Field Measurements of a High-Energy Headland Deflection Rip Current
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rip Current Observations Via Marine Radar
Rip Current Observations via Marine Radar Merrick C. Haller, M.ASCE1; David Honegger2; and Patricio A. Catalan3 Abstract: New remote sensing observations that demonstrate the presence of rip current plumes in X-band radar images are presented. The observations collected on the Outer Banks (Duck, North Carolina) show a regular sequence of low-tide, low-energy, morphologically driven rip currents over a 10-day period. The remote sensing data were corroborated by in situ current measurements that showed depth-averaged rip current velocities were 20e40 cm=s whereas significant wave heights were Hs 5 0:5e1 m. Somewhat surprisingly, these low-energy rips have a surface signature that sometimes extends several surf zone widths from shore and persists for periods of several hours, which is in contrast with recent rip current observations obtained with Lagrangian drifters. These remote sensing observations provide a more synoptic picture of the rip current flow field and allow the identification of several rip events that were not captured by the in situ sensors and times of alongshore deflection of the rip flow outside the surf zone. These data also contain a rip outbreak event where four separate rips were imaged over a 1-km stretch of coast. For potential comparisons of the rip current signature across other radar platforms, an example of a simply calibrated radar image is also given. Finally, in situ observations of the vertical structure of the rip current flow are given, and a threshold offshore wind stress (.0:02 m=s2)isfoundto preclude the rip current imaging. DOI: 10.1061/(ASCE)WW.1943-5460.0000229. -
What Are Rip Currents? Types of Rips Are Rips Dangerous
What are Rip Currents? Rips are strong, narrow currents that flow from the shoreline seaward past the breaking waves. They exist as a way of getting water carried to the beach by breaking waves back out to sea and are usually confined to deeper channels between shallow sand bars. The bigger the waves, the stronger the rip. Think of them as "rivers of the sea". Types of Rips • Low energy rips are the most common and occur when waves are smaller or haven't changed in a while. They are usually fixed in place and sit in channels between sand bars and don't move much. • High energy or flash rips are bigger and occur when waves have increased suddenly, or during a storm. They tend to move around a bit and flow faster. • Headland and fixed rips are often permanent and occur next to headlands and structures such as groynes and jetties. Low Energy Rip High Energy Rip Are Rips Dangerous? Rips are only dangerous if you don't understand what they are and you are not a good swimmer. They can carry you more than 100 m offshore in less than a minute and are the major cause of surf drownings and rescues in Australia. However, surfers use rips to their advantage to help them swim out through the surf quickly. Page1of2 © 2007 Dr R Brander continued Spotting a Rip Since rips often sit in deeper channels between shallow sand bars, always spend 5-10 minutes looking at the surf zone for consistent darker and "calmer" areas of water that extend offshore between the breaking waves. -
Estimation of Significant Wave Height Using Satellite Data
Research Journal of Applied Sciences, Engineering and Technology 4(24): 5332-5338, 2012 ISSN: 2040-7467 © Maxwell Scientific Organization, 2012 Submitted: March 18, 2012 Accepted: April 23, 2012 Published: December 15, 2012 Estimation of Significant Wave Height Using Satellite Data R.D. Sathiya and V. Vaithiyanathan School of Computing, SASTRA University, Thirumalaisamudram, India Abstract: Among the different ocean physical parameters applied in the hydrographic studies, sufficient work has not been noticed in the existing research. So it is planned to evaluate the wave height from the satellite sensors (OceanSAT 1, 2 data) without the influence of tide. The model was developed with the comparison of the actual data of maximum height of water level which we have collected for 24 h in beach. The same correlated with the derived data from the earlier satellite imagery. To get the result of the significant wave height, beach profile was alone taking into account the height of the ocean swell, the wave height was deduced from the tide chart. For defining the relationship between the wave height and the tides a large amount of good quality of data for a significant period is required. Radar scatterometers are also able to provide sea surface wind speed and the direction of accuracy. Aim of this study is to give the relationship between the height, tides and speed of the wind, such relationship can be useful in preparing a wave table, which will be of immense value for mariners. Therefore, the relationship between significant wave height and the radar backscattering cross section has been evaluated with back propagation neural network algorithm. -
Identification of Rip Current Hazards Using Fluorescent Dye and Unmanned Aerial Vehicle (A Case Study of Drini Beach, Gunungkidul, Indonesia)
https://doi.org/10.5194/nhess-2021-221 Preprint. Discussion started: 23 August 2021 c Author(s) 2021. CC BY 4.0 License. Identification of Rip Current Hazards Using Fluorescent Dye And Unmanned Aerial Vehicle (A Case Study Of Drini Beach, Gunungkidul, Indonesia) 5 1Hendy Fatchurohman1, Alfiatun Nur Khasanah1, Ahmad Cahyadi2 1Department of Earth Science, Vocational College, Universitas Gadjah Mada. Sekip Utara Jalan Kaliurang, Bulaksumur, Yogyakarta, Indonesia, 55281 2Department of Environmental Geography, Faculty of Geography, Universitas Gadjah Mada. Sekip Utara Jalan Kaliurang, 10 Bulaksumur, Yogyakarta, Indonesia, 55281 Correspondence to: Hendy Fatchurohman ([email protected]) Abstract. Coastal tourism is a leading sector substantially contributing to the regional income of Gunungkidul Regency, 15 Indonesia. However, with more tourists visiting the beach, more lives are threatened by coastal hazards. Rip currents are a channel of powerful, narrow, fast-moving water that can carry floating objects away from the shore, presenting one of the most common coastal hazards to swimmers. Unfortunately, most tourists are unaware of rip currents and their threats and how to avoid them. This study was designed to identify the types and dimensions of rip current in one of the regency’s tourist attractions, Drini Beach. For this purpose, an environmentally friendly fluorescent dye, Uranine, was injected from the 20 shoreline, then the velocity and direction of its movements were observed from aerial video footage captured with a drone. Results showed stationary rip currents with a narrow channel, called a channel rip, with the mean dimensions: 250 m from the shoreline to the head and 10.25 m in width. -
Rip Current Generation and Management Implications in South Florida
MOJ Ecology & Environmental Sciences Research Article Open Access Rip current generation and management implications in south Florida Abstract Volume 3 Issue 3 - 2018 Miami Beach is one of the most dangerous beaches for rip current drownings in the Stephen B Leatherman United States. There are three principal wave generators that result in rip currents: Department of Earth & Environment, Florida International onshore winds associated with high pressure cells, swell waves produced by offshore University, USA nor’easters, and tropical storms. A logistic regression analysis showed a correlation between rip currents, wave height and month of the year even under low wave energy Correspondence: Stephen B Leatherman, Department of conditions at Miami area beaches. Most rips were found to occur during 15–20 knot Earth & Environment, Florida International University, 11200 onshore winds with 0.6–0.9m significant wave height. Eleven social, physical and SW 8th Street, Florida Miami, Florida 33199, USA, Tel 1305- safety factors make Miami Beach a rip current hotspot and pose a major coastal 3482-00, Email [email protected] management challenge. Received: November 16, 2017 | Published: May 31, 2018 Keywords: rip current forecasting, rip current drowning, rip current hot spots, safety factors, beaches Introduction generated by 0.6 to 1.2 m waves during fair–weather conditions, which seem like perfect beach days, making these rips deceptively dangerous South Florida is a tourism destination that is well known for its to bathers. Another type of rip generator is nor’easters offshore the beaches. Miami Beach is one of the ten most famous beaches in the mid–Atlantic and Northeast coast, which produce large swells (Figure 1 world and boasts of tens of millions of visitors each year. -
Reef Rip Current Generated by Tide and Wave During Summer Season: Field Observation Conducted in Yoshiwara Coast, Ishigakijima, Okinawa, Japan
Proceedings of the 11th International Coral Reef Symposium, Ft. Lauderdale, Florida, 7-11 July 2008 Session number 15 Reef Rip Current Generated by Tide and Wave during Summer Season: Field Observation Conducted in Yoshiwara Coast, Ishigakijima, Okinawa, Japan M.P. de Leon1, R. Nishi2, F. Kumasaka3, T. Takaesu4, R. Kitamura5, A. Otani6 1) Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima, Japan 2) Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, Japan 3) Japan Hydrographic Association, Tsukiji, Tokyo, Japan 4) Marine Information Science, 11th Japan Coast Guard, Naha, Okinawa, Japan 5) Department of Ocean Civil Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima, Japan 6) IO Technic, 2-28-19 Minami, Tsukushino, Machida, Tokyo, Japan Abstract. In 2004 and 2005, five drowning accidents in Ishigakijima, Okinawa were documented by Japan Coast Guard and were found to be caused by a strong offshore current commonly known as “reef current”. This type of current has been identified to be responsible in generating the circulation of water and transportation of sediment in coral reefs. In this paper, however, high-speed offshore current in coral reefs is specifically referred to as “reef rip current”. Considering that the generation mechanism of reef rip current is not revealed yet, the researchers conducted a hydrodynamic study in Yoshiwara Coast, Ishigakijima, Okinawa in two phases (normal and storm conditions) during summer season to determine the location and time of occurrence of the strong offshore current that will significantly address safe utilization of coral reef and carbonate beach thereby reducing drowning accidents. -
Deep Ocean Wind Waves Ch
Deep Ocean Wind Waves Ch. 1 Waves, Tides and Shallow-Water Processes: J. Wright, A. Colling, & D. Park: Butterworth-Heinemann, Oxford UK, 1999, 2nd Edition, 227 pp. AdOc 4060/5060 Spring 2013 Types of Waves Classifiers •Disturbing force •Restoring force •Type of wave •Wavelength •Period •Frequency Waves transmit energy, not mass, across ocean surfaces. Wave behavior depends on a wave’s size and water depth. Wind waves: energy is transferred from wind to water. Waves can change direction by refraction and diffraction, can interfere with one another, & reflect from solid objects. Orbital waves are a type of progressive wave: i.e. waves of moving energy traveling in one direction along a surface, where particles of water move in closed circles as the wave passes. Free waves move independently of the generating force: wind waves. In forced waves the disturbing force is applied continuously: tides Parts of an ocean wave •Crest •Trough •Wave height (H) •Wavelength (L) •Wave speed (c) •Still water level •Orbital motion •Frequency f = 1/T •Period T=L/c Water molecules in the crest of the wave •Depth of wave base = move in the same direction as the wave, ½L, from still water but molecules in the trough move in the •Wave steepness =H/L opposite direction. 1 • If wave steepness > /7, the wave breaks Group Velocity against Phase Velocity = Cg<<Cp Factors Affecting Wind Wave Development •Waves originate in a “sea”area •A fully developed sea is the maximum height of waves produced by conditions of wind speed, duration, and fetch •Swell are waves -
Swell and Wave Forecasting
Lecture 24 Part II Swell and Wave Forecasting 29 Swell and Wave Forecasting • Motivation • Terminology • Wave Formation • Wave Decay • Wave Refraction • Shoaling • Rouge Waves 30 Motivation • In Hawaii, surf is the number one weather-related killer. More lives are lost to surf-related accidents every year in Hawaii than another weather event. • Between 1993 to 1997, 238 ocean drownings occurred and 473 people were hospitalized for ocean-related spine injuries, with 77 directly caused by breaking waves. 31 Going for an Unintended Swim? Lulls: Between sets, lulls in the waves can draw inexperienced people to their deaths. 32 Motivation Surf is the number one weather-related killer in Hawaii. 33 Motivation - Marine Safety Surf's up! Heavy surf on the Columbia River bar tests a Coast Guard vessel approaching the mouth of the Columbia River. 34 Sharks Cove Oahu 35 Giant Waves Peggotty Beach, Massachusetts February 9, 1978 36 Categories of Waves at Sea Wave Type: Restoring Force: Capillary waves Surface Tension Wavelets Surface Tension & Gravity Chop Gravity Swell Gravity Tides Gravity and Earth’s rotation 37 Ocean Waves Terminology Wavelength - L - the horizontal distance from crest to crest. Wave height - the vertical distance from crest to trough. Wave period - the time between one crest and the next crest. Wave frequency - the number of crests passing by a certain point in a certain amount of time. Wave speed - the rate of movement of the wave form. C = L/T 38 Wave Spectra Wave spectra as a function of wave period 39 Open Ocean – Deep Water Waves • Orbits largest at sea sfc. -
Earth's Atmosphere
Earth & Space Science Packet April 20th- May 1st, 2020 Griffin & King This packet contains: 1. Worksheets for Ocean Floor, Ocean Water and Ocean Life, Earth’s Atmosphere 2. All About Waves Article 3. Atmospheric Density Lab What needs to be turned in for a GRADE? ● Worksheets with questions answered (Ocean Floor and Ocean Water/Life is April 20-24; Atmosphere is April 27-May 1) Optional/Enrichment included: ● Labs ● Science Articles If these are completed, we would LOVE for you to share: Send us pictures on remind/email, or tag @TheBurgScience and #Team DCS on Twitter EARTH & SPACE SCIENCE GRIFFIN & KING THE OCEAN FLOOR ___ THE VAST WORLD OCEAN ● Nearly 70 percent of Earth’s surface is covered by the global ocean. ● Oceanography is a science that draws on the methods and knowledge of geology, chemistry, physics, and biology to study all aspects of the world ocean. ● The world ocean can be divided into four main ocean basins- the Pacific Ocean, the Atlantic Ocean, the Indian Ocean, and the Arctic Ocean. ● The topography of the ocean floor is as diverse as that of continents. ● Bathymetry (bathos=depth, metry=measurement) is the measurement of ocean depths and the charting of the shape or topography of the ocean floor. ● Today’s technology- particular sonar, satellites, and submersibles- allows scientists to study the ocean floor in a more efficient and precise manner than ever before. ● Sonar is an acronym for sound navigation and ranging. Sonar calculates ocean depth by recording the time it takes sound waves to reach the ocean floor and return. -
Statistics of Extreme Waves in Coastal Waters: Large Scale Experiments and Advanced Numerical Simulations
fluids Article Statistics of Extreme Waves in Coastal Waters: Large Scale Experiments and Advanced Numerical Simulations Jie Zhang 1,2, Michel Benoit 1,2,* , Olivier Kimmoun 1,2, Amin Chabchoub 3,4 and Hung-Chu Hsu 5 1 École Centrale Marseille, 13013 Marseille, France; [email protected] (J.Z.); [email protected] (O.K.) 2 Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE UMR 7342, 13013 Marseille, France 3 Centre for Wind, Waves and Water, School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia; [email protected] 4 Marine Studies Institute, The University of Sydney, Sydney, NSW 2006, Australia 5 Department of Marine Environment and Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; [email protected] * Correspondence: [email protected] Received: 7 February 2019; Accepted: 20 May 2019; Published: 29 May 2019 Abstract: The formation mechanism of extreme waves in the coastal areas is still an open contemporary problem in fluid mechanics and ocean engineering. Previous studies have shown that the transition of water depth from a deeper to a shallower zone increases the occurrence probability of large waves. Indeed, more efforts are required to improve the understanding of extreme wave statistics variations in such conditions. To achieve this goal, large scale experiments of unidirectional irregular waves propagating over a variable bottom profile considering different transition water depths were performed. The validation of two highly nonlinear numerical models was performed for one representative case. The collected data were examined and interpreted by using spectral or bispectral analysis as well as statistical analysis. -
Aucelli Et Al
Rip current evidence by hydrodynamic simulations, bathymetric surveys and UAV observation Guido Benassai1, Pietro Aucelli2, Giorgio Budillon2, Massimo De Stefano2, Diana Di Luccio2, Gianluigi Di Paola2, Raffaele Montella2, Luigi Mucerino3, Mario Sica4, and Micla Pennetta5 1Department of Engineering, University of Naples Parthenope 2Department of Science and Technology, University of Naples Parthenope 3Department of Earth, Environment and Life Sciences, University of Genova 4Autorità di Bacino Campania Centrale 5Department of Earth, Environment and Resources Sciences, University of Naples Federico II Correspondence to: Guido Benassai ([email protected]) Abstract. The prediction of the formation, spacing and location of rip currents is a scientific challenge that can be achieved by means of different complementary methods. In this paper the analysis of numerical and experimental data, including RPAS (Remotely Piloted Aircraft Systems) observations, allowed to detect the presence of rip currents and rip channels at the mouth of Sele river, in the Gulf of Salerno, southern Italy. The dataset used to analyze these phenomena consisted of two different 5 bathymetric surveys, a detailed sediment analysis and a set of high-resolution wave numerical simulations, completed with Google EarthTM images and RPAS observations. The grain size trend analysis and the numerical simulations allowed to identify the rip current occurrence, forced by topographically constrained channels incised on the seabed, which were compared with observations. Keywords: rip-currents, hydrodynamic simulations, transport vectors, UAV observation. 10 1 Introduction The monitoring and the forecasting of beach processes become particularly critical along the unstable coastal areas, possibly subjected to coastal vulnerability (Di Paola et al. (2014)), and coastal risk due to sea level rise (Benassai et al. -
Random Wave Analysis
RANDOM WA VE ANALYSIS The goal of this handout is to consider statistical and probabilistic descriptions of random wave heights and periods. In design, random waves are often represented by a single characteristic wave height and wave period. Most often, the significant wave height is used to represent wave heights in a random sea. It is important to understand, however, that wave heights have some statistical variability about this representative value. Knowledge of the probability distribution of wave heights is therefore essential to fully describe the range of wave conditions expected, especially the extreme values that are most important for design. Short Term Statistics of Sea Waves: Short term statistics describe the probabilities of qccurrence of wave heights and periods that occur within one observation or measurement of ocean waves. Such an observation typically consists of a wave record over a short time period, ranging from a few minutes to perhaps 15 or 30 minutes. An example is shown below in Figure 1 for a 150 second wave record. @. ,; 3 <D@ Q) Q ® ®<V®®®@@@ (fJI@ .~ ; 2 "' "' ~" '- U)" 150 ~ -Il. Time.I (s) ;:::" -2 Figure 1. Example of short term wave record from a random sea (Goda, 2002) . ' Zero-Crossing Analysis The standard. method of determining the short-term statistics of a wave record is through the zero-crossing analysis. Either the so-called zero-upcrossing method or the zero downcrossing method may be used; the statistics should be the same for a sufficiently long record. Figure 1 shows the results from a zero-upcrossing analysis. In this case, the mean water level is first determined.