Seed Dispersal, Germination and Fine-Scale Genetic Structure in the Stream Lily, Helmholtzia Glaberrima (Philydraceae)

Total Page:16

File Type:pdf, Size:1020Kb

Seed Dispersal, Germination and Fine-Scale Genetic Structure in the Stream Lily, Helmholtzia Glaberrima (Philydraceae) Queensland University of Technology School of Natural Resource Sciences Seed dispersal, germination and fine-scale genetic structure in the stream lily, Helmholtzia glaberrima (Philydraceae) Peter Prentis B.Sc. (Hons). Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy July 2005 Abstract Seed dispersal in aquatic habitats is often considered to be a complex multistage process, where initial seed shadows are redistributed by water (hydrochory). The roles of hydrochory in seed dispersal and influencing population genetic structure were examined in Helmholtzia glaberrima using both ecological and genetic techniques. Ecological experiments showed that water can redistribute seeds and seedlings over local scales and that hydrochory can provide the potential for very long distance seed and seedling dispersal. Patterns of seedling genetic structure were affected by micro- drainages that direct water flow within populations and influence water-borne seed dispersal on a local scale. Strong non-equilibrium dynamics and persistent founder effects were responsible for the patterns of genetic structure observed among established populations of H. glaberrima. Classical metapopulation models best described dispersal patterns, while water-borne seed dispersal could potentially explain patterns of genetic differentiation within a stream system, it could not explain the distribution of genetic variation among stream systems. The current study found that although hydrochory influenced seed dispersal and seedling genetic structure within a population, it had little effect on the spatial pattern of genetic variation among established populations of H. glaberrima. Moreover, even though prolonged buoyancy and viability in water provide the potential for long-distance hydrochory, results presented here do not support the hypothesis that flowing water is an effective long distance seed dispersal vector for H. glaberrima. Taken together, these results suggest that the relative importance of gene flow via water-born seed dispersal in H. glaberrima may be low compared with that of some other riparian species. 1 Keywords: genetic diversity; Helmholtzia; hydrochory; seed dispersal 2 List of manuscripts 1. Prentis, P. J., A. Vesey, N. M. Meyers, and P. B. Mather 2004. Genetic structuring of the stream lily Helmholtzia glaberrima (Philydraceae) within Toolona Creek, south-eastern Queensland. Australian Journal of Botany 52: 201—207. 2. Prentis, P. J., N. M. Meyers, and P. B. Mather. In press. The significance of post- germination buoyancy in Helmholtzia glaberrima and Philydrum lanuginosum (Philydraceae). Australian Journal of Botany. 3. Prentis, P. J., N. M. Meyers, and P. B. Mather. (In Prep) Seed dispersal and seedling establishment in the riparian plant Helmholtzia glaberrima. Freshwater Biology. 4. Prentis, P. J., N. M. Meyers, and P. B. Mather. (In Review) Micro-geographic landscape features demarcate seedling genetic structure in the stream lily, Helmholtzia glaberrima (Philydraceae)1. American Journal of Botany. 5. Prentis, P. J., N. M. Meyers, AND P. B. Mather. (In Review) Fine-scale patterns of genetic diversity and population structure in the stream lily Helmholtzia glaberrima (Philydraceae) along rainforest streams, south-east Queensland. Freshwater Biology. 3 Table of Contents Abstract 1 List of Manuscripts 3 Table of Contents 4 Statement of Original Authorship 7 Acknowledgments 8 Chapter 1: GENERAL INTRODUCTION Introduction 9 Spatial and temporal dynamics of aquatic habitats 10 Seed dispersal in freshwater habitats 12 Colonisation of isolated habitat patches via long-distance hydrochory 16 Other mechanisms affecting long-distance seed transport 17 Study species and system 22 Account of research progress linking manuscripts 24 References 26 Chapter 2: GENETIC STRUCTURING OF THE STREAM LILY Helmholtzia glaberrima (PHILYDRACEAE) WITHIN TOOLONA CREEK, SOUTH-EAST QUEENSLAND Statement of Joint Authorship 34 Manuscript 1 35 Introduction 37 Materials and Methods 40 Results 43 Discussion 45 References 50 4 Tables and Figures 54 Chapter 3: THE SIGNIFICANCE OF POST-GERMINATION BUOYANCY IN Helmholtzia glaberrima AND Philydrum lanuginosum (PHILYDRACEAE) Statement of Joint Authorship 61 Manuscript 2 62 Introduction 64 Materials and Methods 67 Results 72 Discussion 74 References 78 Tables and Figures 81 Chapter 4: SEED DISPERSAL AND SEEDLING ESTABLISHMENT IN THE RIPARIAN PLANT Helmholtzia glaberrima Statement of Joint Authorship 84 Manuscript 3 85 Introduction 88 Materials and Methods 91 Results 94 Discussion 96 References 100 Tables and Figures 102 Chapter 5: MICRO-GEOGRAPHIC LANDSCAPE FEATURES DEMARCATE SEEDLING GENETIC STRUCTURE IN THE STREAM LILY, Helmholtzia glaberrima (PHILYDRACEAE) Statement of Joint Authorship 105 5 Manuscript 4 106 Introduction 108 Materials and Methods 110 Results 112 Discussion 114 References 118 Tables and Figures 121 Chapter 6: FINE-SCALE PATTERNS OF GENETIC DIVERSITY AND POPULATION STRUCTURE IN THE STREAM LILY Helmholtzia glaberrima (PHILYDRACEAE) ALONG RAINFOREST STREAMS, SOUTH-EAST QUEENSLAND Statement of Joint Authorship 126 Manuscript 5 127 Introduction 129 Materials and Methods 132 Results 134 Discussion 136 References 140 Tables and Figures 143 Chapter 7: GENERAL DISCUSSION General Discussion 147 References 153 6 Statement of Original Authorship This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. Signed Date 7 Acknowledgments Firstly, I would like to thank my supervisors for your guidance and encouragement in helping me complete this project. Many thanks must go both to the ecology and genetics discussion groups for fruitful discussions on sampling designs and data. My parents deserve many thanks for their support of my chosen path and providing guidance during the gloomy PhD blues. A special thankyou to all the people who volunteered to help me with field and lab work, particularly Ana Pavasovic, Cameron Schulz, Mark Schutze, Doug Harding, Alex Wilson and Grant Hamilton. Big thanks must go to Dr Graham Kelly the man whose lectures and infectious enthusiasm are responsible for my interest in plant biology. Lastly and mostly importantly, I have to thank my partner Ana for her support, encouragement and cooking without which I would be a lonely, thin man. 8 CHAPTER 1. General introduction Introduction How seeds disperse among isolated habitat patches, establish and contribute to the genetic pool of new plant populations has long fascinated botanists (Darwin, 1859). This is because dispersal is one of the primary processes that influence population dynamics and evolution of plants (Nathan & Muller-Landau, 2000). In particular the spatial and temporal dynamics of plant populations will be determined chiefly by the movement of seeds within and among populations (Husband & Barrett, 1998). At a broader geographic scale, the range at which seed dispersal is effective will influence the possibility that extirpated populations are recolonised and the probability that new isolated habitat patches are colonised (Cain et al., 2000). Plant species are rarely distributed uniformly in space but often occur as isolated local populations where favourable conditions for successful establishment exist (Edwards & Sharitz, 2000; Ellison & Parker, 2002). Dispersal patterns within and among local populations will determine the extent to which local populations are interconnected via gene flow (Ouborg et al., 1999). Gene flow will only occur however, if the seeds dispersing among populations establish and contribute to future reproduction in the new population (Ouborg et al., 1999). The level of gene flow among patches will determine the distribution of genetic variation within and among local populations and whether they function collectively, or as isolated units (Tero et al., 2003). In situations where dispersal 9 rates among populations are high, gene flow will tend to homogenise gene frequencies among local populations, so they form a single panmictic unit (Ouborg et al., 1999). Alternatively, if gene flow is very low or absent, local populations are likely to diverge and evolve independently due to the diversifying forces of drift and selection (Tero et al., 2003). A number of factors can influence the level of seed dispersal and gene flow that occurs among isolated local populations, including temporal and spatial distribution of favourable habitat patches, the type of vectors that disperse seeds and the individual life-history characteristics of a plant species (Pannell and Charlesworth, 1999, 2000). This review will focus primarily factors acting on aquatic plants restricted to freshwater habitats. Spatial and temporal dynamics of aquatic habitats Many studies have reported that habitat patches are often dispersed heterogeneously across the landscape (Husband & Barrett, 1998; Levins, 1969; McCauley, 1989). Spatial discontinuities, including mountains, valleys or rivers can influence significantly the distribution of many organisms (Lawton, 1993). Most organisms do not exhibit uniform distributions in space (Lawton, 1993). Instead organisms frequently occur as isolated local populations confined to suitable habitat surrounded by a matrix of less favourable habitat (Andrewartha & Birch, 1954; Dejong, 1995; Dupre & Ehrlen, 2002). This is
Recommended publications
  • The Angiosperm Flora of Singapore Part 2 PHILYDRACEAE
    The Angiosperm Flora of Singapore Part 2 PHILYDRACEAE R.M.K. SAUNDERS Department of Ecology & Biodiversity, The Univenity of Hong Kong Pokfulam Road . Hong Kong Philydrum Banks & Sol. ex Gaertn Fruct. sem. pl. 1 (1788) 62, t. 16: Ridl.. F1. Malay Penins. 4 (1924) 347; Skott5b.. Bull. Jard. bot. Etat Brux. scr. 3. 13: (1933) 11 I; Skottsb., FI. Malcs. scr. 1, 4:1(1048) 5. Erect, perennial, caespitose herbs with a short rhizome. Lenves densely rosulate, equitant. 2-ranked; linear, fleshy, parallel-veined, sheathing at base. Inflorescence a simple or paniculate terminal spike; scape 1 m or longer, with few cauline leaves gradually replaced by alternate bracts. Flowers bisexual; zygomorphic; sessile, solitary in axil of spathaceous bracts; bracts enclosing flower buds, reflexed at anthesis, later embracing the fruit; perianth corolline, 4-segmented, 2-seriate, persistent as fruit cover, yellow, 2 outer tepals larger, adaxial and abaxial respectively, 2 inner tepals smaller, lateral: stamen single, filament flattened, adnate with base of inner and adaxial tepals, anther dorsifixed, 2-loculate, spirally twisted, extrorse, opening lengthwise by slits, pollen grains in tetrads, staminodes cuneate, acute, shorter than fertile stamen: ovary single, superior, 3-loculate, with parietal placentation, ovules many per locule, anatropous; style simple. Fruit a persistent triangular-oblong loculicidal capsule with 3 valves. Seeds with corona and spirally-striate testa, many per locule; embryo straight. Distribution - Monotypic genus, occurring in South Japan, Taiwan, South-East China, Indo-China, Malay Peninsula, Guam, South New Guinea and North, East and South-East Australia (Hamann, 1966a). P. lnni~ginosum is reported to be extinct in Singapore (Keng, 1987) but was previously collected in Bedok.
    [Show full text]
  • MVG 21 – Other Grasslands, Herblands, Sedgelands and Rushlands
    NVIS Fact sheet MVG 21 – Other grasslands, herblands, sedgelands and rushlands Australia’s native vegetation is a rich and fundamental • communities and support a large range of species, partly element of our natural heritage. It binds and nourishes as a result of their geographical range, and variation in our ancient soils; shelters and sustains wildlife, protects soils and site conditions streams, wetlands, estuaries, and coastlines; and absorbs • include many plant species capable of vegetative carbon dioxide while emitting oxygen. The National reproduction by rhizomes, or stolons Vegetation Information System (NVIS) has been developed • can comprise associated species that may include and maintained by all Australian governments to provide perennial forbs or/and short-lived ephemeral plants that a national picture that captures and explains the broad proliferate after seasonal or cyclonic rains, to longer-term diversity of our native vegetation. perennials that rely on underground organs such This is part of a series of fact sheets which the Australian as rhizomes Government developed based on NVIS Version 4.2 data to • occur on a range of sites including intermittently provide detailed descriptions of the major vegetation groups inundated depressions, margins of perennial freshwater (MVGs) and other MVG types. The series is comprised of lagoons and brackish tidal or inland wetlands. Ferns tend a fact sheet for each of the 25 MVGs to inform their use by to dominate specific humid areas where the environment planners and policy makers. An additional eight MVGs are is less variable between seasons available outlining other MVG types. • have structurally distinctive features of landscape that provide a variety of habitats for faunal species For more information on these fact sheets, including its limitations and caveats related to its use, please see: • may be associated with an overstorey of scattered and ‘Introduction to the Major Vegetation Group (MVG) isolated trees fact sheets’.
    [Show full text]
  • Pollen Ultrastructure of the Philydraceae
    Grana 24: 23-3 1, 1985 Pollen ultrastructure of the Philydraceae MICHAEL G. SIhlPSON Simpson, M. G. 1985. Pollen ultrastructure of the Philydraceae. - Grana 24: 23-31, 1985. Uppsala 8 May 1985. ISSN 0017-3134. Pollen morphology, sculpturing, and wll ultrastructure of the five species in the monocot family Philydraceae were investigated in order to assess phylogenetic relationships. All members of the Philydraceae have monosulcate, heteropolar pollen grains with a tectate- columellate exine having distinctive lamellae inner to the foot-layer. Histochemical tests of Pliilpdrrim lanirgiriosrirn indicate an ektexinous exine composition. The aperture uall of all members of the family consists of a thick, 2-layered intine with exine absent or composed of scattered deposits. The inner intine layer is infused with numerous vesicular or channel- like structures. Histochemical tests of Philpdriirn laniiginosirrri suggest that the outer intine layer is primarily cellulosic and the inner intine layer is pectic-rich, a trend opposite from that noted in pollen of other monocot taxa. Palynological similarities between the Philydra- ceae and related families, including monosulcate apertures and a tectate-columellate exine, are hypothesized to represent ancestral features which are of no value in assessing phylogenetic relationships. hficlinel G. Simpson, Depnrfrtient of Bornrip, Dirke Uiiiversirp, Dirrhnrn, Norzh Cnrolinn 27706, USA (Current address: Depnrttnent of Biology, Albrighr College, Rending, Penn- sylvonia 19603, USA) (hfanuscript receiwd 2 September 1983. revised version accepted 7 hinrch 1981) The Philydraceae (sensu Hamann 1966) are a small to either the Haemodoraceae or Pontederiaceae. monocot family of four genera and five species: For example, Engler & Prantl (1930) placed the Helriilioltzio (2 species; eastern Australia, New Philydraceae adjacent to the Pontederiineae (Ponte- Guinea).
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Helmholtzia Acorifolia F.Muell
    Australian Tropical Rainforest Plants - Online edition Helmholtzia acorifolia F.Muell. Family: Philydraceae Mueller, F.J.H. von (1865) Fragmenta Phytographiae Australiae 5: 203. Type: Queensland, Rockingham Bay, 1866, J. Dallachy s.n.; lecto: MEL; iso: B, K, M. Fide U. Hamann, Willdenowia Beiheft 4: 155 (1966). Common name: Puckerum; Helmholtzia; Kuranda Stem Stem or rhizome +/- horizontal or slightly ascending but the leaves +/- erect and reaching to a height of 1-2 m. Leaves Leaves arranged in one plane and held like a hand fan. Leaf blades glabrous, sword-like, up to 100- 200 x 4 cm, venation longitudinal and parallel. Leaf blade constricted on one side about 1/4 of the way up from the base to form a 'petiole'. Reticulate veins sinuous, +/- at right angles to the midrib. Flowers Inflorescence up to 30 cm long, bracteoles lanceolate up to 12 mm long. Individual flowers sessile, Flowers. © Barry Jago outer tepals lanceolate, about 8-14 mm long, hairy on the outer surface, inner tepals about 3 mm long. Stamens about 4 mm long, anthers bright yellow, locules about 2 mm long +/- clasping the style. Ovary about 2 mm long, densely hairy on the outer surface. Ovules numerous in each locule. Style about 5 mm long. Fruit Fruit globose, about 5-10 mm diam., 3-lobed, +/- translucent. Seeds about 2 mm long, dark reddish- brown. Seedlings First pair of leaves linear, about 4-10 x 0.5-1 mm, apex acute, base sheathing the stem, glabrous, venation longitudinal and parallel, petiole absent. At the tenth leaf stage: leaf blade produced in one Leaves and Flowers.
    [Show full text]
  • Eidothea Hardeniana (Nightcap Oak) September 2004 © Department of Environment and Conservation (NSW), July 2004
    Approved NSW & National Recovery Plan Eidothea hardeniana (Nightcap Oak) September 2004 © Department of Environment and Conservation (NSW), July 2004. This work is copyright. However, material presented in this plan may be copied for personal use or published for educational purposes, providing that any extracts are fully acknowledged. Apart from this and any other use as permitted under the Copyright Act 1968, no part may be reproduced without prior written permission from NSW Department of Environment and Conservation. NSW Department of Environment and Conservation 43 Bridge Street (PO Box 1967) Hurstville NSW 2220 Tel: 02 9585 6444 www.nationalparks.nsw.gov.au Requests for information or comments regarding the recovery program for the Nightcap Oak are best directed to: The Nightcap Oak Recovery Co-ordinator Threatened Species Unit, North East Branch NSW Department of Environment and Conservation Locked Bag 914 Coffs Harbour NSW 2450 Tel: 02 6651 5946 Cover illustrator: Lesley Elkan © Botanic Gardens Trust, Sydney Cover illustration: Adult and juvenile leaves and fruit of Eidothea hardeniana This plan should be cited as follows: NSW Department of Environment and Conservation 2004, Recovery Plan for the Nightcap Oak (Eidothea hardeniana), Department of Environment and Conservation (NSW), Hurstville. ISBN 0 7313 6781 2 Recovery Plan The Nightcap Oak Draft Recovery Plan The Tumut Grevillea Recovery Plan for the Nightcap Oak (Eidothea hardeniana) Foreword The New South Wales Government established a new environment agency on 24 September 2003, the Department of Environment and Conservation (NSW), which incorporates the New South Wales National Parks and Wildlife Service. Responsibility for the preparation of Recovery Plans now rests with this new department.
    [Show full text]
  • The Evolutionary and Biogeographic Origin and Diversification of the Tropical Monocot Order Zingiberales
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 49 2006 The volutE ionary and Biogeographic Origin and Diversification of the Tropical Monocot Order Zingiberales W. John Kress Smithsonian Institution Chelsea D. Specht Smithsonian Institution; University of California, Berkeley Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Kress, W. John and Specht, Chelsea D. (2006) "The vE olutionary and Biogeographic Origin and Diversification of the Tropical Monocot Order Zingiberales," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 49. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/49 Zingiberales MONOCOTS Comparative Biology and Evolution Excluding Poales Aliso 22, pp. 621-632 © 2006, Rancho Santa Ana Botanic Garden THE EVOLUTIONARY AND BIOGEOGRAPHIC ORIGIN AND DIVERSIFICATION OF THE TROPICAL MONOCOT ORDER ZINGIBERALES W. JOHN KRESS 1 AND CHELSEA D. SPECHT2 Department of Botany, MRC-166, United States National Herbarium, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, D.C. 20013-7012, USA 1Corresponding author ([email protected]) ABSTRACT Zingiberales are a primarily tropical lineage of monocots. The current pantropical distribution of the order suggests an historical Gondwanan distribution, however the evolutionary history of the group has never been analyzed in a temporal context to test if the order is old enough to attribute its current distribution to vicariance mediated by the break-up of the supercontinent. Based on a phylogeny derived from morphological and molecular characters, we develop a hypothesis for the spatial and temporal evolution of Zingiberales using Dispersal-Vicariance Analysis (DIVA) combined with a local molecular clock technique that enables the simultaneous analysis of multiple gene loci with multiple calibration points.
    [Show full text]
  • List of Plant Species List of Plant Species
    List of plant species List of Plant Species Contents Amendment history .......................................................................................................................... 2 1 Introduction ...................................................................................................................................... 3 1.1 Application ........................................................................................................................... 3 1.2 Relationship with planning scheme ..................................................................................... 3 1.3 Purpose ............................................................................................................................... 3 1.4 Aim ...................................................................................................................................... 3 1.5 Who should use this manual? ............................................................................................. 3 2 Special consideration ....................................................................................................................... 3 3 Variations ......................................................................................................................................... 4 4 Relationship ..................................................................................................................................... 4 Appendix A – Explanatory notes & definitions .......................................................................................
    [Show full text]
  • Rainforest Gully
    Australian National Botanic Gardens Rainforest -surviving the wet and dark Artwork Leife Shallcross Pages 5, 6, 7, 8, 9, 13, 14, 20 This material can only be copied for non-commercial education purposes. Produced by Education Australian National Botanic Gardens. Clunies Ross Street, Acton ACT 2601 Ph (02) 6250 9408 fax (02) 6250 9477 [email protected] The Rainforest Gully Contents Page Planning the Excursion 1 Purpose About the Questions Curriculum links Rainforests in Australia 2 Distribution 2 Common Features of Rainforests 3 Layers in the rainforest 3 Tall trees 4 Climbers 4 Epiphytes 4 Special flowers in pollination 5 Buttress roots 5 The Rainforest Gully in the Gardens 6 Shelter 6 Water 6 Plant selection 6 Rainforest of Tasmania 7 Temperate rainforests of South East Australia 7 Mosses 7 Palms 8 Vines 8 Araucarian dry forest 8 Lowland subtropical rainforest 8 Epiphytes 9 Rainforests of Eastern-central Queensland 9 Rainforests of Northern Queensland 9 Some Plants of the Rainforest Gully 10 Coachwood 10 Lilly-pilly 10 Antarctic Beech 10 Hoop Pine 10 Australian Red Cedar 11 Soft Tree Fern 11 Blue Quandong 11 Blackwood 11 Leatherwood 11 Stream Lily 12 King Billy Pine 12 Huon Pine 13 Student Discussion Questions 14 Rainforest Bibliography 16 History of Australia’s Rainforests 17 Pre-visit and post-visit ideas 18 Shapes of rainforest leaves 19 Birds of the rainforest 19 Insects and Spiders 19 Rainforest trees 19 Rainforest animals 20 Creative writing 20 Map of the Rainforest Gully 21 Planning the Excursion We want you to use the Information Resource Notes and example Student Worksheets as resources for planning your excursion.
    [Show full text]
  • Peach Myrtle)
    Approved NSW & National Recovery Plan Uromyrtus australis (Peach Myrtle) August 2005 © Department of Environment and Conservation (NSW), 2005. This work is copyright. However, material presented in this plan may be copied for personal use or published for educational purposes, providing that any extracts are fully acknowledged. Apart from this and any other use as permitted under the Copyright Act 1968, no part may be reproduced without prior written permission from the Department of Environment and Conservation (NSW). Department of Environment and Conservation (NSW) 59-61 Goulbourn Street (PO Box A290) Sydney South NSW 1232 Phone: (02) 9995 5000 (switchboard) Phone: 131 555 (information & publications requests) TTY: (02) 9211 4723 Fax: (02) 9995 5999 Email: [email protected] Website: www.environment.nsw.gov.au Requests for information or comments regarding the recovery program for the Peach Myrtle (Uromyrtus australis) are best directed to: The Uromyrtus australis Recovery Co-ordinator Threatened Species Unit, North East Branch Department of Environment and Conservation (NSW) Locked Bag 914 Coffs Harbour NSW 2450 Phone: 02 6651 5946 Cover illustrator: Adam Gill This plan should be cited as follows: Department of Environment and Conservation (NSW) 2005, Approved Recovery Plan for the Peach Myrtle (Uromyrtus australis), Department of Environment and Conservation(NSW), Sydney. ISBN 1 74137 387 5 August 2005 DEC 2005/238 Printed on recycled paper Approved Recovery Plan Uromyrtus australis Recovery Plan for the Peach Myrtle (Uromyrtus australis) Foreword The New South Wales Government established a new environment agency on 24 September 2003, the Department of Environment and Conservation (DEC), which incorporates the NSW National Parks and Wildlife Service.
    [Show full text]
  • Newsletter 27
    Richmond Birdwing Conservation Network Newsletter No 27. September 2013 ISSN 1833-8674 Richmond Birdwing Conservation Network | Newsletter No 27, 2013 | Richmond Birdwing Conservation Network The Richmond Birdwing Conservation Network (RBCN) operates under the umbrella of Wildlife Queensland, publisher of this newsletter. RBCN promotes conservation of the Richmond birdwing butterfly Ornithoptera richmondia, its food plant, Pararistolochia spp. and butterfly habitats. Membership of RBCN is open to anyone interested in the Richmond birdwing butterfly or insects of conservation concern. RBCN encourages liaison between community members, catchment and landcare groups and government authorities. RBCN Committee Richard Bull [email protected] Ian Gynther [email protected] Chris Hosking [email protected] Susan Hollindale [email protected] Catherine Madden [email protected] Phil Moran [email protected] Don Sands (Chair) [email protected] Area Representatives Dale Borgelt (Brisbane Region) [email protected] Richard Bull (Gold Coast-Tamborine) [email protected] Keith McCosh (Scenic Rim) [email protected] Phil Moran (Sunshine Coast) [email protected] Why not receive your newsletter by email? If you have access to the internet, please consider receiving your newsletter in colour by email. saving on printing and postage costs. Email [email protected] to let us know your choice. Newsletter: Ewa Meyer Cover image: Pararistolochia praevenosa Photo © Paul Grimshaw Richmond Birdwing
    [Show full text]