The Geography of Augustus Between Persistence and Evolutionary Dynamics the Phlegraean Fields Between the Augustan Reform and Current Functional Reorganization1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High Resolution Monitoring of Campi Flegrei (Naples, Italy) by Exploiting Terrasar-X Data: an Application to Solfatara Crater
HIGH RESOLUTION MONITORING OF CAMPI FLEGREI (NAPLES, ITALY) BY EXPLOITING TERRASAR-X DATA: AN APPLICATION TO SOLFATARA CRATER Christian Minet (1), Kanika Goel (1), Ida Aquino (2), Rosario Avino (2), Giovanna Berrino (2), Stefano Caliro (2), Giovanni Chiodini (2), Prospero De Martino (2), Carlo Del Gaudio (2), Ciro Ricco (2), Valeria Siniscalchi (2), Sven Borgstrom (2) (1)German Aerospace Center (DLR) IMF, Münchner Strasse 20, 82234 Wessling, Germany Email: [christian.minet, kanika.goel]@dlr.de (2)Istituto Nazionale di Geofisica e Vulcanologia, sezione di Napoli “Osservatorio Vesuviano” , via Diocleziano, 328, 80124 Naples, Italy Email: [email protected] ABSTRACT by continuous ground deformation (bradyseismic activity) related to its volcanic nature. Geodetic monitoring of Campi Flegrei caldera, west of In particular, we will focus on the Solfatara - Pisciarelli Naples (Italy), is carried out through integrated ground area, which is seat of strong fumarolic activity in the based networks and space-borne Differential InSAR last years. For this reason we also take into account (DInSAR) techniques, exploiting the SAR sensors some information from geochemical measurements. [3]. onboard ERS1-2 (till the end of their lifetime) and The geodetic monitoring of the area has been ENVISAT satellites. Unfortunately, C-band sensors historically carried out by the Osservatorio Vesuviano give no information when dealing with very low [4],[5],[6],[7], presently the Naples branch of the deformation rates and very small deforming areas. Istituto Nazionale di Geofisica e Vulcanologia To overcome these problems, we decided to use (INGV-OV) by ground based networks (levelling, TerraSAR-X from DLR, a high resolution SAR sensor EDM, gravity, tide-gauge, tiltmeter), shown in Fig. -
Campi Flegrei Caldera, Somma–Vesuvius Volcano, and Ischia Island) from 20 Years of Continuous GPS Observations (2000–2019)
remote sensing Technical Note The Ground Deformation History of the Neapolitan Volcanic Area (Campi Flegrei Caldera, Somma–Vesuvius Volcano, and Ischia Island) from 20 Years of Continuous GPS Observations (2000–2019) Prospero De Martino 1,2,* , Mario Dolce 1, Giuseppe Brandi 1, Giovanni Scarpato 1 and Umberto Tammaro 1 1 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Napoli Osservatorio Vesuviano, via Diocleziano 328, 80124 Napoli, Italy; [email protected] (M.D.); [email protected] (G.B.); [email protected] (G.S.); [email protected] (U.T.) 2 Istituto per il Rilevamento Elettromagnetico dell’Ambiente, Consiglio Nazionale delle Ricerche, via Diocleziano 328, 80124 Napoli, Italy * Correspondence: [email protected] Abstract: The Neapolitan volcanic area includes three active and high-risk volcanoes: Campi Flegrei caldera, Somma–Vesuvius, and Ischia island. The Campi Flegrei volcanic area is a typical exam- ple of a resurgent caldera, characterized by intense uplift periods followed by subsidence phases (bradyseism). After about 21 years of subsidence following the 1982–1984 unrest, a new inflation period started in 2005 and, with increasing rates over time, is ongoing. The overall uplift from 2005 to December 2019 is about 65 cm. This paper provides the history of the recent Campi Flegrei caldera Citation: De Martino, P.; Dolce, M.; unrest and an overview of the ground deformation patterns of the Somma–Vesuvius and Ischia vol- Brandi, G.; Scarpato, G.; Tammaro, U. canoes from continuous GPS observations. In the 2000–2019 time span, the GPS time series allowed The Ground Deformation History of the continuous and accurate tracking of ground and seafloor deformation of the whole volcanic area. -
CSE 1-2017-Pubblicabile.Indd
Roman buildings: mortar, hydraulic mortar and pozzolanic concrete in the Gulf of naples, Campania – Italy Renata Esposito Università degli Studi di Napoli Federico II, [email protected] Keywords: Roman mortar, pozzolana, maritime concrete, Campi Flegrei, Vesuvian ancient cities. Abstract The aim of article is to summarise the information published with regard to research carried out into mortar and concrete materials in relation Roman buildings in the gulf of Naples, Italy. The region due to its geological formation and the historical significance of Roman cities and its monuments implicated in multidisciplinary studies on the raw materials and Roman construction technologies for an in-depth knowledge of the composition of geomaterials degraded in time and structural problems with a view to restoring the archaeological heritage. The article describes the case studies of two geographic areas in particular, the sites of the Phlegrean Fields (Puteoli, Baia, Misenum) and the Vesuvius area (Pompeii, Herculaneum, Stabia, Surrentum). The results showed that important complexes and monuments have a composition of mortars and conglomerates which is found to match what is indicated by the sources and that malfunctions made in different chronological periods do not always retain the same composition. Futhermore, results confirmed that Roman engineers extensively used local geomaterials such as volcanic and sedimentary aggregates mixed with hydrated lime. Introduction Recipes for mortar-based building materials may change of concrete in constructing buildings with vaulted roofs. The over time and differ in various construction and restoration ancient pulvis Puteolanus apparently originated in the region phases. They normally reflect craftsmen’s knowledge, around Puteoli, as the name suggests, and around the Bay of availability of raw materials, and also the importance of the Pozzuoli in the Phlegrean Fields volcanic district near Baiae, building in which they are found. -
The Vesuvius and the Other Volcanoes of Central Italy
Geological Field Trips Società Geologica Italiana 2017 Vol. 9 (1.1) I SPRA Dipartimento per il SERVIZSERVIZIOIO GGEOLOGICOEOLOGICO D’ITALIAD’ITALIA Organo Cartografico dello Stato (legge n°68 del 2-2-1960) ISSN: 2038-4947 The Vesuvius and the other volcanoes of Central Italy Goldschmidt Conference - Florence, 2013 DOI: 10.3301/GFT.2017.01 The Vesuvius and the other volcanoes of Central Italy R. Avanzinelli - R. Cioni - S. Conticelli - G. Giordano - R. Isaia - M. Mattei - L. Melluso - R. Sulpizio GFT - Geological Field Trips geological fieldtrips2017-9(1.1) Periodico semestrale del Servizio Geologico d'Italia - ISPRA e della Società Geologica Italiana Geol.F.Trips, Vol.9 No.1.1 (2017), 158 pp., 107 figs. (DOI 10.3301/GFT.2017.01) The Vesuvius and the other volcanoes of Central Italy Goldschmidt Conference, 2013 Riccardo Avanzinelli1, Raffaello Cioni1, Sandro Conticelli1, Guido Giordano2, Roberto Isaia3, Massimo Mattei2, Leone Melluso4, Roberto Sulpizio5 1. Università degli Studi di Firenze 2. Università degli Studi di Roma 3 3. Istituto Nazionale di Geofisica e Vulcanologia 4. Università degli Studi di Napoli “Federico II” 5. Università degli Studi di Bari Corresponding Authors e-mail addresses: [email protected] - [email protected] Responsible Director Claudio Campobasso (ISPRA-Roma) Editorial Board Editor in Chief M. Balini, G. Barrocu, C. Bartolini, 2 Gloria Ciarapica (SGI-Perugia) D. Bernoulli, F. Calamita, B. Capaccioni, Editorial Responsible W. Cavazza, F.L. Chiocci, Maria Letizia Pampaloni (ISPRA-Roma) R. Compagnoni, D. Cosentino, S. Critelli, G.V. Dal Piaz, C. D'Ambrogi, Technical Editor publishing group Mauro Roma (ISPRA-Roma) P. Di Stefano, C. -
Plinian Pumice Fall Deposit of the Campanian Ignimbrite Eruption Ž/Phlegraean Fields, Italy
Journal of Volcanology and Geothermal Research 91Ž. 1999 179±198 www.elsevier.comrlocaterjvolgeores Plinian pumice fall deposit of the Campanian Ignimbrite eruption ž/Phlegraean Fields, Italy M. Rosi a,), L. Vezzoli b, A. Castelmenzano b, G. Grieco b a UniÕersitaÁ degli Studi di Pisa, Dipartimento di Scienze della Terra, Õia S. Maria 53, 56126 Pisa, Italy b UniÕersitaÁ degli Studi di Milano, Dipartimento di Scienze della Terra, Õia Mangiagalli 34, 20133 Milan, Italy Abstract A plinian pumice fall deposit associated with the Campanian Ignimbrite eruptionŽ. 36 ka, Phlegraean Fields caldera, Italy occurs at the base of the distal grey ignimbrite in 15 localities spread over an area exceeding 1500 km2 between Benevento and the Sorrentina peninsula. In the thickest stratigraphic section at VosconeŽ. 130 cm , 45 km east of the Phlegraean caldera centreŽ. Pozzuoli , the deposit consists of two units: the lower fall unit Ž. LFU is well sorted, exhibits reverse size grading and is composed of equidimensional light-grey pumice clasts with very subordinate accidental lithics; the upper fall unitŽ. UFU is from well to poorly sorted, crudely stratified, richer in lithics and composed of both equidimensional and prolate pumice clasts. The two fall units show slightly different dispersal axis: N908 for the LFU and N958 for the UFU. Volumes calculated with the method of PyleŽ. 1989 are about 8 km33 for the LFU and 7 km for the UFU. The maximum height of the eruptive columns are estimated, using the model of the maximum lithic clasts dispersal, at 44 km for the LFU and 40 km for the UFU, classifying both fall units as ultraplinian in character. -
M. Guidarelli1, A. Zille, A. Saraò1, M. Natale2, C. Nunziata2 and G.F. Panza1,3
Available at: http://www.ictp.it/~pub_off IC/2006/145 United Nations Educational, Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS SHEAR-WAVE VELOCITY MODELS AND SEISMIC SOURCES IN CAMPANIAN VOLCANIC AREAS: VESUVIUS AND PHLEGRAEAN FIELDS M. Guidarelli1, A. Zille, A. Saraò1, M. Natale2, C. Nunziata2 and G.F. Panza1,3 1 Dipartimento di Scienze della Terra, Università degli Studi di Trieste, Trieste, Italy 2 Dipartimento di Geofisica e Vulcanologia, Università di Napoli “Federico II”, Napoli, Italy 3 The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy MIRAMARE – TRIESTE December 2006 Abstract This chapter summarizes a comparative study of shear-wave velocity models and seismic sources in the Campanian volcanic areas of Vesuvius and Phlegraean Fields. These velocity models were obtained through the nonlinear inversion of surface- wave tomography data, using as a priori constraints the relevant information available in the literature. Local group velocity data were obtained by means of the frequency-time analysis for the time period between 0.3 and 2 s and were combined with the group velocity data for the time period between 10 and 35 s from the regional events located in the Italian peninsula and bordering areas and two station phase velocity data corresponding to the time period between 25andl00s.In order to invert Ray lei gh wave dispersion curves, we applied the nonlinear inversion method called hedgehog and retrieved average models for the first 30-35 km of the lithosphere, with the lower part of the upper mantle being kept fixed on the basis of existing regional models. -
Naples, Italy)
ANNALS OF GEOPHYSICS, VOL. 50, N. 5, October 2007 A study of tilt change recorded from July to October 2006 at the Phlegraean Fields (Naples, Italy) Ciro Ricco, Ida Aquino, Sven Ettore Borgstrom and Carlo Del Gaudio Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Sezione Napoli, Napoli, Italy Abstract The tiltmetric dataset of Phlegraean Fields area showed a discrete correlation with the volcanic dynamics, suggesting that tiltmetric monitoring is important for the surveillance of active volcanic areas. Tilt data recorded in 2006 at 2 sta- tions belonging to the monitoring network of the Osservatorio Vesuviano (INGV, National Institute for Geophysics and Volcanology, Italy) in the Phlegraean Fields are discussed in this paper. The acquired signals have shown a strong tiltmetric inversion that took place from the end of July 2006. After correcting tilt variations to eliminate the influence of temperature (influencing 90% of the signal at OLB station, hereafter OLB) a significant value of the tilt still re- mains. This change is related to a local inflation episode lasting 3 months, during an unrest phase that started 2 years before. It is interesting to note that tilt amplitude is much greater at OLB than the slope of the displacement field pre- dicted by the theoretical inflation models, but data show that this field is not homogeneous and in some areas very tilt- ed. Moreover, in the last days before the end of tilt inversion, a low energy seismic swarm happened at about 1 km of distance from the tiltmetric station by hundreds of VT (Volcano-Tectonics) and LP (Long-Period) events. -
Campania/Rv Schoder. Sj
CAMPANIA/R.V. SCHODER. S. J. RAYMOND V. SCHODER, S.J. (1916-1987) Classical Studies Department SLIDE COLLECTION OF CAMPANIA Prepared by: Laszlo Sulyok Ace. No. 89-15 Computer Name: CAMPANIA.SCH 1 Metal Box Location: Room 209/ The following slides of Campanian Art are from the collection of Raymond V. Schader, S.J. They are arranged alpha-numerically in the order in which they were received at the archives. The notes in the inventory were copied verbatim from Schader's own citations on the slides. CAUTION: This collection may include commercially produced slides which may only be reproduced with the owner's permission. I. PHELGRAEA, Nisis, Misenum, Procida (bk), Baiae bay, fr. Pausilp 2. A VERNUS: gen., w. Baiae thru gap 3. A VERNUS: gen., w. Misenum byd. 4. A VERN US: crater 5. A VERN US: crater 6. A VERNUS: crater in!. 7. AVERNUS: E edge, w. Baths, Mt. Nuovo 1538 8. A VERNUS: Tunnel twd. Lucrinus: middle 9. A VERNUS: Tunnel twd. Lucrinus: stairs at middle exit fl .. 10. A VERNUS: Tunnel twd. Lucr.: stairs to II. A VERNUS: Tunnel twd. Lucrinus: inner room (Off. quarters?) 12. BAIAE CASTLE, c. 1540, by Dom Pedro of Toledo; fr. Pozz. bay 13. BAIAE: Span. 18c. castle on Caesar Villa site, Capri 14. BAIAE: Gen. E close, tel. 15. BAIAE: Gen. E across bay 16. BAIAE: terrace arch, stucco 17. BAIAE: terraces from below 18. BAIAE: terraces arcade 19. BAIAE: terraces gen. from below 20. BAIAE: Terraces close 21. BAIAE: Bay twd. Lucrinus; Vesp. Villa 22. BAIAE: Palaestra(square), 'T. -
On the Rainfall Triggering of Phlegraean Fields Volcanic Tremors
water Article On the Rainfall Triggering of Phlegraean Fields Volcanic Tremors Nicola Scafetta * and Adriano Mazzarella † Department of Earth Sciences, Environment and Georesources, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, via Cinthia, 21, 80126 Naples, Italy; [email protected] * Correspondence: [email protected] † Retired. Abstract: We study whether the shallow volcanic seismic tremors related to the bradyseism observed at the Phlegraean Fields (Campi Flegrei, Pozzuoli, and Naples) from 2008 to 2020 by the Osservatorio Vesuviano could be partially triggered by local rainfall events. We use the daily rainfall record measured at the nearby Meteorological Observatory of San Marcellino in Naples and develop two empirical models to simulate the local seismicity starting from the hypothesized rainfall-water effect under different scenarios. We found statistically significant correlations between the volcanic tremors at the Phlegraean Fields and our rainfall model during years of low bradyseism. More specifically, we observe that large amounts and continuous periods of rainfall could trigger, from a few days to 1 or 2 weeks, seismic swarms with magnitudes up to M = 3. The results indicate that, on long timescales, the seismicity at the Phlegraean Fields is very sensitive to the endogenous pressure from the deep magmatic system causing the bradyseism, but meteoric water infiltration could play an important triggering effect on short timescales of days or weeks. Rainfall water likely penetrates deeply into the highly fractured and hot shallow-water-saturated subsurface that characterizes the region, reduces the strength and stiffness of the soil and, finally, boils when it mixes with the hot hydrothermal magmatic fluids migrating upward. -
The Acid Sulfate Zone and the Mineral Alteration Styles of the Roman Puteoli
Solid Earth, 10, 1809–1831, 2019 https://doi.org/10.5194/se-10-1809-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. The acid sulfate zone and the mineral alteration styles of the Roman Puteoli (Neapolitan area, Italy): clues on fluid fracturing progression at the Campi Flegrei volcano Monica Piochi1, Angela Mormone1, Harald Strauss2, and Giuseppina Balassone3 1Osservatorio Vesuviano, Istituto Nazionale di Geofisica e Vulcanologia, Naples, 80124, Italy 2Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität, Münster, 48149, Germany 3Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università Federico II, Naples, 80126, Italy Correspondence: Monica Piochi ([email protected]) Received: 13 March 2019 – Discussion started: 8 May 2019 Revised: 27 August 2019 – Accepted: 16 September 2019 – Published: 30 October 2019 Abstract. Active fumarolic solfataric zones represent impor- different discrete aquifers hosted in sediments – and possi- tant structures of dormant volcanoes, but unlike emitted flu- bly bearing organic imprints – is the main dataset that allows ids, their mineralizations are omitted in the usual monitor- determination of the steam-heated environment with a super- ing activity. This is the case of the Campi Flegrei caldera in gene setting superimposed. Supergene conditions and high- Italy, among the most hazardous and best-monitored explo- sulfidation relicts, together with the narrow sulfate alteration sive volcanoes in the world, where the landscape of Puteoli zone buried under the youngest volcanic deposits, point to is characterized by an acid sulfate alteration that has been ac- the existence of an evolving paleo-conduit. The data will con- tive at least since Roman time. -
HAMBRIGHT-BELUE Assistant Professor Aia Leed Ap
SALLIE HAMBRIGHT-BELUE assistant professor aia leed ap 1884 1888 1898 1908 1920 composite 1920 tracing the shifting REEDY This competition entry proposes a wall that attempts to make visible the 1908 relationship between the city and the river. By tracing historical maps of AM11 Alteration Competition Entry AM11 the development of Greenville, SC, the Reedy River seems to have 1900 1898 shifted over time by the growing city. The shifting occurred over several years and over a large area which is imperceptible to those living in Greenville today. The installation would increase awareness of the tenu- 1888 1884 ous relationship between nature and cities. Falls St. Main St. Main St. Rhett St. Laurens St. River St. River St. Academy St. Cox St. The Pozzuoli waterfront site offers a unique and varied condition, which must influence any master plan. The unique qualities are in its land forma- tion, its topography, and in its history. These unique factors include: 1. Geological Centers of Activity and Fault Lines Pozzuoli is in the middle of a caldera which is an area of land that col- lapses after a volcanic eruption due to the release of magma from a magma chamber in the earth. The caldera surrounding Pozzuoli is called the Campi Flegrei, or the Phlegraean Fields. This caldera continues to be active because of magma remaining in the magma pocket and causes the land to move vertically and laterally. 2. Historically Modified Coastline The coastline has moved substantially since Roman times. During Roman times, the coastline was located about 230 meters further out in Pozzuoli Bay. -
Campania Felix an Archaeologists’ Paradise
Guided ‘Small Group' adventure Campania Felix An Archaeologists’ Paradise A full immersion in Campania’s history & archaeology, from prehistoric to Greek, Roman and medieval times. With selected walks through some of Italy’s most amazing scenery. TRIP NOTES 2019 © Genius Loci Travel. All rights reserved. [email protected] | www.genius-loci.it ***GENIUS LOCI TRAVEL - The Real Spirit Of Italy*** Guided ‘Small Group' adventure INTRODUCTION The region of Campania marks the real beginnings of southern Italy, a sought-after place since Roman times when it was tagged the Campania Felix or ‘happy land’. There is the great city of Naples, and amazing Roman sites, but also beautiful countryside, wonderful islands, like the world famous Capri, and of course, stretches of spectacular coastal scenery. The Amalfi Coast is definitely one of the most beautiful coastlines in Europe, with a long tradition as one of the premier tourist destinations in Italy. Also the history of the region is fascinating. Well known for its archaeological and cultural heritage, amongst which several world heritage sites such as Pompeii, Herculaneum, Paestum, and many less well known places of large cultural value and natural beauty, Campania is a real paradise for those interested in the history of art and archaeology ! Our tour will show you not only the main archaeological highlights, but also aims at discovering less known and often overlooked sites, offering a panorama of the whole of Campania’s archaeology, from prehistoric to recent times. To do this we will visit, with a specialist guide, several larger and smaller archaeological site, as well as take walks in parts of the region that occupy a special place in the history of the region.