A New Perspective on Bradyseismic Activity at the Phlegrean Fields (Italy)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High Resolution Monitoring of Campi Flegrei (Naples, Italy) by Exploiting Terrasar-X Data: an Application to Solfatara Crater
HIGH RESOLUTION MONITORING OF CAMPI FLEGREI (NAPLES, ITALY) BY EXPLOITING TERRASAR-X DATA: AN APPLICATION TO SOLFATARA CRATER Christian Minet (1), Kanika Goel (1), Ida Aquino (2), Rosario Avino (2), Giovanna Berrino (2), Stefano Caliro (2), Giovanni Chiodini (2), Prospero De Martino (2), Carlo Del Gaudio (2), Ciro Ricco (2), Valeria Siniscalchi (2), Sven Borgstrom (2) (1)German Aerospace Center (DLR) IMF, Münchner Strasse 20, 82234 Wessling, Germany Email: [christian.minet, kanika.goel]@dlr.de (2)Istituto Nazionale di Geofisica e Vulcanologia, sezione di Napoli “Osservatorio Vesuviano” , via Diocleziano, 328, 80124 Naples, Italy Email: [email protected] ABSTRACT by continuous ground deformation (bradyseismic activity) related to its volcanic nature. Geodetic monitoring of Campi Flegrei caldera, west of In particular, we will focus on the Solfatara - Pisciarelli Naples (Italy), is carried out through integrated ground area, which is seat of strong fumarolic activity in the based networks and space-borne Differential InSAR last years. For this reason we also take into account (DInSAR) techniques, exploiting the SAR sensors some information from geochemical measurements. [3]. onboard ERS1-2 (till the end of their lifetime) and The geodetic monitoring of the area has been ENVISAT satellites. Unfortunately, C-band sensors historically carried out by the Osservatorio Vesuviano give no information when dealing with very low [4],[5],[6],[7], presently the Naples branch of the deformation rates and very small deforming areas. Istituto Nazionale di Geofisica e Vulcanologia To overcome these problems, we decided to use (INGV-OV) by ground based networks (levelling, TerraSAR-X from DLR, a high resolution SAR sensor EDM, gravity, tide-gauge, tiltmeter), shown in Fig. -
Presentazione Di Powerpoint
(MIUR, D.M. 976/2014, art. 3 commi 4 e 5 e art. 4) 2014 - 2016 PROGETTO NAZIONALE GEOLOGIA (PLS-L34) Progetto disciplinare di sede GEOLAB – UNISANNIO Azioni per la promozione della formazione geologica nella scuola secondaria sannita e irpina a cura dei docenti e ricercatori CdS Unico in Scienze Geologiche Coordinamento: Prof. Filippo Russo ATTIVITA’ DEL PROGETTO Azione a “Laboratorio per l’insegnamento delle scienze di base” Azione b “Attività didattiche di autovalutazione” Azione c “Formazione insegnanti” Azione d “Riduzione dei tassi di abbandono” Azione a “Laboratorio per l’insegnamento delle scienze di base” Azione c “Formazione insegnanti” Le attività seminariali erogate per ogni istituto scolastico sono state incentrate sui seguenti argomenti e temi di ricerca geologica e ambientale: • “Rischi naturali e pericolosità geologiche” • “Esplorazione geofisica del sottosuolo” • “Georisorse e loro utilizzo sostenibile” • “L’impatto delle attività antropiche sull’ambiente terrestre” • “Vulnerabilità ambientali e impatto sulla salute umana” • “Clima e ambiente” Azione a “Laboratorio per l’insegnamento delle scienze di base” Azione c “Formazione insegnanti” Tra le escursioni didattiche effettuate sul campo: • Vesuvio, Campi Flegrei e la Solfatara di Pozzuoli; • Siti archeologici di Pompei e di Oplontis; • I fossili di Pietraroja e il PaleoLab; • Sorgenti di Grassano (Telese Terme, BN) e di Cassano Irpino (AV); • Le cave di argilla a Tufara V. e Ariano I., i gessi di Savignano I. Vesuvio e Oplontis I gessi di Savignano I. e le argille di Ariano I. "Geosciences: a tool in a changing world» Congresso congiunto delle società: Società Italiana di Mineralogia e Petrografia, Società Geologica Italiana, Associazione Italiana di Vulcanologia e Società Geochimica italiana Pisa 3 - 6 settembre 2017 31-23 Ciarcia S., La Luna A., Russo F. -
Information Study Trip Campania – Harry Wilks Study Center Cuma May 2016
Information Study trip Campania – Harry Wilks Study Center Cuma May 2016. This study trip is offered by the Vergilian Society of America with the objective that teachers not yet familiar to the Campania region and the Harry Wilks Study Center get a good chance to discover the possibilities of this special area. Therefore the Society is willing to pay all costs for full board in double rooms, transport by coach for excursions and entrance to all sites mentioned in the program below. A unique opportunity, especially for teachers starting their careers. Program: Sunday May 1 Participants travel to Naples. Arrival in the afternoon, welcome to the Villa Vergiliana, our Study Center. Welcome dinner, discovering the grounds around our Italian home. Monday May 2 Visit to Paestum, a Greek Colony. We visit the beautiful temples and the museum. Dinner at the Villa. After coffee / tea a short introduction on two workshops planned for tomorrow: Create your own “Grand Tour Portrait”, create a series of stills around the theme “Dying in Herculaneum”. Tuesday May 3 Visit to the Solfatara-volcano, Herculaneum and the beautiful Villa of Poppaea at Oplontis. If weather permits we climb Vesuvius. After dinner we will try to paint our own fresco with authentic Roman techniques and pigments. Wednesday May 4 Visit to the National Archeological Museum of Naples, the akropolis of Cuma, the amphitheatrum Flavium in Pozzuoli and the Piscina Mirabilis in Bacoli. Our final dinner at the Villa. Thursday May 5 Participants will travel home. Practical information: Number of participants is limited to 20. If you want to join this study trip, please respond quickly. -
Tracking the Endogenous Dynamics of the Solfatara Volcano (Campi Flegrei, Italy) Through the Analysis of Ground Thermal Image Temperatures
atmosphere Article Tracking the Endogenous Dynamics of the Solfatara Volcano (Campi Flegrei, Italy) through the Analysis of Ground Thermal Image Temperatures Paola Cusano 1, Teresa Caputo 1,* , Enza De Lauro 2 , Mariarosaria Falanga 3 , Simona Petrosino 1, Fabio Sansivero 1 and Giuseppe Vilardo 1 1 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli-Osservatorio Vesuviano, 80124 Naples, Italy; [email protected] (P.C.); [email protected] (S.P.); [email protected] (F.S.); [email protected] (G.V.) 2 Ministry of Education, Universities and Research, 00153 Rome, Italy; [email protected] 3 Dipartimento di Ingegneria dell’Informazione ed Elettrica e Matematica Applicata/DIEM, Università degli Studi di Salerno, 84084 Fisciano, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-081-6108-216 Abstract: In the last decades, thermal infrared ground-based cameras have become effective tools to detect significant spatio-temporal anomalies in the hydrothermal/volcanic environment, possibly linked to impending eruptions. In this paper, we analyzed the temperature time-series recorded by the ground-based Thermal Infrared Radiometer permanent network of INGV-OV, installed inside the Solfatara-Pisciarelli area, the most active fluid emission zones of the Campi Flegrei caldera (Italy). We investigated the temperatures’ behavior in the interval 25 June 2016–29 May 2020, with the aim Citation: Cusano, P.; Caputo, T.; De of tracking possible endogenous hydrothermal/volcanic sources. We performed the Independent Lauro, E.; Falanga, M.; Petrosino, S.; Component Analysis, the time evolution estimation of the spectral power, the cross-correlation and Sansivero, F.; Vilardo, G. Tracking the the Changing Points’ detection. -
Campi Flegrei Caldera, Somma–Vesuvius Volcano, and Ischia Island) from 20 Years of Continuous GPS Observations (2000–2019)
remote sensing Technical Note The Ground Deformation History of the Neapolitan Volcanic Area (Campi Flegrei Caldera, Somma–Vesuvius Volcano, and Ischia Island) from 20 Years of Continuous GPS Observations (2000–2019) Prospero De Martino 1,2,* , Mario Dolce 1, Giuseppe Brandi 1, Giovanni Scarpato 1 and Umberto Tammaro 1 1 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli Osservatorio Vesuviano, via Diocleziano 328, 80124 Napoli, Italy; [email protected] (M.D.); [email protected] (G.B.); [email protected] (G.S.); [email protected] (U.T.) 2 Istituto per il Rilevamento Elettromagnetico dell’Ambiente, Consiglio Nazionale delle Ricerche, via Diocleziano 328, 80124 Napoli, Italy * Correspondence: [email protected] Abstract: The Neapolitan volcanic area includes three active and high-risk volcanoes: Campi Flegrei caldera, Somma–Vesuvius, and Ischia island. The Campi Flegrei volcanic area is a typical exam- ple of a resurgent caldera, characterized by intense uplift periods followed by subsidence phases (bradyseism). After about 21 years of subsidence following the 1982–1984 unrest, a new inflation period started in 2005 and, with increasing rates over time, is ongoing. The overall uplift from 2005 to December 2019 is about 65 cm. This paper provides the history of the recent Campi Flegrei caldera Citation: De Martino, P.; Dolce, M.; unrest and an overview of the ground deformation patterns of the Somma–Vesuvius and Ischia vol- Brandi, G.; Scarpato, G.; Tammaro, U. canoes from continuous GPS observations. In the 2000–2019 time span, the GPS time series allowed The Ground Deformation History of the continuous and accurate tracking of ground and seafloor deformation of the whole volcanic area. -
On Craters of Denudation, with Observations on the Structure And
THE QUARTERLY JOURNAL OF THE GEOLOGICAL SOCIETY OF LONDON. PROCEEDINGS OF THE GEOLOGICAL SOCIETY. DECEMBER 19, 1849. The following communication was read :- On Craters of Denudation, with O~ervations on the Structure and Growth of Volcanic C~nes. By Sir CHARLES LYELL, Pres. Geol. Soc. IN the first edition of my ' Principles of Geology,' published in 1830 (vol. i. ch. 30), I explained the grounds of my objection to the theory previously advanced by Baron yon Buch to account for the origin of the Caldera of Palma, the Gulf of Santorin, and other bowl-shaped cavities of large dimensions, for which he proposed the name of "Craters of Elevation." I regarded the circular escarp- ments surrounding these vast cavities as the remnants of cones of eruption, the central parts of which had been destroyed, and I con- ceived that the removing cause had been chiefly, if not wholly, en- gulfment. In the second edition of my 'Principles,' published in 1832, or two years later, I discussed more particularly the origin of the single deep gorge, which in Palma, Barren Island, and other so-called elevation- craters, forms a breach in the circular range of cliffs, surrounding the central cavity. This ravine or narrow passage I attributed "to the action of the tide during the gradual emergence from the sea and up- heaval of a volcanic island" (ch. 22. vol. i. p. 452), and I at the VOL. VI.--PART i. a 208 PROCEEDINGS OF THE OEOLOOICAL SOCIETY. [Dec. 19, Fig. 1.--View of the Isle of Palma, and of the entrance into the cen- t~'al cavity or Caldera.mFrom Iron Bueh' s "Canary Islands." Fig. -
The Vesuvius and the Other Volcanoes of Central Italy
Geological Field Trips Società Geologica Italiana 2017 Vol. 9 (1.1) I SPRA Dipartimento per il SERVIZSERVIZIOIO GGEOLOGICOEOLOGICO D’ITALIAD’ITALIA Organo Cartografico dello Stato (legge n°68 del 2-2-1960) ISSN: 2038-4947 The Vesuvius and the other volcanoes of Central Italy Goldschmidt Conference - Florence, 2013 DOI: 10.3301/GFT.2017.01 The Vesuvius and the other volcanoes of Central Italy R. Avanzinelli - R. Cioni - S. Conticelli - G. Giordano - R. Isaia - M. Mattei - L. Melluso - R. Sulpizio GFT - Geological Field Trips geological fieldtrips2017-9(1.1) Periodico semestrale del Servizio Geologico d'Italia - ISPRA e della Società Geologica Italiana Geol.F.Trips, Vol.9 No.1.1 (2017), 158 pp., 107 figs. (DOI 10.3301/GFT.2017.01) The Vesuvius and the other volcanoes of Central Italy Goldschmidt Conference, 2013 Riccardo Avanzinelli1, Raffaello Cioni1, Sandro Conticelli1, Guido Giordano2, Roberto Isaia3, Massimo Mattei2, Leone Melluso4, Roberto Sulpizio5 1. Università degli Studi di Firenze 2. Università degli Studi di Roma 3 3. Istituto Nazionale di Geofisica e Vulcanologia 4. Università degli Studi di Napoli “Federico II” 5. Università degli Studi di Bari Corresponding Authors e-mail addresses: [email protected] - [email protected] Responsible Director Claudio Campobasso (ISPRA-Roma) Editorial Board Editor in Chief M. Balini, G. Barrocu, C. Bartolini, 2 Gloria Ciarapica (SGI-Perugia) D. Bernoulli, F. Calamita, B. Capaccioni, Editorial Responsible W. Cavazza, F.L. Chiocci, Maria Letizia Pampaloni (ISPRA-Roma) R. Compagnoni, D. Cosentino, S. Critelli, G.V. Dal Piaz, C. D'Ambrogi, Technical Editor publishing group Mauro Roma (ISPRA-Roma) P. Di Stefano, C. -
Plinian Pumice Fall Deposit of the Campanian Ignimbrite Eruption Ž/Phlegraean Fields, Italy
Journal of Volcanology and Geothermal Research 91Ž. 1999 179±198 www.elsevier.comrlocaterjvolgeores Plinian pumice fall deposit of the Campanian Ignimbrite eruption ž/Phlegraean Fields, Italy M. Rosi a,), L. Vezzoli b, A. Castelmenzano b, G. Grieco b a UniÕersitaÁ degli Studi di Pisa, Dipartimento di Scienze della Terra, Õia S. Maria 53, 56126 Pisa, Italy b UniÕersitaÁ degli Studi di Milano, Dipartimento di Scienze della Terra, Õia Mangiagalli 34, 20133 Milan, Italy Abstract A plinian pumice fall deposit associated with the Campanian Ignimbrite eruptionŽ. 36 ka, Phlegraean Fields caldera, Italy occurs at the base of the distal grey ignimbrite in 15 localities spread over an area exceeding 1500 km2 between Benevento and the Sorrentina peninsula. In the thickest stratigraphic section at VosconeŽ. 130 cm , 45 km east of the Phlegraean caldera centreŽ. Pozzuoli , the deposit consists of two units: the lower fall unit Ž. LFU is well sorted, exhibits reverse size grading and is composed of equidimensional light-grey pumice clasts with very subordinate accidental lithics; the upper fall unitŽ. UFU is from well to poorly sorted, crudely stratified, richer in lithics and composed of both equidimensional and prolate pumice clasts. The two fall units show slightly different dispersal axis: N908 for the LFU and N958 for the UFU. Volumes calculated with the method of PyleŽ. 1989 are about 8 km33 for the LFU and 7 km for the UFU. The maximum height of the eruptive columns are estimated, using the model of the maximum lithic clasts dispersal, at 44 km for the LFU and 40 km for the UFU, classifying both fall units as ultraplinian in character. -
The Geography of Augustus Between Persistence and Evolutionary Dynamics the Phlegraean Fields Between the Augustan Reform and Current Functional Reorganization1
Unofficial English version provided by the author of the Italian paper published in: BOLLETTINO DELLA SOCIETÀ GEOGRAFICA ITALIANA ROMA - Serie XIII, vol. IX (2016), pp. 253-267 SIMONE BOZZATO – GIACOMO BANDIERA THE GEOGRAPHY OF AUGUSTUS BETWEEN PERSISTENCE AND EVOLUTIONARY DYNAMICS THE PHLEGRAEAN FIELDS BETWEEN THE AUGUSTAN REFORM AND CURRENT FUNCTIONAL REORGANIZATION1 1. General framework. – At the end of the Republican era, thus on the eve of the territorial reorganization issued by Augustus, Italy was divided into more than four hundred local communities, which were self-governed with a high degree of autonomy and with their own magistrates, senates, and political assemblies. The magistrates were vested with jurisdictional powers, even if somewhat limited regarding the nature and value of disputes; the senates dealt with administrative and judicial issues; the local magistrates were elected by the comitia who were authorized to introduce certain restricted legislation. The unifying mantle of granting Roman citizenship to all the inhabitants of what we today call Italy had blurred any differences and softened any diversities, and all municipalities were obviously subject to laws and to Roman law. Rome was the center of power, the place where the constitutional bodies of the State, the magistrates, the Senate and comitia were located and where their meetings were held; the arena in which «national» political life was carried out. Laws and common law were the founding values of a unitary frame within which each individual authority maintained mediated relations with the central power (Laffi, 2007). The Augustan territorial reorganization, which may be seen as based on a flexible pragmatism from the point of view of what would be a substantive approach, was engaged in this status quo. -
M. Guidarelli1, A. Zille, A. Saraò1, M. Natale2, C. Nunziata2 and G.F. Panza1,3
Available at: http://www.ictp.it/~pub_off IC/2006/145 United Nations Educational, Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS SHEAR-WAVE VELOCITY MODELS AND SEISMIC SOURCES IN CAMPANIAN VOLCANIC AREAS: VESUVIUS AND PHLEGRAEAN FIELDS M. Guidarelli1, A. Zille, A. Saraò1, M. Natale2, C. Nunziata2 and G.F. Panza1,3 1 Dipartimento di Scienze della Terra, Università degli Studi di Trieste, Trieste, Italy 2 Dipartimento di Geofisica e Vulcanologia, Università di Napoli “Federico II”, Napoli, Italy 3 The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy MIRAMARE – TRIESTE December 2006 Abstract This chapter summarizes a comparative study of shear-wave velocity models and seismic sources in the Campanian volcanic areas of Vesuvius and Phlegraean Fields. These velocity models were obtained through the nonlinear inversion of surface- wave tomography data, using as a priori constraints the relevant information available in the literature. Local group velocity data were obtained by means of the frequency-time analysis for the time period between 0.3 and 2 s and were combined with the group velocity data for the time period between 10 and 35 s from the regional events located in the Italian peninsula and bordering areas and two station phase velocity data corresponding to the time period between 25andl00s.In order to invert Ray lei gh wave dispersion curves, we applied the nonlinear inversion method called hedgehog and retrieved average models for the first 30-35 km of the lithosphere, with the lower part of the upper mantle being kept fixed on the basis of existing regional models. -
Naples, Italy)
ANNALS OF GEOPHYSICS, VOL. 50, N. 5, October 2007 A study of tilt change recorded from July to October 2006 at the Phlegraean Fields (Naples, Italy) Ciro Ricco, Ida Aquino, Sven Ettore Borgstrom and Carlo Del Gaudio Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Sezione Napoli, Napoli, Italy Abstract The tiltmetric dataset of Phlegraean Fields area showed a discrete correlation with the volcanic dynamics, suggesting that tiltmetric monitoring is important for the surveillance of active volcanic areas. Tilt data recorded in 2006 at 2 sta- tions belonging to the monitoring network of the Osservatorio Vesuviano (INGV, National Institute for Geophysics and Volcanology, Italy) in the Phlegraean Fields are discussed in this paper. The acquired signals have shown a strong tiltmetric inversion that took place from the end of July 2006. After correcting tilt variations to eliminate the influence of temperature (influencing 90% of the signal at OLB station, hereafter OLB) a significant value of the tilt still re- mains. This change is related to a local inflation episode lasting 3 months, during an unrest phase that started 2 years before. It is interesting to note that tilt amplitude is much greater at OLB than the slope of the displacement field pre- dicted by the theoretical inflation models, but data show that this field is not homogeneous and in some areas very tilt- ed. Moreover, in the last days before the end of tilt inversion, a low energy seismic swarm happened at about 1 km of distance from the tiltmetric station by hundreds of VT (Volcano-Tectonics) and LP (Long-Period) events. -
Campania/Rv Schoder. Sj
CAMPANIA/R.V. SCHODER. S. J. RAYMOND V. SCHODER, S.J. (1916-1987) Classical Studies Department SLIDE COLLECTION OF CAMPANIA Prepared by: Laszlo Sulyok Ace. No. 89-15 Computer Name: CAMPANIA.SCH 1 Metal Box Location: Room 209/ The following slides of Campanian Art are from the collection of Raymond V. Schader, S.J. They are arranged alpha-numerically in the order in which they were received at the archives. The notes in the inventory were copied verbatim from Schader's own citations on the slides. CAUTION: This collection may include commercially produced slides which may only be reproduced with the owner's permission. I. PHELGRAEA, Nisis, Misenum, Procida (bk), Baiae bay, fr. Pausilp 2. A VERNUS: gen., w. Baiae thru gap 3. A VERNUS: gen., w. Misenum byd. 4. A VERN US: crater 5. A VERN US: crater 6. A VERNUS: crater in!. 7. AVERNUS: E edge, w. Baths, Mt. Nuovo 1538 8. A VERNUS: Tunnel twd. Lucrinus: middle 9. A VERNUS: Tunnel twd. Lucrinus: stairs at middle exit fl .. 10. A VERNUS: Tunnel twd. Lucr.: stairs to II. A VERNUS: Tunnel twd. Lucrinus: inner room (Off. quarters?) 12. BAIAE CASTLE, c. 1540, by Dom Pedro of Toledo; fr. Pozz. bay 13. BAIAE: Span. 18c. castle on Caesar Villa site, Capri 14. BAIAE: Gen. E close, tel. 15. BAIAE: Gen. E across bay 16. BAIAE: terrace arch, stucco 17. BAIAE: terraces from below 18. BAIAE: terraces arcade 19. BAIAE: terraces gen. from below 20. BAIAE: Terraces close 21. BAIAE: Bay twd. Lucrinus; Vesp. Villa 22. BAIAE: Palaestra(square), 'T.