Print Key. (Pdf)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Avoiding the Risks of Deadly Lightning Strikes
Avoiding the Risks of Deadly Lightning Strikes Lightning is one of the most underrated severe weather hazards, yet ranks as the second-leading weather killer in the United States. More deadly than hurricanes or tornadoes, lightning strikes in America each year kill an average of 73 people and injure 300 others, according to NOAA's National Weather Service. How Lightning Works Lightning is caused by the attraction between positive and negative charges in the atmosphere, resulting in the buildup and discharge of electrical energy. This rapid heating and cooling of the air produces the shock wave that results in thunder. During a storm, raindrops can acquire extra electrons, which are negatively charged. These surplus electrons seek out a positive charge from the ground. As they flow from the clouds, they knock other electrons free, creating a conductive path. This path follows a zigzag shape that jumps between randomly distributed clumps of charged particles in the air. When the two charges connect, current surges through that jagged path, creating the lightning bolt. The Warning Signs High winds, rainfall, and a darkening cloud cover are the warning signs for possible cloud-to- ground lightning strikes. While many lightning casualties happen at the beginning of an approaching storm, more than 50 percent of lightning deaths occur after the thunderstorm has passed. The lightning threat diminishes after the last sound of thunder, but may persist for more than 30 minutes. When thunderstorms are in the area, but not overhead, the lightning threat can exist when skies are clear. Safety Precautions While nothing offers absolute safety from lightning, some actions can greatly reduce your risks. -
English Maths
Summer Term Curriculum Overview for Year 5 2021 only Black-First half (The Lion, the Witch and the Wardrobe) Red- Second half (The Secret Garden) English Reading Comprehension Planning, Composing and Evaluating Maths Develop ideas through reading and research Grammar, Punctuation and Vocabulary Use a wide knowledge of text types, forms and styles to inform Check that the text makes sense to them and Fractions B (calculating) (4 weeks) Decimals and percentages (3 weeks) Decimals (5 weeks) their writing Use correct grammatical terminology when discuss their understanding discussing their writing Plan and write for a clear purpose and audience Use imagination and empathy to explore a text Ensure that the content and style of writing accurately reflects Decimals (5 weeks) Geometry: angles (just shape work, angles have been covered) Geometry: position and Use the suffixes –ate, -ise, and –ify to convert nouns beyond the page the purpose or adjectives into verbs Answer questions drawing on information from Borrow and adapt writers’ techniques from book, screen and direction Measurement: volume and converting units Understand what parenthesis is several places in the text stage Recognise and identify brackets and dashes Predict what may happen using stated and Balance narrative writing between action, description and dialogue Use brackets, dashes or commas for parenthesis implied details and a wider personal Geography Evaluate the work of others and suggest improvements Ensure correct subject verb agreement understanding of the world Evaluate their work effectively and make improvements based Name, locate and describe major world cities. Revisit: Identify the location and explain the Summarise using an appropriate amount of detail on this function of the Prime (or Greenwich) Meridian and different time zones (including day and History as evidence Proof–read for spelling and punctuation errors night). -
Weather and Climate: Changing Human Exposures K
CHAPTER 2 Weather and climate: changing human exposures K. L. Ebi,1 L. O. Mearns,2 B. Nyenzi3 Introduction Research on the potential health effects of weather, climate variability and climate change requires understanding of the exposure of interest. Although often the terms weather and climate are used interchangeably, they actually represent different parts of the same spectrum. Weather is the complex and continuously changing condition of the atmosphere usually considered on a time-scale from minutes to weeks. The atmospheric variables that characterize weather include temperature, precipitation, humidity, pressure, and wind speed and direction. Climate is the average state of the atmosphere, and the associated characteristics of the underlying land or water, in a particular region over a par- ticular time-scale, usually considered over multiple years. Climate variability is the variation around the average climate, including seasonal variations as well as large-scale variations in atmospheric and ocean circulation such as the El Niño/Southern Oscillation (ENSO) or the North Atlantic Oscillation (NAO). Climate change operates over decades or longer time-scales. Research on the health impacts of climate variability and change aims to increase understanding of the potential risks and to identify effective adaptation options. Understanding the potential health consequences of climate change requires the development of empirical knowledge in three areas (1): 1. historical analogue studies to estimate, for specified populations, the risks of climate-sensitive diseases (including understanding the mechanism of effect) and to forecast the potential health effects of comparable exposures either in different geographical regions or in the future; 2. studies seeking early evidence of changes, in either health risk indicators or health status, occurring in response to actual climate change; 3. -
Soaring Weather
Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven contributions to meteorology. For example, soar tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft. -
Years 3–4, and the Others in Years 5–6
Unit 16 What’s in the news? ABOUT THE UNIT This is a ‘continuous’ unit, designed to be developed at various points through the key stage. It shows how news items at a widening range of scales can be used to develop geographical skills and ideas. The unit can be used flexibly when relevant news events occur. The teaching ideas could be selected and used outside designated geography curriculum time, eg during assembly, a short activity at the beginning or end of the day, or within a context for literacy and mathematics work. Alternatively the ideas could be integrated within other geography units where appropriate, eg weather reports could be linked to work on weather and distant localities, see Unit 7. The first three sections are designed to be used in years 3–4, and the others in years 5–6. The unit offers links to literacy, mathematics, speaking and listening and IT. Widening range of scales Undertake fieldwork Wider context Use globes, maps School locality and atlases UK locality Use secondary sources Overseas locality Identify places on Physical and human features maps A, B and C Similarities and differences Use ICT Changes Weather: seasons, world weather Environment: impact Other aspects of skills, places and themes may be covered depending on the content of the news item. VOCABULARY RESOURCES In this unit, children are likely to use: • newspapers • news, current affairs, issues, weather, weather symbols, climate, country, • access to the internet continent, land use, environmental quality, community, physical features, human • local -
The Weather the Weather
The weather Área Lectura y Escritura Resultados de aprendizaje Conocer vocabulario relacionado al clima. Utilizar vocabulario relacionado al clima en contextos de escritura formal. Contenidos 1. General vocabulary words Debo saber - Simple present - Present continuous - Simple past - Past continuous The Weather Cold weather In Scandinavia, the chilly (1) days of autumn soon change to the cold days of winter. The first frosts (2) arrive and the roads become icy. Rain becomes sleet (3) and then snow, at first turning to slush (4) in the streets, but soon settling (5), with severe blizzards (6) and snowdrifts (7) in the far north. Freezing weather often continues in the far north until May or even June, when the ground starts to thaw (8) and the ice melts (9) again. - (1) cold, but not very - (2) thin white coat of ice on everything - (3) rain and snow mixed - (4) dirty, brownish, half- snow, half – water - (5) staying as a white covering - (6) snow blown by high winds - (7) Deep banks of snow against walls, etc. - (8) change from hard, frozen state to normal - (9) change from solid to liquid under heat Servicios Académicos para el Acompañamiento y la Permanencia - PAIEP Primera Edición - 2016 En caso de encontrar algún error, contáctate con PAIEP-USACH al correo: [email protected] 1 Warm / hot weather - Close: warm and uncomfortable. - Stifling: hot, uncomfortable, you can hardly breathe. - Humid: hot and damp, makes you sweat a lot. - Scorching: very hot, often used in positive contexts. - Boling: very hot, often used in negative contexts - Mild: warm at a time when it is normally cold - Heat wave last month: very hot, dry period Wet weather This wet weather scale gets stronger from left to right. -
Exploring the MBL Cloud and Drizzle Microphysics Retrievals from Satellite, Surface and Aircraft
Exploring the MBL cloud and drizzle microphysics retrievals from satellite, surface and aircraft Xiquan Dong, University of Arizona Pat Minnis, SSAI 1. Briefly describe our 2. Can we utilize these surface newly developed retrieval retrievals to develop cloud (and/or drizzle) Re profile for algorithm using ARM radar- CERES team? lidar, and comparison with aircraft data. Re is a critical for radiation Wu et al. (2020), JGR and aerosol-cloud- precipitation interactions, as well as warm rain process. 1 A long-term Issue: CERES Re is too large, especially under drizzling MBL clouds A/C obs in N Atlantic • Cloud droplet size retrievals generally too high low clouds • Especially large for Re(1.6, 2.1 µm) CERES Re too large Worse for larger Re • Cloud heterogeneity plays a role, but drizzle may also be a factor - Can we understand the impact of drizzle on these NIR retrievals and their differences with Painemal et al. 2020 ground truth? A/C obs in thin Pacific Sc with drizzle CERES LWP high, tau low, due to large Re Which will lead to high SW transmission at the In thin drizzlers, Re is overestimated by 3 µm surface and less albedo at TOA Wood et al. JAS 2018 Painemal et al. JGR 2017 2 Profiles of MBL Cloud and Drizzle Microphysical Properties retrieved from Ground-based Observations and Validated by Aircraft data during ACE-ENA IOP 푫풎풂풙 ퟔ Radar reflectivity: 풁 = ퟎ 푫 푵풅푫 Challenge is to simultaneously retrieve both cloud and drizzle properties within an MBL cloud layer using radar-lidar observations because radar reflectivity depends on the sixth power of the particle size and can be highly weighted by a few large drizzle drops in a drizzling cloud 3 Wu et al. -
90001602.Pdf
Kobe University Repository : Kernel タイトル Prediction of human thermophysiological responses during shower Title bathing 著者 Abdul, Munir / Takada, Satoru / Matsushita, Takayuki / Kubo, Hiroko Author(s) 掲載誌・巻号・ページ International Journal of Biometeorology,54(2):165-178 Citation 刊行日 2010-03 Issue date 資源タイプ Journal Article / 学術雑誌論文 Resource Type 版区分 author Resource Version 権利 Rights DOI 10.1007/s00484-009-0265-9 JaLCDOI URL http://www.lib.kobe-u.ac.jp/handle_kernel/90001602 PDF issue: 2021-09-29 PREDICTION OF HUMAN THERMOPHYSIOLOGICAL RESPONSES DURING SHOWER BATHING Abdul Munir Department of Architecture, Faculty of Engineering, Syiah Kuala University, Darussalam, Banda Aceh 23111, Indonesia Satoru Takada Department of Architecture, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan Phone: +81 78 803 6038 Fax: +81 78 803 6038 Email: [email protected] Takayuki Matsushita Department of Architecture, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan Hiroko Kubo Department of Environmental Health, Faculty of Human Life and Environment, Nara Women's University, Kitauoya-nishimachi, Nara 630-8506, Japan ABSTRACT This study develops a model to predict the thermophysiological response of the human body during shower bathing. Despite the needs for the quantitative evaluation of human body response during bathing for thermal comfort and safety, the complicated mechanisms of heat transfer at the skin surface, especially 1 during shower bathing, have disturbed the development of adequate models. In this study, an initial modeling approach is proposed by developing a simple heat transfer model at the skin surface during shower bathing, applied to Stolwijk’s human thermal model. -
Articles from Bon, Inorganic Aerosol and Sea Salt
Atmos. Chem. Phys., 18, 6585–6599, 2018 https://doi.org/10.5194/acp-18-6585-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 3.0 License. Meteorological controls on atmospheric particulate pollution during hazard reduction burns Giovanni Di Virgilio1, Melissa Anne Hart1,2, and Ningbo Jiang3 1Climate Change Research Centre, University of New South Wales, Sydney, 2052, Australia 2Australian Research Council Centre of Excellence for Climate System Science, University of New South Wales, Sydney, 2052, Australia 3New South Wales Office of Environment and Heritage, Sydney, 2000, Australia Correspondence: Giovanni Di Virgilio ([email protected]) Received: 22 May 2017 – Discussion started: 28 September 2017 Revised: 22 January 2018 – Accepted: 21 March 2018 – Published: 8 May 2018 Abstract. Internationally, severe wildfires are an escalating build-up of PM2:5. These findings indicate that air pollution problem likely to worsen given projected changes to climate. impacts may be reduced by altering the timing of HRBs by Hazard reduction burns (HRBs) are used to suppress wild- conducting them later in the morning (by a matter of hours). fire occurrences, but they generate considerable emissions Our findings support location-specific forecasts of the air of atmospheric fine particulate matter, which depend upon quality impacts of HRBs in Sydney and similar regions else- prevailing atmospheric conditions, and can degrade air qual- where. ity. Our objectives are to improve understanding of the re- lationships between meteorological conditions and air qual- ity during HRBs in Sydney, Australia. We identify the pri- mary meteorological covariates linked to high PM2:5 pollu- 1 Introduction tion (particulates < 2.5 µm in diameter) and quantify differ- ences in their behaviours between HRB days when PM2:5 re- Many regions experience regular wildfires with the poten- mained low versus HRB days when PM2:5 was high. -
Quantifying the Impact of Synoptic Weather Types and Patterns On
1 Quantifying the impact of synoptic weather types and patterns 2 on energy fluxes of a marginal snowpack 3 Andrew Schwartz1, Hamish McGowan1, Alison Theobald2, Nik Callow3 4 1Atmospheric Observations Research Group, University of Queensland, Brisbane, 4072, Australia 5 2Department of Environment and Science, Queensland Government, Brisbane, 4000, Australia 6 3School of Agriculture and Environment, University of Western Australia, Perth, 6009, Australia 7 8 Correspondence to: Andrew J. Schwartz ([email protected]) 9 10 Abstract. 11 Synoptic weather patterns are investigated for their impact on energy fluxes driving melt of a marginal snowpack 12 in the Snowy Mountains, southeast Australia. K-means clustering applied to ECMWF ERA-Interim data identified 13 common synoptic types and patterns that were then associated with in-situ snowpack energy flux measurements. 14 The analysis showed that the largest contribution of energy to the snowpack occurred immediately prior to the 15 passage of cold fronts through increased sensible heat flux as a result of warm air advection (WAA) ahead of the 16 front. Shortwave radiation was found to be the dominant control on positive energy fluxes when individual 17 synoptic weather types were examined. As a result, cloud cover related to each synoptic type was shown to be 18 highly influential on the energy fluxes to the snowpack through its reduction of shortwave radiation and 19 reflection/emission of longwave fluxes. As single-site energy balance measurements of the snowpack were used 20 for this study, caution should be exercised before applying the results to the broader Australian Alps region. 21 However, this research is an important step towards understanding changes in surface energy flux as a result of 22 shifts to the global atmospheric circulation as anthropogenic climate change continues to impact marginal winter 23 snowpacks. -
WMO Solid Precipitation Measurement Intercomparison--Final Report
W O R L D M E T E O R O L O G I C A L O R G A N I Z A T I O N INSTRUMENTS AND OBSERVING METHODS R E P O R T No. 67 WMO SOLID PRECIPITATION MEASUREMENT INTERCOMPARISON FINAL REPORT by B.E. Goodison and P.Y.T. Louie (both Canada) and D. Yang (China) WMO/TD - No. 872 1998 NOTE The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Meteorological Organization concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. This report has been produced without editorial revision by the WMO Secretariat. It is not an official WMO publication and its distribution in this form does not imply endorsement by the Organization of the ideas expressed. FOREWORD The WMO Solid Precipitation Measurement Intercomparison was started in the northern hemisphere winter of 1986/87. The field work was carried out in 13 Member countries for seven years. The Intercomparison was the result of Recommendation 17 of the ninth session of the Commission for Instruments and Methods of Observation (CIMO-IX). As in previous WMO intercomparisons of rain gauges, the main objective of this test was to assess national methods of measuring solid precipitation against methods whose accuracy and reliability were known. It included past and current procedures, automated systems and new methods of observation. The experiment was designed to determine especially wind related errors, and wetting and evaporative losses in national methods of measuring solid precipitation. -
7.2 DEVELOPMENT of a METEOROLOGICAL PARTICLE SENSOR for the OBSERVATION of DRIZZLE Richard Lewis* National Weather Service St
7.2 DEVELOPMENT OF A METEOROLOGICAL PARTICLE SENSOR FOR THE OBSERVATION OF DRIZZLE Richard Lewis* National Weather Service Sterling, VA 20166 Stacy G. White Science Applications International Corporation Sterling, VA 20166 1. INTRODUCTION “Very small, numerous, and uniformly dispersed, water drops that may appear to float while The National Weather Service (NWS) and Federal following air currents. Unlike fog droplets, drizzle Aviation Administration (FAA) are jointly participating in a falls to the ground. It usually falls from low Product Improvement Program to improve the capabilities stratus clouds and is frequently accompanied by of the of Automated Surface Observing Systems (ASOS). low visibility and fog. The greatest challenge in the ASOS was to automate the visual elements of the observation; sky conditions, visibility In weather observations, drizzle is classified as and type of weather. Despite achieving some success in (a) “very light”, comprised of scattered drops that this area, limitations in the reporting capabilities of the do not completely wet an exposed surface, ASOS remain. As currently configured, the ASOS uses a regardless of duration; (b) “light,” the rate of fall Precipitation Identifier that can only identify two being from a trace to 0.25 mm per hour: (c) precipitation types, rain and snow. A goal of the Product “moderate,” the rate of fall being 0.25-0.50 mm Improvement program is to replace the current PI sensor per hour:(d) “heavy” the rate of fall being more with one that can identify additional precipitation types of than 0.5 mm per hour. When the precipitation importance to aviation. Highest priority is being given to equals or exceeds 1mm per hour, all or part of implementing capabilities of identifying ice pellets and the precipitation is usually rain; however, true drizzle.