Lymphospecific Toxicity in Adenosine Deaminase Deficiency and Purine

Total Page:16

File Type:pdf, Size:1020Kb

Lymphospecific Toxicity in Adenosine Deaminase Deficiency and Purine Proc. Nati. Acad. Sci. USA Vol. 74, No. 12, pp. 5677-5681, December 1977 Immunology Lymphospecific toxicity in adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency: Possible role of nucleoside kinase(s) (immunodeficiency/lymphocyte/purine deoxyribonucleoside kinase/purine deoxyribonucleotides) DENNIS A. CARSON*, JONATHAN KAYE*, AND J. E. SEEGMILLERt *Division of Rheumatology, Department of Clinical Research, Scripps Clinic and Research Foundation, La Jolla, California 92037; and t Department of Medicine, University of California, San Diego, La Jolla, California 92037 Contributed by J. Edwin Seegmiller, September 26, 1977 ABSTRACT Inherited deficiencies of the enzymes adeno- deaminase deficiency by enzyme replacement in the form of sine deaminase (adenosine aminohydrolase; EC 3.5.4.4) and purine nucleoside phosphorylase (purine-nucleoside:ortho- erythrocyte transfusions (4). phosphate ribosyltransferase; EC 2.4.2.1) preferentially interfere Three biochemical mechanisms have been proposed to ex- with lymphocyte development while sparing most other organ plain the association of deaminase deficiency with immuno- systems. Previous experiments have shown that through the deficiency disease, i.e., adenosine-induced pyrimidine star- action of specific kinases, nucleosides can be "trapped" intra- vation (5), hypoxanthine deficiency (6), and adenosine-me- cellularly in the form of 5'-phosphates. We therefore measured diated elevations in cyclic AMP concentrations (7). In the ab- the ability of newborn human tissues to phosphorylate adeno- sine and deoxyadenosine, the substrate of adenosine deaminase, sence of further information, these hypotheses do not explain and also inosine, deoxyinosine, guanosine, and deoxyguanosine, the preferential impairment of lymphoid development seen the substrates of purine nucleoside phosphorylase. Substantial in both phosphorylase and deaminase deficiency. In the present activities of adenosine kinase were found in all tissues studied, studies, we suggest that lymphospecific toxicity in deaminase while guanosine and inosine kinases were detected in none. and phosphorylase deficiency may result from the selective However, the ability to phosphorylate deoxyadenosine, deoxy- accumulation in inosine, and deoxyguanosine was largely confined to lympho- lymphoid tissues, particularly the thymus, of cytes. Adenosine deaminase, but not purine nucleoside phos- toxic deoxyribonucleotides, mediated by nucleoside phorylase, showed a similar lymphoid predominance. Other kinase(s). experiments showed that deoxyadenosine, deoxyinosine, and deoxyguanosine were toxic to human lymphoid cells. The tox- icity of deoxyadenosine was reversed by the addition of de- MATERIALS AND METHODS oxycytidine, but not uridine, to the culture medium. Based upon Tissue Extracts. Newborn human tissues obtained at these and other experiments, we propose that in adenosine autopsy deaminase and purine nucleoside phosphorylase deficiency, within 24 hr of death were frozen at -20°. Extracts were pre- toxic deoxyribonucleosides produced by many tissues are se- pared by mincing the specimens in 10 mM Tris buffer (pH 7.4), lectively trapped in lymphocytes by phosphorylating en- followed by five cycles of freeze-thawing, and ultracentrifu- zyme(s). gation of the particulate material. Peripheral blood lymphocytes and granulocytes were isolated During the past 5 years, Giblett and her colleagues have dem- by dextran sedimentation of heparinized whole blood from an onstrated an association between severe deficiencies of either adult volunteer, followed by centrifugation through Ficoll- adenosine deaminase (adenosine aminohydrolase; EC 3.5.4.4), Hypaque (8). Red cells were lysed with Tris-buffered ammo- or purine nucleoside phosphorylase (purine-nucleoside:ortho- nium chloride and the cells were washed and frozen (9). phosphate ribosyltransferase; EC 2.4.2.1) and inherited forms The protein content of all tissue extracts was determined by of human immunodeficiency disease (1, 2). Although the Lowry's method, with bovine serum albumin as a standard clinical pictures overlap, children with adenosine deaminase (10). deficiency usually suffer from a combined immunodeficiency Enzyme Assays. Kinase activities in cell extracts and column syndrome, with impairment of T cell development and in most fractions were determined by a modification of the method of cases of B cell function as well, while those with purine nucle- Ives et al. (11). For the measurement of deoxyguanosine, gua- oside phosphorylase deficiency have primarily a deficit in T nosine, deoxyinosine, and inosine kinases, the final concentra- cell development and the associated cellular immune functions. tions of the reactants were: 50mM Tris (final pH 7.4), 10 mM Both diseases are accompanied by severe lymphopenia. Al- ATP, 10 mM MgCI2, 15 mM NaF, 1 mg of protein per ml, and though enzyme is virtually absent from all tissues examined, 0.4-2 ,uCi of substrate at a concentration of 300 ,M in a total apparently only the growth and development of the lymphoid volume of 100 X. Adenosine and deoxyadenosine kinases were system is severely retarded (3). It is therefore likely that the similarly measured, except that the ATP and magnesium immune defect in deaminase and phosphorylase deficiency is concentrations were 5 and 2.5 mM, respectively. In addition, not due to a generalized disorder of growth, but rather to a to each sample was added the deaminase inhibitor erythro- primary lymphocyte abnormality and/or circulating toxins that 9-(2-hydroxy-3-nonyl)adenine hydrochloride (EHNA) to a final are specifically lymphocytoxic. The latter concept is in accord concentration of 5 ,M. with the reversal of the immunodeficient state accompanying The reactions were initiated by the addition of labeled sub- strate. After 30 min at 370 in a shaking water bath, the samples The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked Abbreviations: deaminase, adenosine deaminase; phosphorylase, purine "advertisement" in accordance with 18 U. S. C. §1734 solely to indicate nucleoside phosphorylase; EHNA, erythro-9-(2 hydroxy-3-nonyl)- this fact. adenine hydrochloride. 5677 Downloaded by guest on October 2, 2021 5678 Immunology: Carson et al. Proc. Natl. Acad. Sci. USA 74 (1977) Table 1. Enzyme activities in human tissues Purine Adenosine Deoxyadenosine Deoxyguanosine Deoxyinosine Adenosine nucleoside kinase kinase kinase kinase deaminase phosphorylase I II I II I II I II II II Thymus 0.79 0.86 1.35 0.78 1.92 1.39 0.34 0.31 982.8 23.3 Spleen NA 0.53 NA 0.20 NA 0.33 NA 0.07 12.4 54.0 Brain NA 1.01 NA 0.14 NA 0.16 NA 0.05 5.0 10.3 Kidney NA 1.15 NA 0.07 NA 0.08 NA 0.10 1.8 100.0 Liver 0.81 2.26 0.12 0.07 0.04 0.07 0.05 0.04 1.1 36.2 Lung 1.32 0.81 0.11 0.06 0.03 0.08 0.03 0.02 0.8 38.0 Small intestine 0.41 0.52 0.13 0.08 0.03 0.11 0.09 0.07 14.2 63.9 Heart 0.48 0.51 0.13 0.08 0.03 0.11 0.07 0.06 2.1 32.2 Peripheral lymphocytes 1.00 0.32 0.21 0.09 20.7 114.7 Peripheral granulocytes 0.83 0.05 <0.02 0.03 11.9 121.4 Human tissues were obtained from two babies (I and II) who died during parturition, while peripheral lymphocytes and granulocytes were isolated from the blood of a normal adult. Activities are expressed as nmol of product per min/mg of protein at a substrate concentration of 300 PM. NA, not available for study. were boiled for 2 min and insoluble material was centrifuged Reagents. [8-14C[Adenosine and [8- 4C[deoxyadenosine at 4°. Control experiments with [14C]inosine monophosphate were purchased from New England Nuclear (Boston, MA) and showed no nucleotide breakdown under these conditions. used to synthesize inosine and deoxyinosine by treatment with Nucleotides were separated from the nucleosides and bases calf deaminase (Calbiochem, San Diego, CA). [8-14C]Guanosine by chromatography on PEI-cellulose thin-layer plates (E. was also obtained from New England Nuclear, while [8-3H]- Merck, Darmstadt) affixed with a paper wick and developed deoxyguanosine came from Amersham/Searle (Arlington overnight in methanol/water (1:1) (12). In representative ex- Heights, IL). All isotopes were tested for purity by thin-layer periments the nucleotides that remained at the origin were chromatography and appropriately diluted with unlabeled further fractionated into the mono-, di-, and triphosphates by nucleoside before use. EHNA was kindly provided by the a second development in sodium formate (pH 3.4) (13) or by Burroughs Wellcome Co. (Research Triangle Park, NC). All two-dimensional chromatography with a discontinuous buffer other reagents were of the highest grade obtainable from system (14). commercial sources. When tritiated isotopes were used, the nucleotide spots were cut out and extracted with 1 ml of 1 M TrisIHCl/0.7 M MgCl2 RESULTS at pH 7.4 before the addition of scintillation fluid (11). When Kinase Activities in Human Tissues. Table 1 shows the 14C isotopes were used, extraction of the product was unrtec- activities of adenosine kinase, deoxyadenosine kinase, deoxy- essary. inosine kinase, and deoxyguanosine kinase in newborn human Deaminase and phosphorylase activities were also deter- tissues as well as in adult human Jymphocytes and granulocytes. mined radiochemically, as previously described (8, 15). Guanosine and inosine kinase activities were undetectable (less Ion-Exchange Chromatography. Twenty milligrams of than 0.02 nmol/min per mg of protein) in any tissue, and are thymic cell extracts was dialyzed against 5 mM sodium phos- not shown. As can be seen, the ability to phosphorylate adeno- phate (pH 7.9) and applied to a 1-ml column of DE52-cellulose sine was widespread among human organs. On the contrary the (Whatman Ltd., Maidstone, Kent) equilibrated at 40 with the ability to phosphorylate deoxyadenosine and deoxyguanosine same buffer. After unbound material was washed with the was largely confined to the thymus and peripheral blood above buffer, the column was eluted with a linear gradient lymphocytes.
Recommended publications
  • Nucleoside Phosphate-Conjugates Come of Age: Catalytic Transformation, Polymerase Recognition and Antiviral Properties.# Elisabetta Groaz* and Piet Herdewijn
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lirias Send Orders for Reprints to [email protected] Current Medicinal Chemistry, Year, Volume 1 Nucleoside Phosphate-Conjugates Come of Age: Catalytic Transformation, Polymerase Recognition and Antiviral Properties.# Elisabetta Groaz* and Piet Herdewijn Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium Abstract: Over the past few decades, different types of nucleoside phosphate-conjugates have been under extensive investigation due to their favorable molecular lability with interesting catalytic hydrolysis mechanisms, recognition as polymerase substrates, and especially for their development as antiviral/anticancer protide therapeutics. The antiviral conjugates such as nucleoside phosphoesters and phosphoramidates that were discovered and developed in the initial years have been well reviewed by the pioneers in the field. In the present review, we will discuss the basic chemical and biological principles behind consideration of some representative structural classes. We will also summarize the chemical and biological properties of some of the more recent analogues that were synthesized and evaluated in our laboratory and by others. This includes new principles for their application as direct substrates of polymerases, nucleobase-dependent catalytic and antiviral activity, and a plausible ‘prodrug of a prodrug’ strategy for tissue/organ-specific targeted drug delivery. Keywords: Prodrug – Delivery – Stability – Polymerase - Phosphoramidates INTRODUCTION profile of these molecules through the “tuning” of the nature of the existing ligands and the pursuit of new protecting The ability of unnatural nucleoside-based therapeutics to moieties relying on chemical rather than enzymatic induce inhibition of uncontrolled cell proliferation or viral dependant activation mechanisms.
    [Show full text]
  • Depression of Thymidylate Synthetase Activity in Response to Cytosine Arabinoside1
    [CANCER RESEARCH 32, 1160-1169, June 1972] Depression of Thymidylate Synthetase Activity in Response To Cytosine Arabinoside1 DeWayne Roberts and Ellen V. Loehr St. Jude Children's Research Hospital, Memphis, Tennessee 38101 ¡D.R., E. V. L.J and Department of Pharmacology, University of Tennessee Medical Units, Memphis, Tennessee 38101 [D. R.J SUMMARY Cytosine arabinoside induces remission of acute granulocytic leukemia (11). After the administration of Depression of thymidylate synthetase activity by cytosine cytosine arabinoside to patients, changes in the enzyme arabinoside in CCRF-CEM cells was correlated with a blocking activity pattern of leukemic leukocytes occur (32). After drug of precursor incorporation into RNA and with cell lysis. With administration, a decrease in thymidylate synthetase activity is increasing concentrations of cytosine arabinoside in the observed as early as 1 hr and persists for 24 hr in some culture media, a proportional decrease of uridine patients. A concentration-dependent decrease in thymidylate incorporation into RNA and decrease in thymidylate synthetase activity also follows the addition of cytosine synthetase activity occurred and was accompanied by lysis of arabinoside to CCRF-CEM cultures (33). the cells. These effects continued to develop with drug Methotrexate elevates thymidylate synthetase activity in concentrations in excess of that required to block thymidine leukocytes from patients with acute leukemia (32), in rat liver incorporation into DNA. The addition of deoxycytidine at and transplantable tumors (27), and in cells of LI210 or concentrations that failed to reverse inhibition by cytosine CCRF-CEM cultures (32, 33). The simultaneous addition of arabinoside of thymidine incorporation into DNA reversed the cytosine arabinoside and methotrexate to CCRF-CEM cultures drug effects on uridine incorporation, thymidylate synthetase modulated the effect of each drug on thymidylate synthetase activity, and cell lysis.
    [Show full text]
  • Deoxyguanosine Cytotoxicity by a Novel Inhibitor of Furine Nucleoside Phosphorylase, 8-Amino-9-Benzylguanine1
    [CANCER RESEARCH 46, 519-523, February 1986] Potentiation of 2'-Deoxyguanosine Cytotoxicity by a Novel Inhibitor of Furine Nucleoside Phosphorylase, 8-Amino-9-benzylguanine1 Donna S. Shewach,2 Ji-Wang Chern, Katherine E. Pillóte,Leroy B. Townsend, and Peter E. Daddona3 Departments of Internal Medicine [D.S.S., P.E.D.], Biological Chemistry [P.E.D.], and Medicinal Chemistry [J-W.C., K.E.P., L.B.T.], University ol Michigan, Ann Arbor, Michigan 48109 ABSTRACT to the ADA-deficient disease state (2). PNP is an essential enzyme of the purine salvage pathway, We have synthesized and evaluated a series of 9-substituted catalyzing the phosphorolysis of guanosine, inosine, and their analogues of 8-aminoguanine, a known inhibitor of human purine 2'-deoxyribonucleoside derivatives to the respective purine nucleoside phosphorylase (PNP) activity. The ability of these bases. To date, several inhibitors of PNP have been identified, agents to inhibit PNP has been investigated. All compounds were and most of these compounds resemble purine bases or nucleo found to act as competitive (with inosine) inhibitors of PNP, with sides. The most potent inhibitors exhibit apparent K¡values in K¡values ranging from 0.2 to 290 /¿M.Themost potent of these the range of 10~6to 10~7 M (9-12). Using partially purified human analogues, 8-amino-9-benzylguanine, exhibited a K, value that erythrocyte PNP, the diphosphate derivative of acyclovir dis was 4-fold lower than that determined for the parent base, 8- played K¡values of 5.1 x 10~7 to 8.7 x 10~9 M, depending on aminoguanine.
    [Show full text]
  • 2'-Deoxyguanosine Toxicity for B and Mature T Lymphoid Cell Lines Is Mediated by Guanine Ribonucleotide Accumulation
    2'-deoxyguanosine toxicity for B and mature T lymphoid cell lines is mediated by guanine ribonucleotide accumulation. Y Sidi, B S Mitchell J Clin Invest. 1984;74(5):1640-1648. https://doi.org/10.1172/JCI111580. Research Article Inherited deficiency of the enzyme purine nucleoside phosphorylase (PNP) results in selective and severe T lymphocyte depletion which is mediated by its substrate, 2'-deoxyguanosine. This observation provides a rationale for the use of PNP inhibitors as selective T cell immunosuppressive agents. We have studied the relative effects of the PNP inhibitor 8- aminoguanosine on the metabolism and growth of lymphoid cell lines of T and B cell origin. We have found that 2'- deoxyguanosine toxicity for T lymphoblasts is markedly potentiated by 8-aminoguanosine and is mediated by the accumulation of deoxyguanosine triphosphate. In contrast, the growth of T4+ mature T cell lines and B lymphoblast cell lines is inhibited by somewhat higher concentrations of 2'-deoxyguanosine (ID50 20 and 18 microM, respectively) in the presence of 8-aminoguanosine without an increase in deoxyguanosine triphosphate levels. Cytotoxicity correlates instead with a three- to fivefold increase in guanosine triphosphate (GTP) levels after 24 h. Accumulation of GTP and growth inhibition also result from exposure to guanosine, but not to guanine at equimolar concentrations. B lymphoblasts which are deficient in the purine salvage enzyme hypoxanthine guanine phosphoribosyltransferase are completely resistant to 2'-deoxyguanosine or guanosine concentrations up to 800 microM and do not demonstrate an increase in GTP levels. Growth inhibition and GTP accumulation are prevented by hypoxanthine or adenine, but not by 2'-deoxycytidine.
    [Show full text]
  • Hyperhomocysteinemia: Focus on Endothelial Damage As a Cause of Erectile Dysfunction
    International Journal of Molecular Sciences Review Hyperhomocysteinemia: Focus on Endothelial Damage as a Cause of Erectile Dysfunction Gianmaria Salvio , Alessandro Ciarloni, Melissa Cutini and Giancarlo Balercia * Division of Endocrinology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, via Conca 71, Umberto I Hospital, 60126 Ancona, Italy; [email protected] (G.S.); [email protected] (A.C.); [email protected] (M.C.) * Correspondence: [email protected] Abstract: Erectile Dysfunction (ED) is defined as the inability to maintain and/or achieve a satis- factory erection. This condition can be influenced by the presence of atherosclerosis, a systemic pathology of the vessels that also affects the cavernous arteries and which can cause an alteration of blood flow at penile level. Among the cardiovascular risk factors affecting the genesis of atherosclero- sis, hyperhomocysteinemia (HHcys) plays a central role, which is associated with oxidative stress and endothelial dysfunction. This review focuses on the biological processes that lead to homocysteine- induced endothelial damage and discusses the consequences of HHcys on male sexual function Keywords: Erectile Dysfunction; hyperhomocysteinemia; endothelial dysfunction 1. Introduction Erectile Dysfunction (ED) is defined as the persistent inability to obtain or maintain penile erection sufficient for a satisfactory sexual performance [1] and represents a common condition in middle-aged men, with a prevalence that increases exponentially with age. Citation: Salvio, G.; Ciarloni, A.; According to data from the Massachusetts Male Aging Study (MMAS), 52% of men between Cutini, M.; Balercia, G. 40 and 70 years old report some form of ED with a percentage that increases proportionally Hyperhomocysteinemia: Focus on with aging and reaches 70% at 70 years of age [2].
    [Show full text]
  • Expanding the Genetic Code Lei Wang and Peter G
    Reviews P. G. Schultz and L. Wang Protein Science Expanding the Genetic Code Lei Wang and Peter G. Schultz* Keywords: amino acids · genetic code · protein chemistry Angewandte Chemie 34 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim DOI: 10.1002/anie.200460627 Angew. Chem. Int. Ed. 2005, 44,34–66 Angewandte Protein Science Chemie Although chemists can synthesize virtually any small organic molecule, our From the Contents ability to rationally manipulate the structures of proteins is quite limited, despite their involvement in virtually every life process. For most proteins, 1. Introduction 35 modifications are largely restricted to substitutions among the common 20 2. Chemical Approaches 35 amino acids. Herein we describe recent advances that make it possible to add new building blocks to the genetic codes of both prokaryotic and 3. In Vitro Biosynthetic eukaryotic organisms. Over 30 novel amino acids have been genetically Approaches to Protein encoded in response to unique triplet and quadruplet codons including Mutagenesis 39 fluorescent, photoreactive, and redox-active amino acids, glycosylated 4. In Vivo Protein amino acids, and amino acids with keto, azido, acetylenic, and heavy-atom- Mutagenesis 43 containing side chains. By removing the limitations imposed by the existing 20 amino acid code, it should be possible to generate proteins and perhaps 5. An Expanded Code 46 entire organisms with new or enhanced properties. 6. Outlook 61 1. Introduction The genetic codes of all known organisms specify the same functional roles to amino acid residues in proteins. Selectivity 20 amino acid building blocks. These building blocks contain a depends on the number and reactivity (dependent on both limited number of functional groups including carboxylic steric and electronic factors) of a particular amino acid side acids and amides, a thiol and thiol ether, alcohols, basic chain.
    [Show full text]
  • Inhibitory Effects of Cordycepin on Platelet Activation Via Regulation of Cyclic Adenosine Monophosphate-Downstream Pathway
    Biomedical Science Letters 2017, 23(3): 251~260 Original Article https://doi.org/10.15616/BSL.2017.23.3.251 eISSN : 2288-7415 Inhibitory Effects of Cordycepin on Platelet Activation via Regulation of Cyclic Adenosine Monophosphate-downstream Pathway Dong-Ha Lee† Department of Biomedical Laboratory Science, Korea Nazarene University, Cheonan 31172, Korea Platelet activation is essential at the sites of vascular injury, which leads to hemostasis through adhesion, aggregation, and secretion process. However, potent and continuous platelet activation may be an important reason of circulatory disorders. Therefore, proper regulation of platelet activation may be an effective treatment for vascular diseases. In this research, inhibitory effects of cordycepin (3'-deoxyadenosine) on platelet activation were determined. As the results, cordycepin increased cAMP and cGMP, which are intracellular Ca2+-antagonists. In addition, cordycepin reduced collagen- 2+ elevated [Ca ]i mobilization, which was increased by a cAMP-dependent protein kinase (PKA) inhibitor (Rp-8-Br- cAMPS), but not a cGMP-protein kinase (PKG) inhibitor (Rp-8-Br-cGMPS). Furthermore, cordycepin increased IP3RI 1756 2+ (Ser ) phosphorylation, indicating inhibition of IP3-mediated Ca release from internal store via the IP3RI, which was strongly inhibited by Rp-8-Br-cAMPS, but was not so much inhibited by Rp-8-Br-cGMPS. These results suggest that the 2+ 1756 reduction of [Ca ]i mobilization is caused by the cAMP/A-kinase-dependent IP3RI (Ser ) phosphorylation. In addition, cordycepin increased the phosphorylation of VASP (Ser157) known as PKA substrate, but not VASP (Ser239) known as PKG substrate. Cordycepin-induced VASP (Ser157) phosphorylation was inhibited by Rp-8-Br-cAMPS, but was not inhibited by Rp-8-Br-cGMPS, and cordycepin inhibited collagen-induced fibrinogen binding to αIIb/β3, which was increased by Rp-8-Br-cAMPS, but was not inhibited by Rp-8-Br-cGMPS.
    [Show full text]
  • Questions with Answers- Nucleotides & Nucleic Acids A. the Components
    Questions with Answers- Nucleotides & Nucleic Acids A. The components and structures of common nucleotides are compared. (Questions 1-5) 1._____ Which structural feature is shared by both uracil and thymine? a) Both contain two keto groups. b) Both contain one methyl group. c) Both contain a five-membered ring. d) Both contain three nitrogen atoms. 2._____ Which component is found in both adenosine and deoxycytidine? a) Both contain a pyranose. b) Both contain a 1,1’-N-glycosidic bond. c) Both contain a pyrimidine. d) Both contain a 3’-OH group. 3._____ Which property is shared by both GDP and AMP? a) Both contain the same charge at neutral pH. b) Both contain the same number of phosphate groups. c) Both contain the same purine. d) Both contain the same furanose. 4._____ Which characteristic is shared by purines and pyrimidines? a) Both contain two heterocyclic rings with aromatic character. b) Both can form multiple non-covalent hydrogen bonds. c) Both exist in planar configurations with a hemiacetal linkage. d) Both exist as neutral zwitterions under cellular conditions. 5._____ Which property is found in nucleosides and nucleotides? a) Both contain a nitrogenous base, a pentose, and at least one phosphate group. b) Both contain a covalent phosphodister bond that is broken in strong acid. c) Both contain an anomeric carbon atom that is part of a β-N-glycosidic bond. d) Both contain an aldose with hydroxyl groups that can tautomerize. ___________________________________________________________________________ B. The structures of nucleotides and their components are studied. (Questions 6-10) 6._____ Which characteristic is shared by both adenine and cytosine? a) Both contain one methyl group.
    [Show full text]
  • Central Nervous System Dysfunction and Erythrocyte Guanosine Triphosphate Depletion in Purine Nucleoside Phosphorylase Deficiency
    Arch Dis Child: first published as 10.1136/adc.62.4.385 on 1 April 1987. Downloaded from Archives of Disease in Childhood, 1987, 62, 385-391 Central nervous system dysfunction and erythrocyte guanosine triphosphate depletion in purine nucleoside phosphorylase deficiency H A SIMMONDS, L D FAIRBANKS, G S MORRIS, G MORGAN, A R WATSON, P TIMMS, AND B SINGH Purine Laboratory, Guy's Hospital, London, Department of Immunology, Institute of Child Health, London, Department of Paediatrics, City Hospital, Nottingham, Department of Paediatrics and Chemical Pathology, National Guard King Khalid Hospital, Jeddah, Saudi Arabia SUMMARY Developmental retardation was a prominent clinical feature in six infants from three kindreds deficient in the enzyme purine nucleoside phosphorylase (PNP) and was present before development of T cell immunodeficiency. Guanosine triphosphate (GTP) depletion was noted in the erythrocytes of all surviving homozygotes and was of equivalent magnitude to that found in the Lesch-Nyhan syndrome (complete hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficiency). The similarity between the neurological complications in both disorders that the two major clinical consequences of complete PNP deficiency have differing indicates copyright. aetiologies: (1) neurological effects resulting from deficiency of the PNP enzyme products, which are the substrates for HGPRT, leading to functional deficiency of this enzyme. (2) immunodeficiency caused by accumulation of the PNP enzyme substrates, one of which, deoxyguanosine, is toxic to T cells. These studies show the need to consider PNP deficiency (suggested by the finding of hypouricaemia) in patients with neurological dysfunction, as well as in T cell immunodeficiency. http://adc.bmj.com/ They suggest an important role for GTP in normal central nervous system function.
    [Show full text]
  • Standard Abbreviations
    Journal of CancerJCP Prevention Standard Abbreviations Journal of Cancer Prevention provides a list of standard abbreviations. Standard Abbreviations are defined as those that may be used without explanation (e.g., DNA). Abbreviations not on the Standard Abbreviations list should be spelled out at first mention in both the abstract and the text. Abbreviations should not be used in titles; however, running titles may carry abbreviations for brevity. ▌Abbreviations monophosphate ADP, dADP ‌adenosine diphosphate, deoxyadenosine IR infrared diphosphate ITP, dITP ‌inosine triphosphate, deoxyinosine AMP, dAMP ‌adenosine monophosphate, deoxyadenosine triphosphate monophosphate LOH loss of heterozygosity ANOVA analysis of variance MDR multiple drug resistance AP-1 activator protein-1 MHC major histocompatibility complex ATP, dATP ‌adenosine triphosphate, deoxyadenosine MRI magnetic resonance imaging trip hosphate mRNA messenger RNA bp base pair(s) MTS ‌3-(4,5-dimethylthiazol-2-yl)-5-(3- CDP, dCDP ‌cytidine diphosphate, deoxycytidine diphosphate carboxymethoxyphenyl)-2-(4-sulfophenyl)- CMP, dCMP ‌cytidine monophosphate, deoxycytidine mono- 2H-tetrazolium phosphate mTOR mammalian target of rapamycin CNBr cyanogen bromide MTT ‌3-(4,5-Dimethylthiazol-2-yl)-2,5- cDNA complementary DNA diphenyltetrazolium bromide CoA coenzyme A NAD, NADH ‌nicotinamide adenine dinucleotide, reduced COOH a functional group consisting of a carbonyl and nicotinamide adenine dinucleotide a hydroxyl, which has the formula –C(=O)OH, NADP, NADPH ‌nicotinamide adnine dinucleotide
    [Show full text]
  • Cancer Science Standard Abbreviations List
    Cancer Science Standard Abbreviations List Common abbreviations, acronyms and short names are listed below. These shortened forms can be used without definition in articles published in Cancer Science. The same form is used in the plural. 7-AAD 7-amino-actinomycin D (stain) ES cell embryonic stem cell Ab antibody EST expressed sequence tag ADP adenosine 5′-diphosphate FACS fluorescence-activated cell sorter dADP 2′-deoxyadenosine 5′-diphosphate FBS fetal bovine serum AIDS acquired immunodeficiency syndrome FCS fetal calf serum Akt protein kinase B FDA Food and Drug Administration AML acute myelogenous leukemia FISH fluorescence in situ hybridization AMP adenosine 5′-monophosphate FITC fluorescein isothiocyanate dAMP 2′-deoxyadenosine 5′-monophosphate FPLC fast protein liquid chromatography ANOVA analysis of variance FRET fluorescence resonance energy transfer ATCC American Type Culture Collection GAPDH glyceraldehyde-3-phosphate dehydrogenase ATP adenosine 5′-triphosphate GDP guanosine 5′-diphosphate dATP 2′-deoxyadenosine 5′-triphosphate dGDP 2′-deoxyguanosine 5′-diphosphate beta-Gal, β-Gal beta-galactosidase GFP green fluorescent protein bp base pair(s) GMP guanosine 5′-monophosphate BrdU 5-bromodeoxyuridine dGMP 2′-deoxyguanosine 5′-monophosphate BSA bovine serum albumin GST glutathione S-transferase CCK-8 Cell Counting Kit-8 (tradename) GTP guanosine 5′-triphosphate CDP cytidine 5′-diphosphate dGTP 2′-deoxyguanosine 5′-triphosphate cCDP 2′-deoxycytidine 5′-diphosphate HA hemagglutinin CHAPS 3-[(3-cholamidopropyl)dimethylamino]-1-
    [Show full text]
  • Plasma Deoxyadenosine, Adenosine, and Erythrocyte Deoxyatp Are Elevated at Birth in an Adenosine Deaminase-Deficient Child
    Plasma deoxyadenosine, adenosine, and erythrocyte deoxyATP are elevated at birth in an adenosine deaminase-deficient child. R Hirschhorn, … , A Rubinstein, P Papageorgiou J Clin Invest. 1980;65(3):768-771. https://doi.org/10.1172/JCI109725. Research Article We have determined concentrations of adenosine, deoxyadenosine, and deoxyATP (dATP) in cord blood from an infant prenatally diagnosed as ADA deficient. Plasma deoxyadenosine and adenosine were already elevated in cord blood (0.7 and 0.5 microM vs. normal of less than 0.07 microM). Elevation of plasma deoxyadenosine has not previously been documented in these children. Erythrocyte dATP content was also elevated at birth (215 nmol/ml packed erythrocytes vs. normal of 2.9). These elevated concentrations of adenosine, deoxyadenosine, and dATP are similar to those we observed in another older adenosine deaminase-deficient patient and may explain the impaired immune function and lymphopenia seen at birth. Find the latest version: https://jci.me/109725/pdf RAPID PUBLICATIONS Plasma Deoiyadenosine, Adenosine, and Erythrocyte deoxyATP are Elevated at Birth in an Adenosine Deaminase-deficient Child ROCHELLE HIRSCHHORN and VIVIAN ROEGNER, Department of Medicine, New York University School of Medicine, New York 10016 ARYE RUBINSTEIN, Department of Pediatrics, Albert Einstein College of Medicine, New York 10461 PHOTINI PAPAGEORGIOU, Department of Pediatrics, Rutgers University Medical School, New Brunswick, Netv Jersey 08854 A B S T RA C T We have determined concentrations of amounts of deoxyadenosine, another substrate of ADA, adenosine, deoxyadenosine, and deoxyATP (dATP) in in their urine (4-11). Additionally, deoxyATP (dATP), a cord blood from an infant prenatally diagnosed as ADA metabolite of deoxyadenosine, is markedly increased deficient.
    [Show full text]