Standard Protocol Upon Discovery of Injured Birds and Bats

Total Page:16

File Type:pdf, Size:1020Kb

Standard Protocol Upon Discovery of Injured Birds and Bats NA PUA MAKANI WIND ENERGY PROJECT DRAFT HABITAT CONSERVATION PLAN Prepared for Na Pua Makani Power Partners, LLC Prepared by April 2015 TTCES-PTLD-2015-064 DRAFT HABITAT CONSERVATION PLAN This page intentionally left blank DRAFT HABITAT CONSERVATION PLAN Table of Contents 1 INTRODUCTION AND PROJECT OVERVIEW ............................................................................... 1 1.1 Introduction ................................................................................................................................... 1 1.2 Applicant History and Information ............................................................................................... 1 1.3 Project Description ........................................................................................................................ 4 1.3.1 Project History ...................................................................................................................... 4 1.3.2 Project Components .............................................................................................................. 4 1.3.3 Project Schedule .................................................................................................................... 8 1.3.4 List of Preparers .................................................................................................................... 8 1.4 Regulatory Framework and Relationship to Other Plans, Policies, and Laws .............................. 8 1.4.1 Federal Endangered Species Act ........................................................................................... 8 1.4.2 National Environmental Policy Act ...................................................................................... 9 1.4.3 Migratory Bird Treaty Act .................................................................................................. 10 1.4.4 National Historic Preservation Act ..................................................................................... 10 1.4.5 Hawaii Revised Statutes (HRS Chapter 195D) ................................................................... 10 1.4.6 Hawaii Revised Statutes (HRS Chapter 343) ...................................................................... 11 2 DESCRIPTION OF THE HABITAT CONSERVATION PLAN ...................................................... 11 2.1 Purpose and Need for the HCP ................................................................................................... 11 2.2 Scope and Term .......................................................................................................................... 12 2.2.1 HCP Scope .......................................................................................................................... 12 2.2.2 HCP Term ........................................................................................................................... 12 2.3 Surveys and Resources................................................................................................................ 12 3 ENVIRONMENTAL SETTING ........................................................................................................ 13 3.1 Regional Location ....................................................................................................................... 13 3.2 Land Use Designations ............................................................................................................... 13 3.3 Topography and Geology............................................................................................................ 13 3.4 Soils............................................................................................................................................. 13 3.5 Hydrology and Water Resources ................................................................................................ 15 3.6 Terrestrial Flora .......................................................................................................................... 15 3.7 Non-Listed Wildlife .................................................................................................................... 15 3.8 Listed Wildlife ............................................................................................................................ 16 3.8.1 Hawaiian Hoary Bat ............................................................................................................ 17 Na Pua Makani Wind Energy Project i DRAFT HABITAT CONSERVATION PLAN 3.8.2 Newell’s Shearwater ........................................................................................................... 19 3.8.3 Hawaiian Goose .................................................................................................................. 24 3.8.4 Waterbirds ........................................................................................................................... 26 3.8.5 Hawaiian Short-eared Owl .................................................................................................. 35 3.8.6 Species Considered but Excluded ....................................................................................... 36 4 GOALS AND CONSERVATION MEASURES ............................................................................... 37 4.1 Biological Goals and Objectives ................................................................................................. 37 4.1.1 Goals ................................................................................................................................... 37 4.1.2 Objectives ........................................................................................................................... 37 4.2 Avoidance and Minimization of Impacts .................................................................................... 38 4.2.1 Project Components and Siting Considerations .................................................................. 38 4.2.2 General Project Development Measures ............................................................................. 39 5 ASSESSMENT OF POTENTIAL IMPACTS AND TAKE LIMITS ................................................ 40 5.1 Hawaiian Hoary bat .................................................................................................................... 41 5.1.1 Direct Take .......................................................................................................................... 41 5.1.2 Indirect Take ....................................................................................................................... 42 5.1.3 Authorized Take Request for ITP and ITL ......................................................................... 43 5.1.4 Assessment of Population-Level Impacts ........................................................................... 44 5.2 Newell’s Shearwater ................................................................................................................... 44 5.2.1 Direct Take .......................................................................................................................... 44 5.2.2 Indirect Take ....................................................................................................................... 46 5.2.3 Authorized Take Request for the ITP and ITL ................................................................... 47 5.2.4 Assessment of Population-Level Impacts ........................................................................... 47 5.3 Hawaiian Goose .......................................................................................................................... 47 5.3.1 Direct Take .......................................................................................................................... 47 5.3.2 Indirect Take ....................................................................................................................... 49 5.3.3 Authorized Take Request for ITP and ITL ......................................................................... 50 5.3.4 Assessment of Population-Level Impacts ........................................................................... 50 5.4 Waterbirds (Hawaiian Duck, Hawaiian Stilt, Hawaiian Coot, Hawaiian Moorhen) .................. 50 5.4.1 Direct Take .......................................................................................................................... 50 5.4.2 Indirect Take ....................................................................................................................... 51 5.4.3 Authorized Take Request for the ITP and ITL ................................................................... 51 5.4.4 Assessment of Population-Level Impacts ........................................................................... 52 Na Pua Makani Wind Energy Project ii DRAFT HABITAT CONSERVATION PLAN 5.5 Hawaiian Short-eared Owl .......................................................................................................... 52 5.5.1 Direct Take .......................................................................................................................... 52 5.5.2 Indirect Take ....................................................................................................................... 53 5.5.3 Authorized Take Request for the ITP and ITL ................................................................... 54 5.5.4 Assessment of Population-Level Impacts ..........................................................................
Recommended publications
  • DNA Barcodes Reveal Deeply Neglected Diversity and Numerous Invasions of Micromoths in Madagascar
    Genome DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in Madagascar Journal: Genome Manuscript ID gen-2018-0065.R2 Manuscript Type: Article Date Submitted by the 17-Jul-2018 Author: Complete List of Authors: Lopez-Vaamonde, Carlos; Institut National de la Recherche Agronomique (INRA), ; Institut de Recherche sur la Biologie de l’Insecte (IRBI), Sire, Lucas; Institut de Recherche sur la Biologie de l’Insecte Rasmussen,Draft Bruno; Institut de Recherche sur la Biologie de l’Insecte Rougerie, Rodolphe; Institut Systématique, Evolution, Biodiversité (ISYEB), Wieser, Christian; Landesmuseum für Kärnten Ahamadi, Allaoui; University of Antananarivo, Department Entomology Minet, Joël; Institut de Systematique Evolution Biodiversite deWaard, Jeremy; Biodiversity Institute of Ontario, University of Guelph, Decaëns, Thibaud; Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Montpellier–Université Paul-Valéry Montpellier–EPHE), , CEFE UMR 5175 CNRS Lees, David; Natural History Museum London Keyword: Africa, invasive alien species, Lepidoptera, Malaise trap, plant pests Is the invited manuscript for consideration in a Special 7th International Barcode of Life Issue? : https://mc06.manuscriptcentral.com/genome-pubs Page 1 of 57 Genome 1 DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in 2 Madagascar 3 4 5 Carlos Lopez-Vaamonde1,2, Lucas Sire2, Bruno Rasmussen2, Rodolphe Rougerie3, 6 Christian Wieser4, Allaoui Ahamadi Allaoui 5, Joël Minet3, Jeremy R. deWaard6, Thibaud 7 Decaëns7, David C. Lees8 8 9 1 INRA, UR633, Zoologie Forestière, F- 45075 Orléans, France. 10 2 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS Université de Tours, UFR 11 Sciences et Techniques, Tours, France.
    [Show full text]
  • RECORDS of the HAWAII BIOLOGICAL SURVEY for 1995 Part 2: Notes1
    RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1995 Part 2: Notes1 This is the second of two parts to the Records of the Hawaii Biological Survey for 1995 and contains the notes on Hawaiian species of plants and animals including new state and island records, range extensions, and other information. Larger, more compre- hensive treatments and papers describing new taxa are treated in the first part of this Records [Bishop Museum Occasional Papers 45]. New Hawaiian Pest Plant Records for 1995 PATRICK CONANT (Hawaii Dept. of Agriculture, Plant Pest Control Branch, 1428 S King St, Honolulu, HI 96814) Fabaceae Ulex europaeus L. New island record On 6 October 1995, Hawaii Department of Land and Natural Resources, Division of Forestry and Wildlife employee C. Joao submitted an unusual plant he found while work- ing in the Molokai Forest Reserve. The plant was identified as U. europaeus and con- firmed by a Hawaii Department of Agriculture (HDOA) nox-A survey of the site on 9 October revealed an infestation of ca. 19 m2 at about 457 m elevation in the Kamiloa Distr., ca. 6.2 km above Kamehameha Highway. Distribution in Wagner et al. (1990, Manual of the flowering plants of Hawai‘i, p. 716) listed as Maui and Hawaii. Material examined: MOLOKAI: Molokai Forest Reserve, 4 Dec 1995, Guy Nagai s.n. (BISH). Melastomataceae Miconia calvescens DC. New island record, range extensions On 11 October, a student submitted a leaf specimen from the Wailua Houselots area on Kauai to PPC technician A. Bell, who had the specimen confirmed by David Lorence of the National Tropical Botanical Garden as being M.
    [Show full text]
  • Managing Insect Contaminants in Processed Leafy Vegetables: a Best Practice Guide
    Managing insect contaminants in processed leafy vegetables: A best practice guide Introduction Insects are potential contaminants of processed leafy vegetables. Pest and beneficial species, in both the juvenile and adult stages of their life cycles can become unwanted contaminants if they make their way from the field into the final packaged product and to the end consumer. This best practice guide summarises the key findings of a project conducted by Applied Horticultural Research and Harvest Fresh Cuts. The focus of this project was to find ways to control contaminants and assess their impact in processed leafy vegetable products. To determine which insect groups were of most relevance, and how to reduce insect contamination of packaged produce, the project started at the customer level and Figure 1. Soldier beetle worked back through the supply chain, examining where information was lacking, and where commercial in the field. Large scale commercial washing and improvements could be made. processing lines have the capacity to remove the majority of insect contaminants. Which insects get the most complaints? Wanted – Dead or alive Reviews into historical commercial data from customer complaints about manufactured leafy vegetable mixes In the factory found that moths and soldier beetles were the most reported insect contaminant. Insects referred to as moths The project investigated whether the moths in customer in the data included Diamondback Moth (Plutella sp.), complaints were reported as being dead or alive. Most Heliothis (Helicoverpa sp.), Cabbage White Butterfly moth complaints were from consumers reporting the (Pieris rapae) and Beet Webworm (Spoladea mimetica.) presence of live moths, even though factory product Other insect groups were represented in the data at lower inspection reports showed that both live and dead moths levels.
    [Show full text]
  • 2017 Report on the Haleakalā High Altitude Observatory Site
    Haleakalā High Altitude Observatory Site Management Plan 2017 Annual Report Introduction to Management of the Haleakalā High Altitude Observatory Site The Haleakalā High Altitude Observatory Site (HO) Management Plan (MP) was approved by the Board of Land and Natural Resources (BLNR) on December 1, 2010. Condition #2 states: “Beginning in November 2012 the University will submit to DLNR an annual report summarizing any construction activities occurring at HO; Habitat Conservation Plans; Monitoring Plans for Invertebrates, Flora, and Fauna; Programmatic Agreements on Cultural Resources; Invasive Species Control Plans and other related plans, The Report should be brief but thorough. This report should also be presented to the Board of Land and Natural Resources for the first year, and every five years thereafter.” Therefore, this report summarizes activities that occurred under the MP from December 1, 2016 to November 30, 2017. The land use described in this report, on activities under the HO MP, qualifies as an identified use in the General Subzone and is consistent with the objectives of the General Subzone of the land. The objectives of the General Subzone (HAR 13-5-14) are to designate open space where specific conservation uses may not be defined, but where urban uses would be premature. The land use is consistent with astronomical research facilities for advanced studies of astronomy and atmospheric sciences. HO is located within a General Subzone of the State of Hawai’i Conservation District that has been set aside for observatory site purposes only. Identified applicable land uses in the General Subzone, include R-3 Astronomy Facilities and (D-1) Astronomy facilities under an approved management plan (HAR 13-5-25).
    [Show full text]
  • Lepidoptera: Noctuoidea: Erebidae) and Its Phylogenetic Implications
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 113: 558–570, 2016 http://www.eje.cz doi: 10.14411/eje.2016.076 ORIGINAL ARTICLE Characterization of the complete mitochondrial genome of Spilarctia robusta (Lepidoptera: Noctuoidea: Erebidae) and its phylogenetic implications YU SUN, SEN TIAN, CEN QIAN, YU-XUAN SUN, MUHAMMAD N. ABBAS, SAIMA KAUSAR, LEI WANG, GUOQING WEI, BAO-JIAN ZHU * and CHAO-LIANG LIU * College of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China; e-mails: [email protected] (Y. Sun), [email protected] (S. Tian), [email protected] (C. Qian), [email protected] (Y.-X. Sun), [email protected] (M.-N. Abbas), [email protected] (S. Kausar), [email protected] (L. Wang), [email protected] (G.-Q. Wei), [email protected] (B.-J. Zhu), [email protected] (C.-L. Liu) Key words. Lepidoptera, Noctuoidea, Erebidae, Spilarctia robusta, phylogenetic analyses, mitogenome, evolution, gene rearrangement Abstract. The complete mitochondrial genome (mitogenome) of Spilarctia robusta (Lepidoptera: Noctuoidea: Erebidae) was se- quenced and analyzed. The circular mitogenome is made up of 15,447 base pairs (bp). It contains a set of 37 genes, with the gene complement and order similar to that of other lepidopterans. The 12 protein coding genes (PCGs) have a typical mitochondrial start codon (ATN codons), whereas cytochrome c oxidase subunit 1 (cox1) gene utilizes unusually the CAG codon as documented for other lepidopteran mitogenomes. Four of the 13 PCGs have incomplete termination codons, the cox1, nad4 and nad6 with a single T, but cox2 has TA. It comprises six major intergenic spacers, with the exception of the A+T-rich region, spanning at least 10 bp in the mitogenome.
    [Show full text]
  • Field Evaluation of Cypermethrin, Imidacloprid, Teflubenzuron
    plants Article Field Evaluation of Cypermethrin, Imidacloprid, Teflubenzuron and Emamectin Benzoate against Pests of Quinoa (Chenopodium quinoa Willd.) and Their Side Effects on Non-Target Species Luis Cruces 1,2,*, Eduardo de la Peña 2,3 and Patrick De Clercq 2 1 Department of Entomology, Faculty of Agronomy, Universidad Nacional Agraria La Molina, Lima 12-056, Peru 2 Department of Plants & Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium; [email protected] (E.d.l.P.); [email protected] (P.D.C.) 3 Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora (IHSM-UMA-CSIC), Estación Experimental “La Mayora”, 29750 Malaga, Spain * Correspondence: [email protected]; Tel.: +051-999-448427 Abstract: During the last few years, quinoa, a traditional Andean crop, has been cultivated at low elevations where pest pressure is high and farmers resort to intensive use of insecticides. This field study investigated the impact of four insecticides (cypermethrin, imidacloprid, teflubenzuron and emamectin benzoate) on insect pests of quinoa and their side effects on the arthropod community at the coastal level of Peru, by analysing the species composition, species diversity and population density. The arthropod community was examined with pitfall traps (for ground dwelling species), Citation: Cruces, L.; de la Peña, E.; plant samplings (for pests and their natural enemies that inhabit the crop), and yellow pan traps (to De Clercq, P. Field Evaluation of catch flying insects). The results demonstrated that Macrosiphum euphorbiae, Frankliniella occidentalis Cypermethrin, Imidacloprid, and Spoladea recurvalis were efficiently controlled by cypermethrin and imidacloprid; the latter Teflubenzuron and Emamectin compound also showed long-term effects on Nysius simulans.
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]
  • DNA Barcodes Reveal Deeply Neglected
    DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in Madagascar Carlos Lopez-Vaamonde, Lucas Sire, Bruno Rasmussen, Rodolphe Rougerie, Christian Wieser, Allaoui Ahamadi Allaoui, Joël Minet, Jeremy Dewaard, Thibaud Decaëns, David Lees To cite this version: Carlos Lopez-Vaamonde, Lucas Sire, Bruno Rasmussen, Rodolphe Rougerie, Christian Wieser, et al.. DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in Madagascar. Genome, NRC Research Press, 2019, 62 (3), pp.108-121. 10.1139/gen-2018-0065. hal-02613924 HAL Id: hal-02613924 https://hal.archives-ouvertes.fr/hal-02613924 Submitted on 20 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Pagination not final (cite DOI) / Pagination provisoire (citer le DOI) 1 ARTICLE DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in Madagascar1 Carlos Lopez-Vaamonde, Lucas Sire, Bruno Rasmussen, Rodolphe Rougerie, Christian Wieser, Allaoui Ahamadi Allaoui, Joël Minet, Jeremy R. deWaard, Thibaud Decaëns, and David C. Lees Abstract: Madagascar is a prime evolutionary hotspot globally, but its unique biodiversity is under threat, essentially from anthropogenic disturbance. There is a race against time to describe and protect the Madagascan endangered biota.
    [Show full text]
  • Lepidoptera: Pyraloidea: Crambidae) Inferred from DNA and Morphology 141-204 77 (1): 141 – 204 2019
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arthropod Systematics and Phylogeny Jahr/Year: 2019 Band/Volume: 77 Autor(en)/Author(s): Mally Richard, Hayden James E., Neinhuis Christoph, Jordal Bjarte H., Nuss Matthias Artikel/Article: The phylogenetic systematics of Spilomelinae and Pyraustinae (Lepidoptera: Pyraloidea: Crambidae) inferred from DNA and morphology 141-204 77 (1): 141 – 204 2019 © Senckenberg Gesellschaft für Naturforschung, 2019. The phylogenetic systematics of Spilomelinae and Pyraustinae (Lepidoptera: Pyraloidea: Crambidae) inferred from DNA and morphology Richard Mally *, 1, James E. Hayden 2, Christoph Neinhuis 3, Bjarte H. Jordal 1 & Matthias Nuss 4 1 University Museum of Bergen, Natural History Collections, Realfagbygget, Allégaten 41, 5007 Bergen, Norway; Richard Mally [richard. [email protected], [email protected]], Bjarte H. Jordal [[email protected]] — 2 Florida Department of Agriculture and Consumer Ser- vices, Division of Plant Industry, 1911 SW 34th Street, Gainesville, FL 32608 USA; James E. Hayden [[email protected]] — 3 Technische Universität Dresden, Institut für Botanik, 01062 Dresden, Germany; Christoph Neinhuis [[email protected]] — 4 Senckenberg Naturhistorische Sammlungen Dresden, Museum für Tierkunde, Königsbrücker Landstraße 159, 01109 Dresden, Germany; Matthias Nuss [[email protected]] — * Corresponding author Accepted on March 14, 2019. Published online at www.senckenberg.de/arthropod-systematics on May 17, 2019. Published in print on June 03, 2019. Editors in charge: Brian Wiegmann & Klaus-Dieter Klass. Abstract. Spilomelinae and Pyraustinae form a species-rich monophylum of Crambidae (snout moths). Morphological distinction of the two groups has been diffcult in the past, and the morphologically heterogenous Spilomelinae has not been broadly accepted as a natural group due to the lack of convincing apomorphies.
    [Show full text]
  • The Major Arthropod Pests and Weeds of Agriculture in Southeast Asia
    The Major Arthropod Pests and Weeds of Agriculture in Southeast Asia: Distribution, Importance and Origin D.F. Waterhouse (ACIAR Consultant in Plant Protection) ACIAR (Australian Centre for International Agricultural Research) Canberra AUSTRALIA The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has a special research competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MO'lOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or deemed relevant to ACIAR's research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for 1I1lernational Agricultural Resl GPO Box 1571, Canberra, ACT, 2601 Waterhouse, D.F. 1993. The Major Arthropod Pests an Importance and Origin. Monograph No. 21, vi + 141pI- ISBN 1 86320077 0 Typeset by: Ms A. Ankers Publication Services Unit CSIRO Division of Entomology Canberra ACT Printed by Brown Prior Anderson, 5 Evans Street, Burwood, Victoria 3125 ii Contents Foreword v 1. Abstract 2. Introduction 3 3. Contributors 5 4. Results 9 Tables 1. Major arthropod pests in Southeast Asia 10 2. The distribution and importance of major arthropod pests in Southeast Asia 27 3. The distribution and importance of the most important arthropod pests in Southeast Asia 40 4. Aggregated ratings for the most important arthropod pests 45 5. Origin of the arthropod pests scoring 5 + (or more) or, at least +++ in one country or ++ in two countries 49 6.
    [Show full text]
  • Transcriptome Analysis in the Beet Webworm, Spoladea Recurvalis (Lepidoptera: Crambidae)
    Insect Science (2018) 25, 33–44, DOI 10.1111/1744-7917.12375 ORIGINAL ARTICLE Transcriptome analysis in the beet webworm, Spoladea recurvalis (Lepidoptera: Crambidae) Jian-Cheng Chang∗ and Srinivasan Ramasamy AVRDC – The World Vegetable Center, Shanhua, Tainan, Taiwan, China Abstract The beet webworm, Spoladea recurvalis Fabricius, is a destructive pest on vegetable crops in tropics and subtropics; its main host plant is amaranth. It has become imperative to develop non-chemical methods to control S. recurvalis on amaranth. However, the lack of molecular information about this species has hindered the development of novel pest management strategies. In this study, high-throughput RNA sequencing covering de novo sequence assemblies, functional annotation of transcripts, gene function classification and enrichment was performed on S. recurvalis. Illumina sequencing generated a total of 120 435 transcript contigs ranging from 201 to 22 729 bases with a mean length of 688 bases. The assembled transcripts were subjected to Basic Local Alignment Search Tool- X (BLASTX) to obtain the annotations against non-redundant, Swiss-Prot, Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) protein databases. A subset of 58 225 transcript sequences returned hits from known proteins in the National Center for Biotechnology Information database, and the majority of the transcript sequences had the highest number of hits for Danaus plexippus (50.43%). A total of 1217 Gene Ontology-level 3 annotations were assigned to 51 805 transcripts, while 39 650 transcripts were predicted as functional protein-coding genes in the COG database and 20 037 transcripts were enriched to KEGG pathways.
    [Show full text]
  • Effect of Bacillus Thuringiensis Kurstaki on Mid-Gut Structure of the Beet Web Moth, Spoladea Recurvalis F
    Husseini Egyptian Journal of Biological Pest Control (2019) 29:56 Egyptian Journal of https://doi.org/10.1186/s41938-019-0159-z Biological Pest Control RESEARCH Open Access Effect of Bacillus thuringiensis kurstaki on mid-gut structure of the beet web moth, Spoladea recurvalis F. larvae (Lepidoptera: Crambidae) reared on semi-synthetic diet Monir M. M. El Husseini Abstract Larvae of the beet web moth, Spoladea recurvalis F. (Lepidoptera: Crambidae), were reared on a semi-synthetic diet under laboratory temperature of 25 °C. The microbial bioinsecticide Dipel 2X (Bacillus thuringiensis kurstaki) was bio- assayed versus the 2nd instar larvae (L2)ofS. recurvalis by mixing in the semi-synthetic diet at different concentrations (5, 2.5, 1.25; 0.6 and 0.3% w/w). The concentration 1.25% of Dipel 2X mixed in the semi-synthetic diet was fed to larvae (L2) to prolong the pre-death period for 5 days in order to follow its effect on the structure of mid-gut. Treated larvae as well as those of the control were fixed in Bouin’s fixative at 1, 2, 3, 4, and 5 days post treatment and processed for paraffin serial sectioning at 6–8 μm with double staining by eosin and hematoxylin. Cross sections in the mid-gut were examined with a light microscope in both treated larvae and those of the control. The gradual alterations in mid-gut structure till death of the treated larvae were described. Keywords: Bacillus thuringiensis, Spoladea recurvalis, Mid-gut structure, Semi-synthetic diet Background damage of S. recurvalis on leafy amaranth (Amaranthus The beet web moth, Spoladea recurvalis F.
    [Show full text]