reduced amounts Downloaded from of the chemotactic cytokines TNF-a, IL-6, and CXCL2/3 in the bronchoalveolar lavage. Pretreatment was only effective when A1AR was expressed on hematopoietic cells as demonstrated in chimeric mice. These findings were confirmed by in vitro trans- migration assays demonstrating that chemokine-induced transmigration of PMNs was reduced when PMNs but not when pul- monary endothelial or alveolar epithelial cells were pretreated. 29Me–2-chloro-N6-cyclopentyladenosine prevented pulmonary endothelial but not epithelial cells from LPS-induced cellular remodeling and cell retraction. Our data reveal what we believe to be a previously unrecognized distinct role of A1AR for PMN trafficking and endothelial integrity in a model of acute lung http://www.jimmunol.org/ injury. The Journal of Immunology, 2010, 185: 4374–4384. cute lung injury (ALI) and acute respiratory distress inflammation and proved beneficial in patients with ALI/ARDS syndrome (ARDS) in their most severe forms are still (4–6). A major challenges in modern intensive care medicine that Excessive recruitment of PMNs into the lung is a key event in significantly contribute to morbidity and mortality of critically ill the early development of ALI and ARDS. A variety of experimental patients (1). ALI and ARDS develop as a result of direct lung studies implicate that modulation of PMN trafficking improves by guest on October 1, 2021 damage (e.g., pneumonia, aspiration, or lung trauma) or indirectly course and outcome of ALI (7–9). The significance of PMNs in in the course of remote or systemic inflammation (e.g., sepsis). ALI is highlighted by clinical studies showing that ARDS can Inflammatory response of the lungs is characterized by excessive deteriorate when patients recover from neutropenia (10). Lung infiltration of polymorphonuclear cells (PMNs), disruption of the function in ARDS patients negatively correlates with neutrophil alveolo-capillary barrier, and release of chemotactic cytokines (2, counts in the blood. Persisting pulmonary neutrophilia in ARDS is 3). Destruction of the pulmonary architecture results in interstitial correlated with poor outcome (11). PMN recruitment into the lung and alveolar edema and ultimately threatens pulmonary gas ex- occurs in a cascade-like sequence of activation, sequestration in change. Despite numerous experimental and clinical studies, mol- pulmonary vessels, transendothelial [from blood to the intersti- ecular mechanisms that regulate the inflammatory response of the tium (IS)], and transepithelial (from the IS to the alveolar air- lung have not been fully elucidated. Accordingly, specific thera- space) migration (8). Each migration step is regulated by distinct peutic options in ALI are not available. So far, only mechanical molecules, and the importance of investigating discrete steps of ventilation with low tidal volumes has been demonstrated to limit PMN migration in the lung has been emphasized (8, 12). Besides adhesion molecules (13), chemokines (14), and intra- cellular molecules (15), extracellular adenosine is an essential Department of Anesthesiology and Intensive Care Medicine, University Hospital of mediator of leukocyte trafficking to inflammatory sites. Adenosine Tu¨bingen, Tu¨bingen, Germany signals through four subtypes of G protein-coupled adenosine Received for publication February 9, 2010. Accepted for publication July 20, 2010. receptors (ARs; A1, A2a, A2b, and A3) that are ubiquitary ex- This work was supported by German Research Foundation Grant RE 1683/3-1 (to pressed on various hematopoietic and nonhematopoietic cells. J.R.). Activation of ARs induces a variety of cell responses through Address correspondence and reprint requests to Dr. Jo¨rg Reutershan, Department of Anesthesiology and Intensive Care Medicine, University of Tu¨bingen, Hoppe- changes in intracellular levels of cAMP, diacylglycerol, and ino- Seyler-Strasse 3, 72076 Tu¨bingen, Germany. E-mail address: joerg.reutershan@ sitoltriphosphate. Recent studies identified CD39 and CD73, both uni-tuebingen.de rate-limiting enzymes for the generation of extracellular adeno- 2 2 Abbreviations used in this paper: A1AR, adenosine receptor A1; A1AR / , A1AR sine, as critical mediators in pulmonary inflammation (16, 17). In knockout; ADA, adenosine deaminase; ALI, acute lung injury; AR, adenosine receptor; ARDS, acute respiratory distress syndrome; BAL, bronchoalveolar lavage; BM, bone addition, activation of ARs A2a and A2b has been demonstrated to marrow; BW, body weight; HMVEC-L, human lung microvascular endothelial cell; IS, attenuate organ damage in LPS- and ventilator-induced lung in- interstitium; IV, intravascular; 29Me-CCPA, 29Me-2-chloro-N6-cyclopentyladenosine; jury (18, 19). PFA, paraformaldehyde; PMN, polymorphonuclear cell. The role of AR A1 (A1AR) in mediating inflammatory pathways Copyright Ó 2010 by The American Association of Immunologists, Inc. 0022-1767/10/$16.00 has not been studied systematically. A1AR signals through Gi and www.jimmunol.org/cgi/doi/10.4049/jimmunol.1000433 The Journal of Immunology 4375 + Go and inhibits adenylyl cyclase, activates K channels, and in- LPS served as negative control. Total RNA samples were analyzed with hibits Ca2+ channels in various cells (20). Physiologic functions sense/antisense primers for wild-type mice (59-GTACATCTCGGCCTT- of A1AR signaling include bradycardia, reduced glomerular fil- CCAGG-39 and 59-GAG AATACCTGGCTGACTAG-39) and for A1 gene- deficient mice (59-ACAACAGACAATCGGCTGCTCTGATG-39 and 59- tration, antinociception, neuronal hyperpolarization, and ischemic TGCGCGCCTTGAGCCTGG CGAAC-39) using the iCycler iQ Real- preconditioning (21). A1AR is constitutively expressed in various Time Detection System (Bio-Rad, Hercules, CA). Values were determined tissues including the lung and brain (22). In the lung, A1AR is using iCycler iQ Real-Time Detection System Software version 3.1 (Bio- expressed on endothelial, airway, and alveolar epithelial cells and, Rad) and normalized to murine b-actin (59-ACATTGGCATGGCTTTGTTT- 39 and 59-GTTTGCTCCAACCAACTGCT-39). at high concentrations, on alveolar macrophages (23). The role of A1AR in pulmonary inflammation has been discussed controver- Western blotting sially. In an early study, pharmacologic blocking of A1AR at- LPS-induced expression of A1AR protein in whole lung tissue was eval- tenuated LPS-induced lung injury in cats (24). In more recent uated by Western blotting as previously described (15). Briefly, lungs were studies, protective effects of A1AR have been demonstrated in snap frozen and lysed in RIPA buffer [1% Nonidet P-40, 1% deoxycholate, models of ischemia reperfusion- and endotoxin-induced lung in- 0.1% SDS, 50 mM Tris (pH 7.4), 150 mM NaCl, protease, and phosphatase jury (25, 26). In adenosine deaminase (ADA)-deficient mice, which I and II inhibitors]. Lysates were cleared by centrifugation at 14,000 3 g exhibit elevated adenosine levels, genetic removal of the A1AR for 20 min, and protein concentration was determined using the DC protein assay (Bio-Rad). A total of 30 mg protein from each
Recommended publications
  • REDUCTION of PURINE CONTENT in COMMONLY CONSUMED MEAT PRODUCTS THROUGH RINSING and COOKING by Anna Ellington (Under the Directio
    REDUCTION OF PURINE CONTENT IN COMMONLY CONSUMED MEAT PRODUCTS THROUGH RINSING AND COOKING by Anna Ellington (Under the direction of Yen-Con Hung) Abstract The commonly consumed meat products ground beef, ground turkey, and bacon were analyzed for purine content before and after a rinsing treatment. The rinsing treatment involved rinsing the meat samples using a wrist shaker in 5:1 ratio water: sample for 2 or 5 minutes then draining or centrifuging to remove water. The total purine content of 25% fat ground beef significantly decreased (p<0.05) from 8.58 mg/g protein to a range of 5.17-7.26 mg/g protein after rinsing treatments. After rinsing and cooking an even greater decrease was seen ranging from 4.59-6.32 mg/g protein. The total purine content of 7% fat ground beef significantly decreased from 7.80 mg/g protein to a range of 5.07-5.59 mg/g protein after rinsing treatments. A greater reduction was seen after rinsing and cooking in the range of 4.38-5.52 mg/g protein. Ground turkey samples showed no significant changes after rinsing, but significant decreases were seen after rinsing and cooking. Bacon samples showed significant decreases from 6.06 mg/g protein to 4.72 and 4.49 after 2 and 5 minute rinsing and to 4.53 and 4.68 mg/g protein after 2 and 5 minute rinsing and cooking. Overall, this study showed that rinsing foods in water effectively reduces total purine content and subsequent cooking after rinsing results in an even greater reduction of total purine content.
    [Show full text]
  • Chapter 23 Nucleic Acids
    7-9/99 Neuman Chapter 23 Chapter 23 Nucleic Acids from Organic Chemistry by Robert C. Neuman, Jr. Professor of Chemistry, emeritus University of California, Riverside [email protected] <http://web.chem.ucsb.edu/~neuman/orgchembyneuman/> Chapter Outline of the Book ************************************************************************************** I. Foundations 1. Organic Molecules and Chemical Bonding 2. Alkanes and Cycloalkanes 3. Haloalkanes, Alcohols, Ethers, and Amines 4. Stereochemistry 5. Organic Spectrometry II. Reactions, Mechanisms, Multiple Bonds 6. Organic Reactions *(Not yet Posted) 7. Reactions of Haloalkanes, Alcohols, and Amines. Nucleophilic Substitution 8. Alkenes and Alkynes 9. Formation of Alkenes and Alkynes. Elimination Reactions 10. Alkenes and Alkynes. Addition Reactions 11. Free Radical Addition and Substitution Reactions III. Conjugation, Electronic Effects, Carbonyl Groups 12. Conjugated and Aromatic Molecules 13. Carbonyl Compounds. Ketones, Aldehydes, and Carboxylic Acids 14. Substituent Effects 15. Carbonyl Compounds. Esters, Amides, and Related Molecules IV. Carbonyl and Pericyclic Reactions and Mechanisms 16. Carbonyl Compounds. Addition and Substitution Reactions 17. Oxidation and Reduction Reactions 18. Reactions of Enolate Ions and Enols 19. Cyclization and Pericyclic Reactions *(Not yet Posted) V. Bioorganic Compounds 20. Carbohydrates 21. Lipids 22. Peptides, Proteins, and α−Amino Acids 23. Nucleic Acids **************************************************************************************
    [Show full text]
  • Human Hypoxanthine (Guanine) Phosphoribosyltransferase: An
    Proc. NatL Acad. Sci. USA Vol. 80, pp. 870-873, Febriary 1983 Medical Sciences Human hypoxanthine (guanine) phosphoribosyltransferase: An amino acid substitution in a mutant form of the enzyme isolated from a patient with gout (reverse-phase HPLC/peptide mapping/mutant enzyme) JAMES M. WILSON*t, GEORGE E. TARRt, AND WILLIAM N. KELLEY*t Departments of *Internal Medicine and tBiological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109 Communicated by James B. Wyngaarden, November 3, 1982 ABSTRACT We have investigated the molecular basis for a tration ofenzyme protein. in both erythrocytes (3) and lympho- deficiency ofthe enzyme hypoxanthine (guanine) phosphoribosyl- blasts (4); (ii) a normal Vm., a normal Km for 5-phosphoribosyl- transferase (HPRT; IMP:pyrophosphate-phosphoribosyltransfer- 1-pyrophosphate, and a 5-fold increased Km for hypoxanthine ase, EC 2.4.2.8) in a patient with a severe form of gout. We re-. (unpublished data); (iii) a normal isoelectric point (3, 4) and ported in previous studies the isolation of a unique structural migration during nondenaturing polyacrylamide gel electro- variant of HPRT from this patient's erythrocytes and cultured phoresis (4); and (iv) -an apparently smaller subunit molecular lymphoblasts. This enzyme variant, which is called HPRTOnd0., weight as evidenced by an increased mobility during Na- is characterized by a decreased concentration of HPRT protein DodSO4/polyacrylamide gel electrophoresis (3, 4). in erythrocytes and lymphoblasts, a normal Vm.., a 5-fold in- Our study ofthe tryptic peptides and amino acid composition creased Km for hypoxanthine, a normal isoelectric point, and an of apparently smaller subunit molecular weight. Comparative pep- HPRTLondon revealed a single amino acid substitution (Ser tide mapping-experiments revealed a single abnormal tryptic pep- Leu) at position 109.
    [Show full text]
  • Synthesis of Ribavirin, Tecadenoson, and Cladribine by Enzymatic Transglycosylation
    catalysts Article Synthesis of Ribavirin, Tecadenoson, and Cladribine by Enzymatic Transglycosylation 1, 2 2,3 2 Marco Rabuffetti y, Teodora Bavaro , Riccardo Semproli , Giulia Cattaneo , Michela Massone 1, Carlo F. Morelli 1 , Giovanna Speranza 1,* and Daniela Ubiali 2,* 1 Department of Chemistry, University of Milan, via Golgi 19, I-20133 Milano, Italy; marco.rabuff[email protected] (M.R.); [email protected] (M.M.); [email protected] (C.F.M.) 2 Department of Drug Sciences, University of Pavia, viale Taramelli 12, I-27100 Pavia, Italy; [email protected] (T.B.); [email protected] (R.S.); [email protected] (G.C.) 3 Consorzio Italbiotec, via Fantoli 15/16, c/o Polo Multimedica, I-20138 Milano, Italy * Correspondence: [email protected] (G.S.); [email protected] (D.U.); Tel.: +39-02-50314097 (G.S.); +39-0382-987889 (D.U.) Present address: Department of Food, Environmental and Nutritional Sciences, University of Milan, y via Mangiagalli 25, I-20133 Milano, Italy. Received: 7 March 2019; Accepted: 8 April 2019; Published: 12 April 2019 Abstract: Despite the impressive progress in nucleoside chemistry to date, the synthesis of nucleoside analogues is still a challenge. Chemoenzymatic synthesis has been proven to overcome most of the constraints of conventional nucleoside chemistry. A purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP) has been used herein to catalyze the synthesis of Ribavirin, Tecadenoson, and Cladribine, by a “one-pot, one-enzyme” transglycosylation, which is the transfer of the carbohydrate moiety from a nucleoside donor to a heterocyclic base. As the sugar donor, 7-methylguanosine iodide and its 20-deoxy counterpart were synthesized and incubated either with the “purine-like” base or the modified purine of the three selected APIs.
    [Show full text]
  • Revealing 29 Sets of Independently Modulated Genes in Staphylococcus Aureus, Their Regulators, and Role in Key Physiological Response
    Revealing 29 sets of independently modulated genes in Staphylococcus aureus, their regulators, and role in key physiological response Saugat Poudela, Hannah Tsunemotob, Yara Seifa, Anand V. Sastrya, Richard Szubina, Sibei Xua, Henrique Machadoa, Connor A. Olsona, Amitesh Ananda, Joe Poglianob, Victor Nizetc,d, and Bernhard O. Palssona,c,1 aDepartment of Bioengineering, University of California San Diego, La Jolla, CA 92093; bDepartment of Biology, University of California San Diego, La Jolla, CA 92093; cCollaborative to Halt Antibiotic-Resistant Microbes, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093; and dSkaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093 Edited by Jeff F. Miller, University of California, Los Angeles, CA, and approved June 1, 2020 (received for review May 6, 2020) The ability of Staphylococcus aureus to infect many different tis- modulated sets of genes (called i-modulons) and calculates the sue sites is enabled, in part, by its transcriptional regulatory net- activity level of each i-modulon in the input expression profile. work (TRN) that coordinates its gene expression to respond to ICA analysis of expression profiles in E. coli have been used to different environments. We elucidated the organization and activ- describe undefined regulons, link strain-specific mutations with ity of this TRN by applying independent component analysis to a changes in gene expression, and understand rewiring of TRN compendium of 108 RNA-sequencing expression profiles from two during adaptive laboratory evolution (ALE) (7, 9). Given the S. aureus clinical strains (TCH1516 and LAC). ICA decomposed the deeper insights it provided into the TRN of E.
    [Show full text]
  • Pdfs/0551.Pdf
    1 Structures of the Molecular Components in DNA and RNA with Bond Lengths Interpreted as Sums of Atomic Covalent Radii Raji Heyrovská* Institute of Biophysics of the Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic. *E-mail: [email protected] Abstract: The author has found recently that the lengths of chemical bonds are sums of the covalent and or ionic radii of the relevant atoms constituting the bonds, whether they are completely or partially covalent or ionic. This finding has been tested here for the skeletal bond lengths in the molecular constituents of nucleic acids, adenine, thymine, guanine, cytosine, uracil, ribose, deoxyribose and phosphoric acid. On collecting the existing data and comparing them graphically with the sums of the appropriate covalent radii of C, N, O, H and P, it is found that there is a linear dependence with unit slope and zero intercept. This shows that the bond lengths in the above molecules can be interpreted as sums of the relevant atomic covalent radii. Based on this, the author has presented here (for the first time) the atomic structures of the above molecules and of DNA and RNA nucleotides with Watson-Crick base pairs, which satisfy the known dimensions. INTRODUCTION Following the exciting discovery [1] of the molecular structure of nucleic acids, the question of the skeletal bond lengths in the molecules constituting DNA and RNA has continued to be of interest. The author was enthused to undertake this work by the recent findings [2a, b] that the length of the chemical bond between any two atoms or ions is, in general, the sum of the radii of 2 the atoms and or ions constituting the bond.
    [Show full text]
  • University of Groningen Ccpa Ensures Optimal Metabolic Fitness
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Groningen University of Groningen CcpA Ensures Optimal Metabolic Fitness of Streptococcus pneumoniae Carvalho, Sandra M.; Kloosterman, Tomas G.; Kuipers, Oscar P.; Neves, Ana Rute Published in: PLoS ONE DOI: 10.1371/journal.pone.0026707 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2011 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Carvalho, S. M., Kloosterman, T. G., Kuipers, O. P., & Neves, A. R. (2011). CcpA Ensures Optimal Metabolic Fitness of Streptococcus pneumoniae. PLoS ONE, 6(10), [26707]. https://doi.org/10.1371/journal.pone.0026707 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 12-11-2019 CcpA Ensures Optimal Metabolic Fitness of Streptococcus pneumoniae Sandra M.
    [Show full text]
  • Adenosine A1 Receptor Activation Attenuates Lung Ischemia–Reperfusion Injury
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE CARDIOTHORACIC TRANSPLANTATION provided by Elsevier - Publisher Connector Adenosine A1 receptor activation attenuates lung ischemia–reperfusion injury Lucas G. Fernandez, MD, DSc, Ashish K. Sharma, PhD, MBBS, Damien J. LaPar, MD, MSc, Irving L. Kron, MD, and Victor E. Laubach, PhD Objectives: Ischemia–reperfusion injury contributes significantly to morbidity and mortality in lung transplant patients. Currently, no therapeutic agents are clinically available to prevent ischemia–reperfusion injury, and treatment strategies are limited to maintaining oxygenation and lung function. Adenosine can modulate inflam- matory activity and injury by binding to various adenosine receptors; however, the role of the adenosine A1 re- ceptor in ischemia–reperfusion injury and inflammation is not well understood. The present study tested the hypothesis that selective, exogenous activation of the A1 receptor would be anti-inflammatory and attenuate lung ischemia–reperfusion injury. Methods: Wild-type and A1 receptor knockout mice underwent 1 hour of left lung ischemia and 2 hours of re- perfusion using an in vivo hilar clamp model. An A1 receptor agonist, 2-chloro-N6-cyclopentyladenosine, was administered 5 minutes before ischemia. After reperfusion, lung function was evaluated by measuring airway resistance, pulmonary compliance, and pulmonary artery pressure. The wet/dry weight ratio was used to assess edema. The myeloperoxidase and cytokine levels in bronchoalveolar lavage fluid were measured to determine the presence of neutrophil infiltration and inflammation. Results: In the wild-type mice, 2-chloro-N6-cyclopentyladenosine significantly improved lung function and at- tenuated edema, cytokine expression, and myeloperoxidase levels compared with the vehicle-treated mice after ischemia–reperfusion.
    [Show full text]
  • Xj 128 IUMP Glucose Substance Will Be Provisionally Referred to As UDPX (Fig
    426 Studies on Uridine-Diphosphate-Glucose By A. C. PALADINI AND L. F. LELOIR Instituto de Inve8tigacione&s Bioquimicas, Fundacion Campomar, J. Alvarez 1719, Buenos Aires, Argentina (Received 18 September 1951) A previous paper (Caputto, Leloir, Cardini & found that the substance supposed to be uridine-2'- Paladini, 1950) reported the isolation of the co- phosphate was uridine-5'-phosphate. The hydrolysis enzyme of the galactose -1- phosphate --glucose - 1 - product of UDPG has now been compared with a phosphate transformation, and presented a tenta- synthetic specimen of uridine-5'-phosphate. Both tive structure for the substance. This paper deals substances were found to be identical as judged by with: (a) studies by paper chromatography of puri- chromatographic behaviour (Fig. 1) and by the rate fied preparations of uridine-diphosphate-glucose (UDPG); (b) the identification of uridine-5'-phos- 12A UDPG phate as a product of hydrolysis; (c) studies on the ~~~~~~~~~~~~~(a) alkaline degradation of UDPG, and (d) a substance similar to UDPG which will be referred to as UDPX. UMP Adenosine UDPG preparation8 8tudied by chromatography. 0 UjDPX Paper chromatography with appropriate solvents 0 has shown that some of the purest preparations of UDP UDPG which had been obtained previously contain two other compounds, uridinemonophosphate 0 4 (UMP) and a substance which appears to have the same constitution as UDPG except that it contains an unidentified component instead of glucose. This Xj 128 IUMP Glucose substance will be provisionally referred to as UDPX (Fig. la). The three components have been tested for co- enzymic activity in the galactose-1-phosphate-- 0-4 -J UDPX glucose-l-phosphate transformation, and it has been confirmed that UDPG is the active substance.
    [Show full text]
  • Guanosine-Based Nucleotides, the Sons of a Lesser God in the Purinergic Signal Scenario of Excitable Tissues
    International Journal of Molecular Sciences Review Guanosine-Based Nucleotides, the Sons of a Lesser God in the Purinergic Signal Scenario of Excitable Tissues 1,2, 2,3, 1,2 1,2, Rosa Mancinelli y, Giorgio Fanò-Illic y, Tiziana Pietrangelo and Stefania Fulle * 1 Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; [email protected] (R.M.); [email protected] (T.P.) 2 Interuniversity Institute of Miology (IIM), 66100 Chieti, Italy; [email protected] 3 Libera Università di Alcatraz, Santa Cristina di Gubbio, 06024 Gubbio, Italy * Correspondence: [email protected] Both authors contributed equally to this work. y Received: 30 January 2020; Accepted: 25 February 2020; Published: 26 February 2020 Abstract: Purines are nitrogen compounds consisting mainly of a nitrogen base of adenine (ABP) or guanine (GBP) and their derivatives: nucleosides (nitrogen bases plus ribose) and nucleotides (nitrogen bases plus ribose and phosphate). These compounds are very common in nature, especially in a phosphorylated form. There is increasing evidence that purines are involved in the development of different organs such as the heart, skeletal muscle and brain. When brain development is complete, some purinergic mechanisms may be silenced, but may be reactivated in the adult brain/muscle, suggesting a role for purines in regeneration and self-repair. Thus, it is possible that guanosine-50-triphosphate (GTP) also acts as regulator during the adult phase. However, regarding GBP, no specific receptor has been cloned for GTP or its metabolites, although specific binding sites with distinct GTP affinity characteristics have been found in both muscle and neural cell lines.
    [Show full text]
  • Anti-Inflammatory Effects of Adenosine N1-Oxide
    Kohno et al. Journal of Inflammation (2015) 12:2 DOI 10.1186/s12950-014-0045-0 RESEARCH Open Access Anti-inflammatory effects of adenosine N1-oxide Keizo Kohno1*†, Emiko Ohashi1†, Osamu Sano1†, Hajime Kusano2†, Toshio Kunikata1†, Norie Arai3†, Toshiharu Hanaya1†, Toshio Kawata2†, Tomoyuki Nishimoto1† and Shigeharu Fukuda1,3† Abstract Background: Adenosine is a potent endogenous anti-inflammatory and immunoregulatory molecule. Despite its promise, adenosine’s extremely short half-life in blood limits its clinical application. Here, we examined adenosine N1-oxide (ANO), which is found in royal jelly. ANO is an oxidized product of adenosine at the N1 position of the adenine base moiety. We found that it is refractory to adenosine deaminase-mediated conversion to inosine. We further examined the anti-inflammatory activities of ANO in vitro and in vivo. Methods: The effect of ANO on pro-inflammatory cytokine secretion was examined in mouse peritoneal macrophages and the human monocytic cell line THP-1, and compared with that of adenosine, synthetic adenosine receptor (AR)-selective agonists and dipotassium glycyrrhizate (GK2). The anti-inflammatory activity of ANO in vivo was examined in an LPS-induced endotoxin shock model in mice. Results: ANO inhibited secretion of inflammatory mediators at much lower concentrations than adenosine and GK2 when used with peritoneal macrophages and THP-1 cells that were stimulated by LPS plus IFN-γ. The potent anti-inflammatory activity of ANO could not be solely accounted for by its refractoriness to adenosine deaminase. ANO was superior to the synthetic A1 AR-selective agonist, 2-chloro-N6-cyclopentyladenosine (CCPA), A2A AR-selective agonist, 2-[p-(2-carboxyethyl)phenethylamino]-5’-N-ethylcarboxamideadenosine hydrochloride (CGS21680), and A3 AR-selective agonist, N6-(3-iodobenzyl)adenosine-5’-N-methyluronamide (IB-MECA), in suppressing the secretion of a broad spectrum of pro-inflammatory cytokines by peritoneal macrophages.
    [Show full text]
  • Nucleobases Thin Films Deposited on Nanostructured Transparent Conductive Electrodes for Optoelectronic Applications
    www.nature.com/scientificreports OPEN Nucleobases thin flms deposited on nanostructured transparent conductive electrodes for optoelectronic applications C. Breazu1*, M. Socol1, N. Preda1, O. Rasoga1, A. Costas1, G. Socol2, G. Petre1,3 & A. Stanculescu1* Environmentally-friendly bio-organic materials have become the centre of recent developments in organic electronics, while a suitable interfacial modifcation is a prerequisite for future applications. In the context of researches on low cost and biodegradable resource for optoelectronics applications, the infuence of a 2D nanostructured transparent conductive electrode on the morphological, structural, optical and electrical properties of nucleobases (adenine, guanine, cytosine, thymine and uracil) thin flms obtained by thermal evaporation was analysed. The 2D array of nanostructures has been developed in a polymeric layer on glass substrate using a high throughput and low cost technique, UV-Nanoimprint Lithography. The indium tin oxide electrode was grown on both nanostructured and fat substrate and the properties of the heterostructures built on these two types of electrodes were analysed by comparison. We report that the organic-electrode interface modifcation by nano- patterning afects both the optical (transmission and emission) properties by multiple refections on the walls of nanostructures and the electrical properties by the efect on the organic/electrode contact area and charge carrier pathway through electrodes. These results encourage the potential application of the nucleobases thin flms deposited on nanostructured conductive electrode in green optoelectronic devices. Te use of natural or nature-inspired materials in organic electronics is a dynamic emerging research feld which aims to replace the synthesized materials with natural (bio) ones in organic electronics1–3.
    [Show full text]