Australian ANTARCTIC Magazine ISSUE 18 2010 Australian
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Air and Shipborne Magnetic Surveys of the Antarctic Into the 21St Century
TECTO-125389; No of Pages 10 Tectonophysics xxx (2012) xxx–xxx Contents lists available at SciVerse ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Air and shipborne magnetic surveys of the Antarctic into the 21st century A. Golynsky a,⁎,R.Bellb,1, D. Blankenship c,2,D.Damasked,3,F.Ferracciolie,4,C.Finnf,5,D.Golynskya,6, S. Ivanov g,7,W.Jokath,8,V.Masolovg,6,S.Riedelh,7,R.vonFresei,9,D.Youngc,2 and ADMAP Working Group a VNIIOkeangeologia, 1, Angliysky Avenue, St.-Petersburg, 190121, Russia b LDEO of Columbia University, 61, Route 9W, PO Box 1000, Palisades, NY 10964-8000, USA c University of Texas, Institute for Geophysics, 4412 Spicewood Springs Rd., Bldg. 600, Austin, Texas 78759-4445, USA d BGR, Stilleweg 2 D-30655, Hannover, Germany e BAS, High Cross, Madingley Road, Cambridge, CB3 OET, UK f USGS, Denver Federal Center, Box 25046 Denver, CO 80255, USA g PMGE, 24, Pobeda St., Lomonosov, 189510, Russia h AWI, Columbusstrasse, 27568, Bremerhaven, Germany i School of Earth Sciences, The Ohio State University, 125 S. Oval Mall, Columbus, OH, 43210, USA article info abstract Article history: The Antarctic geomagnetics' community remains very active in crustal anomaly mapping. More than 1.5 million Received 1 August 2011 line-km of new air- and shipborne data have been acquired over the past decade by the international community Received in revised form 27 January 2012 in Antarctica. These new data together with surveys that previously were not in the public domain significantly Accepted 13 February 2012 upgrade the ADMAP compilation. -
Office of Polar Programs
DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1 -
Potential Regime Shift in Decreased Sea Ice Production After the Mertz Glacier Calving
ARTICLE Received 27 Jan 2012 | Accepted 3 Apr 2012 | Published 8 May 2012 DOI: 10.1038/ncomms1820 Potential regime shift in decreased sea ice production after the Mertz Glacier calving T. Tamura1,2,*, G.D. Williams2,*, A.D. Fraser2 & K.I. Ohshima3 Variability in dense shelf water formation can potentially impact Antarctic Bottom Water (AABW) production, a vital component of the global climate system. In East Antarctica, the George V Land polynya system (142–150°E) is structured by the local ‘icescape’, promoting sea ice formation that is driven by the offshore wind regime. Here we present the first observations of this region after the repositioning of a large iceberg (B9B) precipitated the calving of the Mertz Glacier Tongue in 2010. Using satellite data, we find that the total sea ice production for the region in 2010 and 2011 was 144 and 134 km3, respectively, representing a 14–20% decrease from a value of 168 km3 averaged from 2000–2009. This abrupt change to the regional icescape could result in decreased polynya activity, sea ice production, and ultimately the dense shelf water export and AABW production from this region for the coming decades. 1 National Institute of Polar Research, Tachikawa, Japan. 2 Antarctic Climate & Ecosystem Cooperative Research Centre, University of Tasmania, Hobart, Australia. 3 Institute of Low Temperature of Science, Sapporo, Japan. *These authors contributed equally to this work. Correspondence and requests for materials should be addressed to T.T. (email: [email protected]) or to G.D.W. (email: [email protected]). NATURE COMMUNICATIONS | 3:826 | DOI: 10.1038/ncomms1820 | www.nature.com/naturecommunications © 2012 Macmillan Publishers Limited. -
Antarctic Peninsula
Hucke-Gaete, R, Torres, D. & Vallejos, V. 1997c. Entanglement of Antarctic fur seals, Arctocephalus gazella, by marine debris at Cape Shirreff and San Telmo Islets, Livingston Island, Antarctica: 1998-1997. Serie Científica Instituto Antártico Chileno 47: 123-135. Hucke-Gaete, R., Osman, L.P., Moreno, C.A. & Torres, D. 2004. Examining natural population growth from near extinction: the case of the Antarctic fur seal at the South Shetlands, Antarctica. Polar Biology 27 (5): 304–311 Huckstadt, L., Costa, D. P., McDonald, B. I., Tremblay, Y., Crocker, D. E., Goebel, M. E. & Fedak, M. E. 2006. Habitat Selection and Foraging Behavior of Southern Elephant Seals in the Western Antarctic Peninsula. American Geophysical Union, Fall Meeting 2006, abstract #OS33A-1684. INACH (Instituto Antártico Chileno) 2010. Chilean Antarctic Program of Scientific Research 2009-2010. Chilean Antarctic Institute Research Projects Department. Santiago, Chile. Kawaguchi, S., Nicol, S., Taki, K. & Naganobu, M. 2006. Fishing ground selection in the Antarctic krill fishery: Trends in patterns across years, seasons and nations. CCAMLR Science, 13: 117–141. Krause, D. J., Goebel, M. E., Marshall, G. J., & Abernathy, K. (2015). Novel foraging strategies observed in a growing leopard seal (Hydrurga leptonyx) population at Livingston Island, Antarctic Peninsula. Animal Biotelemetry, 3:24. Krause, D.J., Goebel, M.E., Marshall. G.J. & Abernathy, K. In Press. Summer diving and haul-out behavior of leopard seals (Hydrurga leptonyx) near mesopredator breeding colonies at Livingston Island, Antarctic Peninsula. Marine Mammal Science.Leppe, M., Fernandoy, F., Palma-Heldt, S. & Moisan, P 2004. Flora mesozoica en los depósitos morrénicos de cabo Shirreff, isla Livingston, Shetland del Sur, Península Antártica, in Actas del 10º Congreso Geológico Chileno. -
Crustal Architecture of the Oblique-Slip Conjugate Margins of George V Land and Southeast Australia H
U. S. Geological Survey and The National Academies; USGS OF-2007-1047, Short Research Paper 109; doi: 10.3133/of2007-1047.srp109 Crustal architecture of the oblique-slip conjugate margins of George V Land and southeast Australia H. M. J. Stagg1 and A. M. Reading2 1Geoscience Australia, GPO Box 378, Canberra ACT 2601, Australia ([email protected]) 2School of Earth Sciences, University of Tasmania, Private Bag 79, Hobart TAS 7001, Australia ([email protected]) Abstract A conceptual, lithospheric-scale cross-section of the conjugate, oblique-slip margins of George V Land, East Antarctica, and southeast Australia (Otway Basin) has been constructed based on the integration of seismic and sample data. This cross-section is characterised by asymmetry in width and thickness, and depth-dependent crustal extension at breakup in the latest Maastrichtian. The broad Antarctic margin (~360 km apparent rift width) developed on thick crust (~42 km) of the Antarctic craton, whereas the narrow Otway margin (~220 km) developed on the thinner crust (~31 km) of the Ross–Delamerian Orogen. The shallow basement (velocities ~5.5 km.s-1) and the deep continental crust (velocities >6.4 km.s-1) appear to be largely absent across the central rift, while the mid-crustal, probably granitic layer (velocities ~6 km.s-1) is preserved. Comparison with published numerical models suggests that the shallow basement and deep crust may have been removed by simple shear, whereas the mid-crust has been ductilely deformed. Citation: H.M.J. Stagg and A.M. Reading (2007), Crustal architecture of the oblique-slip conjugate margins of George V Land and southeast Australia, in Antarctica: A Keystone in a Changing World – Online Proceedings of the 10th ISAES, edited by A.K. -
This Article Appeared in a Journal Published by Elsevier. The
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Palaeogeography, Palaeoclimatology, Palaeoecology 335-336 (2012) 24–34 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Antarctic topography at the Eocene–Oligocene boundary Douglas S. Wilson a,⁎, Stewart S.R. Jamieson b, Peter J. Barrett c, German Leitchenkov d, Karsten Gohl e, Robert D. Larter f a Marine Sciences Institute, University of California, Santa Barbara, CA 93106, United States b Department of Geography, Durham University, South Road, Durham, DH1 3LE, UK c Antarctic Research Centre, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand, d Institute for Geology and Mineral Resources of the World Ocean, 1, Angliysky Ave. 190121, St.-Petersburg, Russia e Alfred Wegener Institute for Polar and Marine Research, Postfach 120161, D-27515 Bremerhaven, Germany f British Antarctic Survey, Madingley Road, High Cross, Cambridge, Cambridgeshire CB3 0ET, UK article info abstract Article history: We present a reconstruction of the Antarctic topography at the Eocene–Oligocene (ca. -
U.S. Department of Transportation Federal
U.S. DEPARTMENT OF ORDER TRANSPORTATION JO 7340.2E FEDERAL AVIATION Effective Date: ADMINISTRATION July 24, 2014 Air Traffic Organization Policy Subject: Contractions Includes Change 1 dated 11/13/14 https://www.faa.gov/air_traffic/publications/atpubs/CNT/3-3.HTM A 3- Company Country Telephony Ltr AAA AVICON AVIATION CONSULTANTS & AGENTS PAKISTAN AAB ABELAG AVIATION BELGIUM ABG AAC ARMY AIR CORPS UNITED KINGDOM ARMYAIR AAD MANN AIR LTD (T/A AMBASSADOR) UNITED KINGDOM AMBASSADOR AAE EXPRESS AIR, INC. (PHOENIX, AZ) UNITED STATES ARIZONA AAF AIGLE AZUR FRANCE AIGLE AZUR AAG ATLANTIC FLIGHT TRAINING LTD. UNITED KINGDOM ATLANTIC AAH AEKO KULA, INC D/B/A ALOHA AIR CARGO (HONOLULU, UNITED STATES ALOHA HI) AAI AIR AURORA, INC. (SUGAR GROVE, IL) UNITED STATES BOREALIS AAJ ALFA AIRLINES CO., LTD SUDAN ALFA SUDAN AAK ALASKA ISLAND AIR, INC. (ANCHORAGE, AK) UNITED STATES ALASKA ISLAND AAL AMERICAN AIRLINES INC. UNITED STATES AMERICAN AAM AIM AIR REPUBLIC OF MOLDOVA AIM AIR AAN AMSTERDAM AIRLINES B.V. NETHERLANDS AMSTEL AAO ADMINISTRACION AERONAUTICA INTERNACIONAL, S.A. MEXICO AEROINTER DE C.V. AAP ARABASCO AIR SERVICES SAUDI ARABIA ARABASCO AAQ ASIA ATLANTIC AIRLINES CO., LTD THAILAND ASIA ATLANTIC AAR ASIANA AIRLINES REPUBLIC OF KOREA ASIANA AAS ASKARI AVIATION (PVT) LTD PAKISTAN AL-AAS AAT AIR CENTRAL ASIA KYRGYZSTAN AAU AEROPA S.R.L. ITALY AAV ASTRO AIR INTERNATIONAL, INC. PHILIPPINES ASTRO-PHIL AAW AFRICAN AIRLINES CORPORATION LIBYA AFRIQIYAH AAX ADVANCE AVIATION CO., LTD THAILAND ADVANCE AVIATION AAY ALLEGIANT AIR, INC. (FRESNO, CA) UNITED STATES ALLEGIANT AAZ AEOLUS AIR LIMITED GAMBIA AEOLUS ABA AERO-BETA GMBH & CO., STUTTGART GERMANY AEROBETA ABB AFRICAN BUSINESS AND TRANSPORTATIONS DEMOCRATIC REPUBLIC OF AFRICAN BUSINESS THE CONGO ABC ABC WORLD AIRWAYS GUIDE ABD AIR ATLANTA ICELANDIC ICELAND ATLANTA ABE ABAN AIR IRAN (ISLAMIC REPUBLIC ABAN OF) ABF SCANWINGS OY, FINLAND FINLAND SKYWINGS ABG ABAKAN-AVIA RUSSIAN FEDERATION ABAKAN-AVIA ABH HOKURIKU-KOUKUU CO., LTD JAPAN ABI ALBA-AIR AVIACION, S.L. -
FINANCIAL STATEMENTS 26-67 the Group’S Functional and Presentation Currency Is AUD ($)
APPENDIX 4E FOR THE YEAR ENDED 30 JUNE 2012 (PREVIOUS CORRESPONDING PERIOD: YEAR ENDED 30 JUNE 2011) RESULTS FOR ANNOUNCEMENT TO MARKET FY2012 FY2011 % $’000 $’000 Revenue up 14.5 273,145 238,488 Profit after tax up 44.9 25,497 17,593 Profit after tax attributable to members up 44.9 25,497 17,593 Net profit for the period attributable to members up 44.9 25,497 17,593 Profit after tax increased due to improved passenger revenue, the new income stream from Ambulance Victoria contract which commenced on 1 July 2012, improved demand for charter services, higher enrolment of trainee pilots and continuous cost-reduction programmes. Amount Franked Amount Dividends (Ordinary Shares) Per Security Per Security Final dividend: - current reporting period 9.0 cents 9.0 cents - previous reporting period 7.1 cents 7.1 cents Interim dividend: - current reporting period - - - previous reporting period - - Record date for determining entitlements to the final dividend will be 14 September 2012. Dividends will be paid on 30 November 2012 subject to approval by shareholders at the Annual General Meeting. Previous Earnings per Ordinary Current Corresponding Fully Paid Share (EPS) Period Period Basic EPS 23.1 ¢ 15.8 ¢ Diluted EPS 23.1 ¢ 15.8 ¢ Net Tangible Asset Backing Per Ordinary Security $1.54¢ $1.36¢ The attached Annual Report for the year ended 30 June 2012, prepared pursuant to Appendix 4E and ASX Listing Rule 4.3A, has been audited. For personal use only THE STORY The First 10 Years ANNUALFor personal use only REPORT FOR THE FINANCIAL YEAR ENDED 30 JUNE 2012 REGIONAL EXPRESS HOLDINGS LIMITED Regional Express Value Statement What does it profit a company if it gains the whole world and loses its soul Customer We believe that we can only count on ourselves for our continued success: We are committed to providing our customers with safe and reliable air transportation with heartfelt hospitality. -
Drum Bass Arena Perth
Drum bass arena perth click here to download Phone, Suggest a phone number · Address, Suggest an address. DRUM&BASS ARENA PERTH feat. Drum&BassArena: The award winning UK brand that has influenced generations of drum & bass lovers the world over is. Displaying all upcoming Drum & Bass Australia events. Australia The. Mar 31, Posted by DrumAndBassArena on 31/03/ Hailing from Perth, Australia we welcomed Q-Bik back to the studio for his second. This Site is Updated every day and is the busiest drum and bass site on the internet. Perth has played host to some of the most respected people in the. Pendulum are a drum and bass group hailing from Perth, Australia who formed. Venue type Arena (18, capacity) With an invested interest in dubstep. Recorded in Perth in July for Drum and Bass Arena. This was shortly before we moved to the UK. They asked for a mix of what I was into at the time, and. May 19, Taking place at Villa Nightclub, Perth on May 19th, , you can find more before rounding it off at the annual Drum & Bass Arena Awards. Coming to the Drum n Bass Arena tour gig Cybermonkey? There are some insanely good gigs coming up, INHIBIT in Perth are who organise. Soulful and dark drum & bass collective produced by Trilby Temperley with the brilliant vocalists Rebecca DJ who brings his love of all sorts of music to the turntables; and Drum & bass DJ/Producer extraordinaire Sardi. Arena Joondalup. Drum and Bass radio is a drum n bass station servicing world-wide reach for jungle, bass, and dnb music enthusiasts. -
A New Digital Elevation Model of Antarctica Derived from Cryosat-2 Altimetry Thomas Slater1, Andrew Shepherd1, Malcolm Mcmillan1, Alan Muir2, Lin Gilbert2, Anna E
A new Digital Elevation Model of Antarctica derived from CryoSat-2 altimetry Thomas Slater1, Andrew Shepherd1, Malcolm McMillan1, Alan Muir2, Lin Gilbert2, Anna E. Hogg1, Hannes Konrad1, Tommaso Parrinello3 5 1Centre for Polar Observation and Modelling, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, United Kingdom 2Centre for Polar Observation and Modelling, University College London, London, WC1E 6BT, United Kingdom 3ESA ESRIN, Via Galileo Galilei, 00044 Frascati RM, Italy Correspondence to: Thomas Slater ([email protected]) 10 Abstract. We present a new Digital Elevation Model (DEM) of the Antarctic ice sheet and ice shelves based on 2.5 x 108 observations recorded by the CryoSat-2 satellite radar altimeter between July 2010 and July 2016. The DEM is formed from spatio-temporal fits to elevation measurements accumulated within 1, 2 and 5 km grid cells, and is posted at the modal resolution of 1 km. Altogether, 94 % of the grounded ice sheet and 98 % of the floating ice shelves are observed, and the remaining grid cells 15 North of 88 ° S are interpolated using ordinary kriging. The median and root mean square difference between the DEM and 2.3 x 107 airborne laser altimeter measurements acquired during NASA Operation IceBridge campaigns are -0.30 m and 13.50 m, respectively. The DEM uncertainty rises in regions of high slope — especially where elevation measurements were acquired in Low Resolution Mode — and, taking this into account, we estimate the average accuracy to be 9.5 m — a value that is comparable to or better than that of other models derived from satellite radar and laser altimetry. -
Australian ANTARCTIC Magazine ISSUE 12 2007
AUStraLian ANTARCTIC MAGAZinE ISSUE 12 2007 THE INTERNATIONAL POLAR YEAR www.aad.gov.au AUStraLian ANTARCTIC MAGAZinE ISSUE 12 2007 Contents The Australian Antarctic Division (AAD), an agency Welcome to the International Polar Year 1 of the Department of the Environment and Water Resources, leads Australia’s Antarctic programme Celebrating a common vision 2 and seeks to advance Australia’s Antarctic interests Around the world in 365 days 4 in pursuit of its vision of having ‘Antarctica valued, protected and understood’. It does this by managing Long-hidden seabed life uncovered 6 Australian government activity in Antarctica, providing transport and logistic support to Australia’s Understanding the role of the Southern Ocean in climate 8 Antarctic research programme, maintaining four Getting the measure of sea ice 10 permanent Australian research stations, and conducting scientific research programmes both Taking the Antarctic Arctic Polar Pulse 11 on land and in the Southern Ocean. Aliens in Antarctica 11 Australia’s four Antarctic goals are: Antarctic ozone: New insights from the International Polar Year 12 • To maintain the Antarctic Treaty System and enhance Australia’s influence in it; International Antarctic Institute 14 • To protect the Antarctic environment; Surfing the building technology wave 14 • To understand the role of Antarctica in the global climate system; and Davis station turns 50 15 • To undertake scientific work of practical, Aurora Australis continues her Antarctic service 15 economic and national significance. From Hobart to Antarctica and back again 16 Australian Antarctic Magazine seeks to inform the Australian and international Antarctic community Solar linkages to atmospheric processes 18 about the activities of the Australian Antarctic Aviation in Antarctica reaches new heights 20 programme. -
HIAPL MDP Issue FINAL__Co
Contents Page Executive Summary 1 1 Introduction 3 1.1 Project overview and background 3 1.2 Aircraft Code 4 1.3 Project Proponent 7 1.4 Report Structure 7 2 Project description 9 2.1 Project rationale and objectives 9 2.2 Location of proposed development 13 2.3 Proposed design 13 2.4 Construction methodology 24 2.5 Project staging and timing 25 3 Legislative context 27 3.1 Introduction 27 3.2 Consistency with Commonwealth legislation 27 3.3 Consistency with Airport Lease 32 3.4 National Airports Safeguarding Framework 33 3.5 Consistency with Airport Master Plan 34 3.6 Consistency with Airport Environment Strategy 37 3.7 Consistency with State and Local Government Planning 38 4 Assessment methodology 47 4.1 Assessment scope 47 4.2 Assessment technique 47 5 Assessment of impacts and proposed mitigation measures 50 5.1 Introduction 50 5.2 Resource use 52 5.3 Land use 53 5.4 Geology and soils 56 5.5 Surface and groundwater 63 5.6 Biodiversity 66 5.7 Cultural Heritage 73 5.8 Air Quality 74 5.9 Aircraft Noise 79 5.10 Ground-based noise 93 Hobart International Airport Major Development Plan 5.11 Hazardous materials 95 5.12 Traffic and transport 96 5.13 Social 105 5.14 Economy and employment 108 5.15 Visual Impact Assessment 115 5.16 Aviation safety 125 5.17 Services 133 6 Impact Summary 136 7 Consultation 143 7.1 Informal consultation 144 7.2 Formal pre-release consultation 145 7.3 Formal public comment period consultation 145 8 Conclusion 147 9 References 148 Tables Table 1: Aerodrome Reference Code 4 Table 2: The Project’s compliance with