Commercail Wildflower Production in the FYNBOS Biome and Its Role In

Total Page:16

File Type:pdf, Size:1020Kb

Commercail Wildflower Production in the FYNBOS Biome and Its Role In COMMERCIAL WILDFLOWER PRODUCTION IN THE FYNBOS BIOME AND ITS ROLE IN THE MANAGEMENT OF LAND-USE BY GEORGE WILLIAM DAVIS A THESIS PRESENTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE DEPARTMENT OF BOTANY FACULTY OF SCIENCE UNIVERSITY OF CAPE TOWN FEBRUARY 1990 University of Cape Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town To the spirit ofjustice, peace, and co-operation which must prevail for conservation of a viable human environment in South Africa ABSTRACT The wildflower industry of the Cape, South Africa, utilizes ecosystems and vegetation of the Fynbos Biome either directly by harvesting of natural plant populations, or indirectly by land transformation for agro-horticultural production. This thesis reports on a study of conservation and management issues arising from: (a) direct veld-harvesting; and (b) primary annexation of land for controlled production of material. A review of the industry's structure and the controlling legislation, indicated a need for integration of current management strategies. A potential means of anticipating population degradation and local extinction of plant species through over-utilization was investigated by construction of a computer model. Lack of data describing the flow of material and revenue was highlighted as an impediment to resource management by means if modelling. Experimental work investigated the effects of marginal cultivation on mountain fynbos ecosystems as utilized by the industry. Work was conducted at a site in the Highlands Forest Reserve in the south-western Cape. This experimental system was cleared by burning, and tilled as if for commercial production. Disturbance effects on system parameters were monitored. These included energy and water regimes, aspects of community structure, plant growth, and water relations of the natural vegetation. Results showed that tillage altered the system during the dry summer months by increasing reflectivity of the soil surface to solar radiation, reducing soil temperatures, and increasing soil water content. Response of the vegetation included reduction of species richness and diversity, a reduction in projected foliar cover, and an increase in the productivity of some, but not all, of the naturally occurring dominant species. Two commercially favoured species of Protea were also introduced to the site. Survival and productivity of these populations were monitored as responses to substrate disturbance. Results showed that the treatment was significantly associated with better survival for P. cynaroides, but better productivity for P. repens. A concluding review suggests that there are general paradigmatic blocks between the economic and ecological facets of natural resource utilization which prevent implementation of optimal environmental management strategies. The wildflower industry is nominated as a small bridge for that gap. i CAPTIONS TO PHOTOGRAPHS IN FRONTISPIECE 1. Flowers and foliage of the "greens" species Erica longifo/ia are harvested from the veld in the south- west.em Cape (see Chapter 1) · 2. Protea species growing under orchard cultivation in the south-west.em Cape (see Chapter 1) 3. Protea repens inflorescences for sale at a street market in Cape.Town (see Chapter 1) 4. Strip tillage for cultivation of proteaceous floricultural material on a farm near Kleinmond, south­ west.em Cape. This is the same approach as adopted for the experimental work described in Chapters 4 to 7 S. Clearing vegetation at the Highlands study site by fire prior to experimental work (see Chapters 4 to 7) 6. Mature vegetation at the Highlands study site prior to clearing, with the yellow leaves of Leucadendron xanthoconus visible in the foreground (Chapter 3) 7. The Highlands study site following tillage by rotavation, with planted Protea cynaroides visible on the tilled soil at the right (see Chapters 4 to 7) TABLE OF CONTENTS ABSTRACT ............................................................................................................................ .i TABLE OF CONTENTS ..................................................................................................... iv LIST OF FIGURES ........................................................................................................... viii LIST OF TABLES ................................................................................................................. x PREFACE .............................................................................................................................. xi ACKNOWLEDGEMENTS ............................................................................................. xiii GUIDE TO READING THIS THESIS ........................................................................... xv SUMMARY ....................................................................................................................... xvii CHAPTER 1 THE COMMERCIAL WILDFLOWER INDUSTRY IN. THE FYNBOS BIOME ........................................................................................................... 1 A MOTIVATION FOR ACTION .......................................................................... 1 HISTORY AND DEVELOPMENT OF THE WILDFLOWER INDUSTRY .......................................................................................................... 3 Structure of the industry ............................................................................... 4 The volume and content ............................................................................... 6 Conduits and controls ................................................................................. 10 MANAGING RESOURCES ................................................................................ 21 Theoretical considerations ......................................................................... 21 The broader perspective ............................................................................. 22 Resolving conflicts of interest. ................................................................... 23 Models and guides ....................................................................................... 24 Fynbos wildflower resource management ............................................... 25 A FOOTNOTE ON SCIENTISTS ....................................................................... 26 CHAPTER 2 PREDICTING JEOPARDY TO FYNBOS PLANT POPULATIONS EXPLOITED BY THE WILDFLOWER INDUSTRY .......... 27 INTRODUCTION ................................................................................................. 27 MODELLING APPROACH ........................................................................... 28 STRUCTURE OF THE MODEL........................................................................ 31 Phenology submode! ................................................................................... 31 Life cycle submodel ..................................................................................... 32 Response to pruning submode! ................................................................. 33 Population response submodel .................................................................. 33 The combined production component ..................................................... 34 The market demand submodel .................................................................. 34 General operation ....................................................................................... 34 Selection of species .................................................................................... 37 Verification and validation ........................................................................ 41 A SAMPLE RUN - RESULTS ............................................................................. 41 Input data ...................................................................................................... 41 Output. ........................................................................................................... 42 DISCUSSION ........................................................................................................... 49 CONCLUSION ........................................................................................................ 51 iv CHAPTER 3 DESCRIPTION OF THE HIGHLANDS EXPERIMENTAL SITE USED FOR SIMULATION OF MARGINAL CULTIVATION OF TECHNIQUES EMPLOYED BY THE WILDFLOWER INDUSTRY ............ 53 INTRODUCTION.................................................................................................. 53 The study site ................................................................................................ 54 METHODS ............................................................................................................... 54 Development of the study site ................................................................... 54 Climatic data ................................................................................................ 54 The ve~etation .............................................................................................. 55 The SOil. .........................................................................................................55
Recommended publications
  • Wide Variation in Post-Emergence Desiccation Tolerance of Seedlings of Fynbos Proteoid Shrubs ⁎ P.J
    Available online at www.sciencedirect.com South African Journal of Botany 80 (2012) 110–117 www.elsevier.com/locate/sajb Wide variation in post-emergence desiccation tolerance of seedlings of fynbos proteoid shrubs ⁎ P.J. Mustart a, A.G. Rebelo b, J. Juritz c, R.M. Cowling a, a Botany Department, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6301, South Africa b Kirstenbosch Research Centre, South African National Biodiversity Institute, Private Bag X7, Claremont 7735, South Africa c Department of Statistical Science, University of Cape Town, Private Bag, Rondebosch 7700, South Africa Received 20 February 2012; received in revised form 13 March 2012; accepted 21 March 2012 Abstract Fynbos Proteaceae that are killed by fire and bear their seeds in serotinous cones (proteoids), are entirely dependent on seedling recruitment for persistence. Hence, the regeneration phase represents a vulnerable stage of the plant life cycle. In laboratory-based experiments we investigated the effect of desiccation on the survival of newly emerged seedlings of 23 proteoid species (Leucadendron and Protea) occurring in a wide variety of fynbos habitats. We tested the hypothesis that species of drier habitats would be more tolerant of desiccation than those from more moist areas. Results showed that with no desiccation treatment, or with desiccation prior to radicle emergence, all species germinated to high levels. However, with desiccation treatments imposed after radicle emergence, there were significant declines in seedling emergence after subsequent re-wetting. Furthermore, other than three species that grow in waterlogged habitats, germination responses could not be reliably modeled as a function of soil moisture variables.
    [Show full text]
  • Durham Research Online
    Durham Research Online Deposited in DRO: 21 July 2020 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Colville, J.F. and Beale, C.M. and Forest, F. and Altwegg, R. and Huntley, B. and Cowling, R.M. (2020) 'Plant richness, turnover and evolutionary diversity track gradients of stability and ecological opportunity in a megadiversity centre.', Proceedings of the National Academy of Sciences., 117 (33). pp. 20027-20037. Further information on publisher's website: https://doi.org/10.1073/pnas.1915646117 Publisher's copyright statement: Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk 1 Title Page 2 Classification: Biological Sciences 3 Title: Plant richness, turnover and evolutionary diversity track gradients of stability and ecological 4 opportunity in a megadiversity centre 5 Authors: Jonathan F. Colvillea,b,1, Colin M. Bealec, Félix Forestd, Res Altweggb,e, Brian Huntleyf, 6 Richard M.
    [Show full text]
  • Thesis Sci 2009 Bergh N G.Pdf
    The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Systematics of the Relhaniinae (Asteraceae- Gnaphalieae) in southern Africa: geography and evolution in an endemic Cape plant lineage. Nicola Georgina Bergh Town Thesis presented for theCape Degree of DOCTOR OF ofPHILOSOPHY in the Department of Botany UNIVERSITY OF CAPE TOWN University May 2009 Town Cape of University ii ABSTRACT The Greater Cape Floristic Region (GCFR) houses a flora unique for its diversity and high endemicity. A large amount of the diversity is housed in just a few lineages, presumed to have radiated in the region. For many of these lineages there is no robust phylogenetic hypothesis of relationships, and few Cape plants have been examined for the spatial distribution of their population genetic variation. Such studies are especially relevant for the Cape where high rates of species diversification and the ongoing maintenance of species proliferation is hypothesised. Subtribe Relhaniinae of the daisy tribe Gnaphalieae is one such little-studied lineage. The taxonomic circumscription of this subtribe, the biogeography of its early diversification and its relationships to other members of the Gnaphalieae are elucidated by means of a dated phylogenetic hypothesis. Molecular DNA sequence data from both chloroplast and nuclear genomes are used to reconstruct evolutionary history using parsimony and Bayesian tools for phylogeny estimation.
    [Show full text]
  • Die Plantfamilie ASTERACEAE: 6
    ISSN 0254-3486 = SA Tydskrif vir Natuurwetenskap en Tegnologie 23, no. 1 & 2 2004 35 Algemene artikel Die plantfamilie ASTERACEAE: 6. Die subfamilie Asteroideae P.P.J. Herman Nasionale Botaniese Instituut, Privaat sak X101, Pretoria, 0001 e-pos: [email protected] UITTREKSEL Die tribusse van die subfamilie Asteroideae word meer volledig in hierdie artikel beskryf. Die genusse wat aan dié tribusse behoort word gelys en hulle verspreiding aangedui. ABSTRACT The plant family Asteraceae: 6. The subfamily Asteroideae. The tribes of the subfamily Asteroideae are described in this article. Genera belonging to the different tribes are listed and their distribution given. INLEIDING Tribus ANTHEMIDEAE Cass. Hierdie artikel is die laaste in die reeks oor die plantfamilie Verteenwoordigers van hierdie tribus is gewoonlik aromaties, Asteraceae.1-5 In die vorige artikel is die klassifikasie bokant byvoorbeeld Artemisia afra (wilde-als), Eriocephalus-soorte, familievlak asook die indeling van die familie Asteraceae in sub- Pentzia-soorte.4 Die feit dat hulle aromaties is, beteken dat hulle families en tribusse bespreek.5 Hierdie artikel handel oor die baie chemiese stowwe bevat. Hierdie stowwe word dikwels subfamilie Asteroideae van die familie Asteraceae, met ’n aangewend vir medisyne (Artemisia) of insekgif (Tanacetum).4 bespreking van die tribusse en die genusse wat aan die verskillende Verder is hulle blaartjies gewoonlik fyn verdeeld en selfs by dié tribusse behoort. Die ‘edelweiss’ wat in die musiekblyspel The met onverdeelde blaartjies, is die blaartjies klein en naaldvormig sound of music besing word, behoort aan die tribus Gnaphalieae (Erica-agtig). Die pappus bestaan gewoonlik uit vry of vergroeide van die subfamilie Asteroideae.
    [Show full text]
  • BEK FYNBOS Guide Web Xho
    UKWAZISA ISIKHOKELO SOVUNO LWEENTYATYAMBO ZASENDLE 1 Okuqulethweyo Ukwazisa Isikhokelo Sovuno Lweentyatyambo Zasendle 3 Isichazi-magama 4 Ukwazisa Isikhokelo Sovuno Ifynbos 6 Lweentyatyambo Zasendle Yintoni ifynbos? 7 I-Cape Floral Kingdom 7 Abantu abaninzi kwiOverberg bafumana iinkozo zokuphila kwiintyatyambo zasendle, Izityalo zaseMzantsi Afrika 8 ezaziwa ngokuba yifynbos. Abanye bakha ezi zintyatyambo ukuze bazithengise Ifynbos isesichengeni 8 kwiimarike, abanye bazincothula kuba iziintyatyambo zamanye amazwe, ukanti ke Ixabiso Lefynbos 9 abanye bazibandakanya kulondolozo lwendalo nokhenketho. Kubalulekile ukuba abantu abasebenza emadlelweni babenolwazi ngezityalo ze-fynbos . Esi Sikhokelo Seentyatyambo Ifynbos nomlilo 9 Zasendle sichaza iindidi ezahlukeneyo ezingama-41 kwezona zityalo zefynbos zaziwayo Amacandelo ezityalo 9 ezivunwayo kumimandla yethu ukuze zisiwe kwiimarike zeentyatyambo. Ikwajolise Ukuthiya Izityalo Amagama 10 ekunikezeni inkcazelo eluncedo ezakuxhasa uvuno oluzinzileyo kunye nolondolozo lwe- fynbos ngokubanzi. Imarike yefynbos 10 Ukuvuna ifynbos ngononophelo 11 Uvuno lweentyatyambo kuchaphazela okanye kuphembelela amadlelo. Ukuba asilumkanga, singonakalisa okanye side sibulale izityalo. Ngoko ke, ngaphambi kokuba Inkqubo Yokuvuna Ezinzileyo 12 uvune iintyatyambo, kubalulekile ukubuza oku: IndlelaYokuziphatha Ephambili ye-SHP Kubavuni Basedle 12 • Yintoni emele ivunwe? Imigaqo elungileyo elishumi yokuvuna 13 • kumelwe ivunwe kangakanani? Vulnerability Index Noludwe Lwenkcazelo Ebomvu 13 • kumelwe zivunwe njani iintyatyambo?
    [Show full text]
  • Field Guide for Wild Flower Harvesting
    FIELD GUIDE FOR WILD FLOWER HARVESTING 1 Contents Introducing the Field Guide for Wild Flower Harvesting 3 Glossary 4 Introducing The Field Guide Fynbos 6 for Wild Flower Harvesting What is fynbos? 7 The Cape Floral Kingdom 7 Many people in the Overberg earn a living from the region’s wild flowers, known as South African plants 8 fynbos. Some pick flowers for markets to sell, some remove invasive alien plants, and Threats to fynbos 8 others are involved in conservation and nature tourism. It is important that people The value of fynbos 9 who work in the veld know about fynbos plants. This Field Guide for Wild Flower Harvesting describes 41 of the most popular types of fynbos plants that are picked from Fynbos and fire 9 our region for the wild flower market. It also provides useful information to support Classification of plants 9 sustainable harvesting in particular and fynbos conservation in general. Naming of plants 10 Picking flowers has an effect or impact on the veld. If we are not careful, we can Market for fynbos 10 damage, or even kill, plants. So, before picking flowers, it is important to ask: Picking fynbos with care 11 • What can be picked? The Sustainable Harvesting Programme 12 • How much can be picked? • How should flowers be picked? The SHP Code of Best Practice for Wild Harvesters 12 Ten principles of good harvesting 13 This guide aims to help people understand: The Vulnerability Index and the Red Data List 13 • the differences between the many types of fynbos plants that grow in the veld; and Know how much fynbos you have 14 • which fynbos plants can be picked, and which are scarce and should rather be Fynbos plants of the Agulhas Plain and beyond 14 left in the veld.
    [Show full text]
  • Wood Anatomy of Inuleae (Compositae) Sherwin Carlquist Claremont Graduate School
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 5 | Issue 1 Article 6 1961 Wood Anatomy of Inuleae (Compositae) Sherwin Carlquist Claremont Graduate School Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Carlquist, Sherwin (1961) "Wood Anatomy of Inuleae (Compositae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 5: Iss. 1, Article 6. Available at: http://scholarship.claremont.edu/aliso/vol5/iss1/6 ALISO VOL. 5, No. 1, pp. 21-37 MAY 15, 1961 WOOD ANATOMY OF INULEAE (COMPOSITAE) SHERWIN CARLQUIST1 Claremont Graduate School, Claremont, California INTRODUCTION Inuleae familiar to North American botanists are mostly herbs, some of them among the most diminutive of annuals. As in so many dicot families, however, related woody genera occur in tropical and subtropical regions. Botanists who have not encountered woody Inuleae may be surprised to learn that wood of Brachylaena merana has been used for carpentry and for railroad ties in Madagascar (Lecomte, 1922), that of Tarchonanthtts camphorattts for musical instruments in Africa (Hoffmann, 1889-1894) and that the wood of Brachylaena (Synchodendrttm) ramiflomm is described as "resistant to rot, hard and dense, known to be of great durability" (Lecomte, 1922). In Argentina, the relatively soft wood of T essaria integrifolia is used "in paper making and also in the construction of ranchos" (Cabrera, 1939). All of these species are trees. Tessaria and Brachylaena also contain shrubs as well. Most other species included in this study could be considered shrubs (Plttchea, Cassinia) or woody herbs. The geographical distribution of Inuleae roughly reflects the relative woodiness of genera and species, because there is a tendency for the more woody species to occur in tropical regions, shrubby species in subtropical areas, and herbs in temperate or montane situations.
    [Show full text]
  • Impacts and Control of Alien Proteaceae Invasion in the Western Cape Province, South Africa
    Impacts and control of alien Proteaceae invasion in the Western Cape Province, South Africa by Laimi Nelago Koskima Erckie Dissertation submitted in fulfilment of the requirements for the degree MAGISTER SCIENTIAE in BIODIVERSITY AND CONSERVATION BIOLOGY in the FACULTY OF NATURAL SCIENCES at the University of the Western Cape Supervisor: Prof. JS Boatwright Co-supervisor: Dr. E. van Wyk Co-supervisor: Dr. S. Geerts November 2017 University of the Western Cape Private Bag X17, Bellville 7535, South Africa Telephone: ++27-21- 959 2255/959 2762 Fax: ++27-21- 959 1268/2266 Email: [email protected] FACULTY OF NATURAL SCIENCE DECLARATION PLAGIARISM DECLARATION TO BE INCLUDED IN ALL ASSIGNMENTS, THESIS PROPOSALS ETC, BE IT FOR MARKS OR NOT: I……..Laimi Nelago Koskima Erckie………………………………………………………… Student number….......3418027……………………….declare that the attached thesis entitled ……Impacts and control of alien Proteaceae invasion in the Western Cape Province, South Africa………………………………………………………………………………….. is my own work and that all the sources I have quoted have been indicated and acknowledged by means of complete references. Signed this day……20…… of ……November…….. 2017……. at ..........Bellville………… _____________________________ Signature i http://etd.uwc.ac.za/ ABSTRACT Research focused on ecological impacts and control of invasive alien species (IAS) is gaining attention worldwide. The eradication and control of invasive alien plants (IAP) is essential for the restoration of native plant communities. Understanding ecological impacts and potential invasive risks of IAP is important for their effective management, particularly for prioritisation. Most studies concerning impacts on vegetation structure and plant-pollinator interactions have measured few ecological metrics, resulting in a superficial understanding of plant species invasion.
    [Show full text]
  • Rife What Seeds Are to the Earth
    1'ou say you donJt 6efieve? Wfiat do you caffit when you sow a tiny seedandare convincedthat a pfant wiffgrow? - Elizabeth York- Contents Abstract . , .. vii Declaration .. ,,., , ,........... .. ix Acknowledgements ,, ,, , .. , x Publications from this Thesis ,, , ", .. ,., , xii Patents from this Thesis ,,,'' ,, .. ',. xii Conference Contributions ' xiii Related Publications .................................................... .. xiv List of Figures , xv List of Tables , ,,,. xviii List of Abbreviations ,,, ,, ,,, ,. xix 1 Introduction ,,,, 1 1.1 SMOKE AS A GERMINATION CUE .. ,,,, .. ,,,,, .. , .. , , . , 1 1.2 AIMS AND OBJECTIVES , '.. , , . 1 1.3 GENERAL OVERVIEW ,, " , .. , .. , 2 2 Literature Review ,",,,,", 4 2.1 THE ROLE OF FIRE IN SEED GERMINATION .. ,,,,.,,,,. ,4 2.1.1 Fire in mediterranean-type regions ', .. ,, , , 4 2,1.2 Post-fire regeneration. ,,,, .. , , . , , , , 5 2,1.3 Effects of fire on germination .,,, , , . 7 2,1,3.1 Physical effects of fire on germination .. ,," .. ,.,. 8 2.1,3.2 Chemical effects of fire on germination ., ,, .. ,., 11 2.2 GERMINATION RESPONSES TO SMOKE., , '" ., , 16 2.2.1 The discovery of smoke as a germination cue, ,,., .. , , .. ,, 16 2.2.2 Studies on South African species. ,.,, .. , ,,,,., 17 2.2,3 Studies on Australian species "",., ,"," ".,." 20 2.2.4 StUdies on species from other regions. , ,,.,, 22 2.2.5 Responses of vegetable seeds ., .. ' .. , ,', , , 23 2.2.6 Responses of weed species .. ,,,.,, 24 2.2.7 General comments and considerations ., .. ,,, .. , .. ,,, 25 2.2.7.1 Concentration effects .. ,", ,., 25 2.2.7.2 Experimental considerations ,,,,,,, 26 2.2,7.3 Physiological and environmental effects ,,, .. ,, 27 2.2.8 The interaction of smoke and heat, ,, ,,,,,,, 29 \ 2.3 SOURCES OF SMOKE ., , .. , .. ,, .. ,., .. ,, 35 2.3,1 Chemical components of smoke ,, .. " ,, 35 iii Contents 2.3.2 Methods of smoke treatments 36 2.3.2.1 Aerosol smoke and smoked media .
    [Show full text]
  • 7. Phylogenetic Studies in Gnaphalieae (Compositae): the Genera Phagnalon Cass
    Transworld Research Network 37/661 (2), Fort P.O. Trivandrum-695 023 Kerala, India Recent Advances in Pharmaceutical Sciences III, 2013: 109-130 ISBN: 978-81-7895-605-3 Editors: Diego Muñoz-Torrero, Amparo Cortés and Eduardo L. Mariño 7. Phylogenetic studies in Gnaphalieae (Compositae): The genera Phagnalon Cass. and Aliella Qaiser & Lack Noemí Montes-Moreno1,3, Núria Garcia-Jacas1, Llorenç Sáez2 and Carles Benedí3 1Botanic Institute of Barcelona (IBB-CSIC-ICUB). Passeig del Migdia s/n, 08038 Barcelona Spain; 2Departament de Biologia Animal, Biologia Vegetal i Ecologia, Unitat de Botànica Facultat de Biociències, Universitat Autònoma de Barcelona. 08193, Bellaterra, Spain 3Departament de Productes Naturals, Biologia Vegetal i Edafologia, Unitat de Botànica Facultat de Farmàcia, Universitat de Barcelona. Avda. Joan XXIII s/n, 08028 Barcelona, Spain Abstract. The precise generic delimitation of Aliella and Phagnalon, and their closest relatives within the Gnaphalieae are discussed in this review. Among the main results obtained, we have found that the genera Aliella and Phagnalon are nested within the “Relhania clade” and Anisothrix, Athrixia and Pentatrichia are their closest relatives. Macowania is also part of the “Relhania clade”, whereas the subtribal affinities of Philyrophyllum lie within the “crown radiation clade”. The monophyly of Aliella and Phagnalon is not supported statistically. In addition, Aliella appears to be paraphylethic in most of the analyses performed. The resulting phylogeny suggests an African origin for the ancestor of Aliella and Phagnalon and identifies three main clades within Phagnalon that constitute the following natural groups on a geographic basis: (1) the Irano-Turanian clade; (2) the Mediterranean-Macaronesian clade; and (3) the Yemen-Ethiopian Correspondence/Reprint request: Dr.
    [Show full text]
  • New Cladosporium Species from Normal and Galled Flowers of Lamiaceae
    pathogens Article New Cladosporium Species from Normal and Galled Flowers of Lamiaceae Beata Zimowska 1, Andrea Becchimanzi 2 , Ewa Dorota Krol 1, Agnieszka Furmanczyk 1, Konstanze Bensch 3 and Rosario Nicoletti 2,4,* 1 Department of Plant Protection, University of Life Sciences, 20-068 Lublin, Poland; [email protected] (B.Z.); [email protected] (E.D.K.); [email protected] (A.F.) 2 Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; [email protected] 3 Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; [email protected] 4 Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy * Correspondence: [email protected] Abstract: A series of isolates of Cladosporium spp. were recovered in the course of a cooperative study on galls formed by midges of the genus Asphondylia (Diptera, Cecidomyidae) on several species of Lamiaceae. The finding of these fungi in both normal and galled flowers was taken as an indication that they do not have a definite relationship with the midges. Moreover, identification based on DNA sequencing showed that these isolates are taxonomically heterogeneous and belong to several species which are classified in two different species complexes. Two new species, Cladosporium polonicum and Cladosporium neapolitanum, were characterized within the Cladosporium cladosporioides species complex Citation: Zimowska, B.; based on strains from Poland and Italy, respectively. Evidence concerning the possible existence of Becchimanzi, A.; Krol, E.D.; additional taxa within the collective species C. cladosporioides and C.
    [Show full text]
  • The Potential of South African Indigenous Plants for the International Cut flower Trade ⁎ E.Y
    Available online at www.sciencedirect.com South African Journal of Botany 77 (2011) 934–946 www.elsevier.com/locate/sajb The potential of South African indigenous plants for the international cut flower trade ⁎ E.Y. Reinten a, J.H. Coetzee b, B.-E. van Wyk c, a Department of Agronomy, Stellenbosch University, Private Bag, Matieland 7606, South Africa b P.O. Box 2086, Dennesig 7601, South Africa c Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa Abstract A broad review is presented of recent developments in the commercialization of southern Africa indigenous flora for the cut flower trade, in- cluding potted flowers and foliages (“greens”). The botany, horticultural traits and potential for commercialization of several indigenous plants have been reported in several publications. The contribution of species indigenous and/or endemic to southern Africa in the development of cut flower crop plants is widely acknowledged. These include what is known in the trade as gladiolus, freesia, gerbera, ornithogalum, clivia, agapan- thus, strelitzia, plumbago and protea. Despite the wealth of South African flower bulb species, relatively few have become commercially important in the international bulb industry. Trade figures on the international markets also reflect the importance of a few species of southern African origin. The development of new research tools are contributing to the commercialization of South African plants, although propagation, cultivation and post-harvest handling need to be improved. A list of commercially relevant southern African cut flowers (including those used for fresh flowers, dried flowers, foliage and potted flowers) is presented, together with a subjective evaluation of several genera and species with perceived potential for the development of new crops for the florist trade.
    [Show full text]