LC-HRMS Profiling and Antidiabetic, Antioxidant, and Antibacterial Activities of Acacia Catechu (L.F.) Willd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ICAFEE 2019 Abstract Book.Pdf
ICAFEE 2019 18 – 21, October 2019, Taichung, Taiwan The 4th International Conference on Alternative Fuels, Energy and Environment (ICAFEE): Future and Challenges 18th – 21st, October 2019 Feng Chia University, Taichung, Taiwan Contents Welcome Messages ........................................... 2 Committee Members ......................................... 5 Our Partners and Sponsors .............................17 Speakers ...........................................................18 ICAFEE 2019 Programme .................................26 Venue ................................................................36 Journals Special Issues ...................................37 Conference and Hotels.....................................38 Airport and Transfer Information ....................39 List of Submissions .........................................41 Abstract .............................................................61 Plenary speaker ...........................................61 Keynote speaker ..........................................63 Invited speaker .............................................70 Oral and Poster papers ................................86 -1- ICAFEE 2019 18 – 21, October 2019, Taichung, Taiwan Welcome Messages Welcome Message from ICAFEE 2019 chairs The International Conference on Alternative Fuels, Energy and Environment (ICAFEE series) is a leading international forum established in 2016 and aims to provide a good platform for scholars, researchers and industry representatives to discuss the latest developments, -
WO 2017/210163 Al 07 December 2017 (07.12.2017) W !P O PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/210163 Al 07 December 2017 (07.12.2017) W !P O PCT (51) International Patent Classification: (72) Inventor: DOUGHAN, Ben; 5400 Corporate Circle, A01N 63/00 (2006.01) C12N 1/14 (2006.01) Salem, Virginia 24153 (US). CI2N 1/04 (2006.01) (74) Agent: RUCKER, Adam L et al; Novozymes North (21) International Application Number: America, Inc., 77 Perry Chapel Church Rd., P.O. Box 576, PCT/US20 17/03495 1 Franklinton, North Carolina 27525 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 30 May 2017 (30.05.2017) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (25) Filing Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (26) Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, (30) Priority Data: KW,KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 31 May 2016 (3 1.05.2016) 62/343,217 US MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 62/347,773 09 June 2016 (09.06.2016) US PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 62/5 11,408 26 May 2017 (26.05.2017) us SD, SE, SG, SK, SL, SM, ST, SV, SY,TH, TJ, TM, TN, TR, (71) Applicant: NOVOZYMES BIOAG A S [DK/DK]; TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. -
Phytochemical Analysis, Antidiabetic Potential and In-Silico Evaluation of Some Medicinal Plants
Pharmacogn Res. 2021; 13(3):140-148 A Multifaceted Journal in the field of Natural Products and Pharmacognosy Original Article www.phcogres.com | www.phcog.net Phytochemical Analysis, Antidiabetic Potential and in-silico Evaluation of Some Medicinal Plants Basanta Kumar Sapkota1,2, Karan Khadayat1, Bikash Adhikari1, Darbin Kumar Poudel1, Purushottam Niraula1, Prakriti Budhathoki1, Babita Aryal1, Kusum Basnet1, Mandira Ghimire1, Rishab Marahatha1, Niranjan Parajuli1,* ABSTRACT Background: The increasing frequency of diabetes patients and the reported side effects of commercially available anti-hyperglycemic drugs have gathered the attention of researchers towards the search for new therapeutic approaches. Inhibition of activities of carbohydrate hydrolyzing enzymes is one of the approaches to reduce postprandial hyperglycemia by delaying digestion and absorption of carbohydrates. Objectives: The objective of the study was to investigate phytochemicals, antioxidants, digestive enzymes inhibitory effect, and molecular docking of potent extract. Materials and Methods: In this study, we carry out the substrate- Basanta Kumar Sapkota1,2, based α-glucosidase and α-amylase inhibitory activity of Asparagus racemosus, Bergenia Karan Khadayat1, Bikash ciliata, Calotropis gigantea, Mimosa pudica, Phyllanthus emblica, and Solanum nigrum along Adhikari1, Darbin Kumar with the determination of total phenolic and flavonoids contents. Likewise, the antioxidant Poudel1, Purushottam activity was evaluated by measuring the scavenging of DPPH radical. Additionally, -
Food & Function
Food & Function View Article Online REVIEW View Journal | View Issue Roles of proanthocyanidin rich extracts in obesity Cite this: Food Funct., 2015, 6, 1053 M. Josepa Salvadó,* Ester Casanova, Anabel Fernández-Iglesias, Lluis Arola and Cinta Bladé Obesity is a multifactorial disorder involving an abnormal or excessive amount of body fat. Obese people have a very high probability of developing metabolic syndrome, a condition in which cholesterol, lipid, and glucose levels rise, causing diabetes and heart disease. From the point of view of energy balance, the main contributors to obesity are excessive energy intake, inadequate energy expenditure and metabolic malfunctions. For this reason, health organisations are working to implement policies and plans to promote healthy eating and active living. However, these measures have not yet proven sufficient to combat this worldwide epidemic; therefore, drugs and bioactive compounds are being investigated to complement the existing strategies. In the present review, we discuss the available data regarding the Received 13th November 2014, modulation of obesity by proanthocyanidin rich extracts. Because studies with human subjects are very Accepted 22nd January 2015 scarce, we focus on studies using laboratory animals. The results of in vitro studies are included because, Creative Commons Attribution-NonCommercial 3.0 Unported Licence. DOI: 10.1039/c4fo01035c although they cannot be directly extrapolated to the biological effects of proanthocyanidin, they can www.rsc.org/foodfunction reveal some mechanisms -
Engineering of Microbial Cell Factories for the Production of Plant Polyphenols with Health-Beneficial Properties
Downloaded from orbit.dtu.dk on: Sep 30, 2021 Engineering of Microbial Cell Factories for the Production of Plant Polyphenols with Health-Beneficial Properties Dudnik, Alexey; Gaspar, Paula; Neves, Ana Rute; Forster, Jochen Published in: Current Pharmaceutical Design Link to article, DOI: 10.2174/1381612824666180515152049 Publication date: 2018 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Dudnik, A., Gaspar, P., Neves, A. R., & Forster, J. (2018). Engineering of Microbial Cell Factories for the Production of Plant Polyphenols with Health-Beneficial Properties. Current Pharmaceutical Design, 24(19), 2208-2225. https://doi.org/10.2174/1381612824666180515152049 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 1 TITLE 2 Engineering of Microbial Cell Factories for the Production of Plant Polyphenols with Health-Beneficial 3 Properties 4 RUNNING TITLE 5 Microbial production of polyphenols 6 7 AUTHORS 8 Alexey Dudnik1,#,*, Paula Gaspar1,3,#, Ana Rute Neves2 and Jochen Forster1 9 10 1 Applied Metabolic Engineering Group, The Novo Nordisk Foundation Center for Biosustainability, 11 Technical University of Denmark, Kemitorvet, Building 220, DK-2800, Kgs. -
Docking Characterization and in Vitro Inhibitory Activity of Flavan-3-Ols and Dimeric Proanthocyanidins Against the Main Protease Activity of SARS-Cov-2
ORIGINAL RESEARCH published: 30 November 2020 doi: 10.3389/fpls.2020.601316 Docking Characterization and in vitro Inhibitory Activity of Flavan-3-ols and Dimeric Proanthocyanidins Against the Main Protease Activity of SARS-Cov-2 Yue Zhu and De-Yu Xie* Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States We report to use the main protease (Mpro) of SARS-Cov-2 to screen plant flavan-3-ols and proanthocyanidins. Twelve compounds, (–)-afzelechin (AF), (–)-epiafzelechin (EAF), (+)-catechin (CA), (–)-epicatechin (EC), (+)-gallocatechin (GC), (–)-epigallocatechin Edited by: (EGC), (+)-catechin-3-O-gallate (CAG), (–)-epicatechin-3-O-gallate (ECG), Guodong Wang, Chinese Academy of Sciences, China (–)-gallocatechin-3-O-gallate (GCG), (–)-epigallocatechin-3-O-gallate (EGCG), Reviewed by: procyanidin A2 (PA2), and procyanidin B2 (PB2), were selected for docking simulation. pro Hiroshi Noguchi, The resulting data predicted that all 12 metabolites could bind to M . The affinity Nihon Pharmaceutical scores of PA2 and PB2 were predicted to be −9.2, followed by ECG, GCG, EGCG, University, Japan Ericsson Coy-Barrera, and CAG, −8.3 to −8.7, and then six flavan-3-ol aglycones, −7.0 to −7.7. Docking Universidad Militar Nueva characterization predicted that these compounds bound to three or four subsites (S1, Granada, Colombia S1′, S2, and S4) in the binding pocket of Mpro via different spatial ways and various *Correspondence: De-Yu Xie formation of one to four hydrogen bonds. In vitro analysis with 10 available compounds pro [email protected] showed that CAG, ECG, GCG, EGCG, and PB2 inhibited the M activity with an IC50 value, 2.98 ± 0.21, 5.21 ± 0.5, 6.38 ± 0.5, 7.51 ± 0.21, and 75.3 ± 1.29 µM, Specialty section: respectively, while CA, EC, EGC, GC, and PA2 did not have inhibitory activities. -
Polymerization Degrees, Molecular Weights and Protein-Binding Affinities of Condensed Tannin Fractions from a Leucaena Leucocephala Hybrid
Molecules 2014, 19, 7990-8010; doi:10.3390/molecules19067990 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Polymerization Degrees, Molecular Weights and Protein-Binding Affinities of Condensed Tannin Fractions from a Leucaena leucocephala Hybrid Mookiah Saminathan 1, Hui Yin Tan 2, Chin Chin Sieo 1,3, Norhani Abdullah 3,4, Clemente Michael Vui Ling Wong 5, Emilia Abdulmalek 6 and Yin Wan Ho 1,* 1 Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mails: [email protected] (M.S.); [email protected] (C.C.S.) 2 Faculty of Applied Sciences and Computing, Tunku Abdul Rahman University College, 53300 Kuala Lumpur, Malaysia; E-Mail: [email protected] 3 Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mail: [email protected] 4 Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia 5 Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia; E-Mail: [email protected] 6 Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +603-8947-2161; Fax: +603-8947-2101. Received: 18 March 2014; in revised form: 11 May 2014 / Accepted: 21 May 2014 / Published: 12 June 2014 Abstract: Condensed tannins (CTs) form insoluble complexes with proteins and are able to protect them from degradation, which could lead to rumen bypass proteins. Depending on their degrees of polymerization (DP) and molecular weights, CT fractions vary in their capability to bind proteins. -
Novel Myxobacteria As a Potential Source of Natural Products and Description of Inter-Species Nature of C-Signal
Novel myxobacteria as a potential source of natural products and description of inter-species nature of C-signal Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften der Naturwissenschaftlich-Technischen Fakultät III Chemie, Pharmazie, Bio- und Werkstoffwissenschaften der Universität des Saarlandes von Ram Prasad Awal (M. Sc. in Medical Microbiology) Saarbrücken 2016 Tag des Kolloquiums: ......19.12.2016....................................... Dekan: ......Prof. Dr. Guido Kickelbick.............. Berichterstatter: ......Prof. Dr. Rolf Müller...................... ......Prof. Dr. Manfred J. Schmitt........... ............................................................... Vositz: ......Prof. Dr. Uli Kazmaier..................... Akad. Mitarbeiter: ......Dr. Jessica Stolzenberger.................. iii Diese Arbeit entstand unter der Anleitung von Prof. Dr. Rolf Müller in der Fachrichtung 8.2, Pharmazeutische Biotechnologie der Naturwissenschaftlich-Technischen Fakultät III der Universität des Saarlandes von Oktober 2012 bis September 2016. iv Acknowledgement Above all, I would like to express my special appreciation and thanks to my advisor Professor Dr. Rolf Müller. It has been an honor to be his Ph.D. student and work in his esteemed laboratory. I appreciate for his supervision, inspiration and for allowing me to grow as a research scientist. Your guidance on both research as well as on my career have been invaluable. I would also like to thank Professor Dr. Manfred J. Schmitt for his scientific support and suggestions to my research work. I am thankful for my funding sources that made my Ph.D. work possible. I was funded by Deutscher Akademischer Austauschdienst (DAAD) for 3 and half years and later on by Helmholtz-Institute. Many thanks to my co-advisors: Dr. Carsten Volz, who supported and guided me through the challenging research and Dr. Ronald Garcia for introducing me to the wonderful world of myxobacteria. -
Catechins As Emerging and Promising Antiparasitic Agents
Short Communication ISSN: 2574 -1241 DOI: 10.26717/BJSTR.2020.30.004895 Catechins as Emerging and Promising Antiparasitic Agents Raúl Argüello-García*1 and Geovanna Nallely Quiñonez-Bastidas2 11Departamento de Genética y Biología Molecular, México 2Departamento de Farmacia, Facultad de Química, México *Corresponding author: Raul Arguello Garcia, Departamento de Genética y Biología Molecular, CINVESTAV-IPN, 07360 México City, México ARTICLE INFO ABSTRACT Received: August 17, 2020 Catechins are polyphenols present in green tea and other plant species as a defense Published: against pathogen insults that profile their health-promoting and anti-infectious activities September 07, 2020 in humans. Worth noting their anti-parasite effects have emerged in recent years. In this Citation: Giardia, Entamoeba) and intracellular, apicomplexan Nallely Quiñonez-Bastidas. Catechins as review,Plasmodium we focus on the effect of catechinsTrypanosoma over, growthLeishmania and )pathogenic protozoa and mechanisms nematodes of of a Emerging Raúland Argüello-García,Promising Antiparasitic Geovanna variety of extracellular,Teladorsagia anaerobic, Trichostrongylus( , Ascaris and Haemonchus ( ) and kinetoplastid ( 2020. BJSTR. MS.ID.004895. livestock impact as . Moreover, Agents. Biomed J Sci & Tech Res 30(1)- an inhibitory effect of (galloyl)-catechins on allergenic proteases from mites has been secondaryreported. Altogether,effects and drugthese resistance data pinpoint in parasitic (galloyl)-catechins infections. as candidates for novel alternatives in therapeutic -
Colonic Metabolism of Phenolic Compounds: from in Vitro to in Vivo Approaches Juana Mosele
Nom/Logotip de la Universitat on s’ha llegit la tesi Colonic metabolism of phenolic compounds: from in vitro to in vivo approaches Juana Mosele http://hdl.handle.net/10803/378039 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. -
Antibacterial, Antifungal, Antiviral, and Anthelmintic Activities of Medicinal Plants of Nepal Selected Based on Ethnobotanical Evidence
Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2020, Article ID 1043471, 14 pages https://doi.org/10.1155/2020/1043471 Research Article Antibacterial, Antifungal, Antiviral, and Anthelmintic Activities of Medicinal Plants of Nepal Selected Based on Ethnobotanical Evidence Bishnu Joshi ,1,2 Sujogya Kumar Panda ,3 Ramin Saleh Jouneghani,1 Maoxuan Liu,1 Niranjan Parajuli ,4 Pieter Leyssen,5 Johan Neyts,5 and Walter Luyten 3 1Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Box 921, 3000 Leuven, Belgium 2Central Department of Biotechnology, Tribhuvan University, Kirtipur, 9503 Kathmandu, Nepal 3Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium 4Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal 5Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, 3000 Leuven, Belgium Correspondence should be addressed to Bishnu Joshi; [email protected] and Sujogya Kumar Panda; sujogyapanda@ gmail.com Bishnu Joshi and Sujogya Kumar Panda contributed equally to this work. Received 8 December 2019; Revised 18 March 2020; Accepted 25 March 2020; Published 22 April 2020 Academic Editor: Carlos H. G. Martins Copyright © 2020 Bishnu Joshi et al. 0is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. Infections by microbes (viruses, bacteria, and fungi) and parasites can cause serious diseases in both humans and animals. Heavy use of antimicrobials has created selective pressure and caused resistance to currently available antibiotics, hence the need for finding new and better antibiotics. Natural products, especially from plants, are known for their medicinal properties, including antimicrobial and anthelmintic activities. -
Niranjan Parajuli Et Al Paper
Journal of Institute of Science and Technology, 24(2), 7-16 (2019) ISSN: 2469-9062 (print), 2467-9240 (e) © IOST, Tribhuvan University Doi: http://doi.org/10.3126/jist.v24i2.27246 Research Article ISOLATION AND CHARACTERIZATION OF SOIL MYXOBACTERIA FROM NEPAL Nabin Rana1, Saraswoti Khadka1, Bishnu Prasad Marasini1, Bishnu Joshi1, Pramod Poudel2, Santosh Khanal1, Niranjan Parajuli3 1Department of Biotechnology, National College, Tribhuvan University, Naya Bazar, Kathmandu, Nepal 2Research Division, University Grant Commission (UGC-Nepal), Sanothimi, Bhaktapur, Nepal 3Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal *Corresponding author: [email protected] (Received: May 22, 2019; Revised: October 26, 2019; Accepted: November 1, 2019) ABSTRACT Realizing myxobacteria as a potential source of antimicrobial metabolites, we pursued research to isolate myxobacteria showing antimicrobial properties. We have successfully isolated three strains (NR-1, NR-2, NR-3) using the Escherichia coli baiting technique. These isolates showed typical myxobacterial growth characteristics. Phylogenetic analysis showed that all the strains (NR-1, NR-2, NR-3) belong to the family Archangiaceae, suborder Cystobacterineae, and order Myxococcales. Furthermore, 16S rRNA gene sequence similarity searched through BLAST revealed that strain NR-1 showed the closest similarity (91.8 %) to the type strain Vitiosangium cumulatum (NR-156939), NR-2 showed (98.8 %) to the type of Cystobacter badius (NR-043940), and NR-3 showed the closest similarity (83.5 %) to the type of strain Cystobacter fuscus (KP-306730). All isolates showed better growth in 0.5-1 % NaCl and pH around 7.0, whereas no growth was observed at pH 9.0 and below 5.0. All strains showed better growth at 32° C and hydrolyzed starch, whereas casein was efficiently hydrolyzed by NR-1 and NR-2.