Nphys400 Ellis Bk Review.Indd

Total Page:16

File Type:pdf, Size:1020Kb

Nphys400 Ellis Bk Review.Indd BOOKS & ARTS How it happened THE COSMIC CENTURY: A HISTORY OF On our ASTROPHYSICS AND COSMOLOGY bookshelf BY MALCOLM S. LONGAIR Cambridge Univ. Press: 2006. 565 pp. £35/$60 Th e emergence from astronomy of the major as Arthur Eddington, Edwin Hubble, Fritz new theories of astrophysics and physical Zwicky, George Gamow, Fred Hoyle and Out of the Shadows: cosmology over the past century represents Yakov Zeldovich. The book does well in this Contributions of a major triumph of physical theory. We have way; for example, it shows clearly the path- Twentieth-century developed an amazing understanding of the breaking role of Eddington in systematically Women to Physics physical nature and evolution of astronomical applying modern physics to stellar structure, Edited by Nina Byers objects, despite their vast distance from us and so paving the way for astrophysics to and Gary Williams and the faintness of their images. Th e parallel develop. Second, in order to really understand Cambridge Univ. Press: development of new observational techniques, a subject you have to know not only the 2006. 449 pp. £30. together with theoretical understandings ‘right’ way — the mode of understanding that A celebration of 40 based on much of modern physics applied has led to the greatest progress and clearest women who made in this context, have enabled such advances, vision — but also the plausible ‘wrong’ lasting contributions and include the extension of observations ways of doing things, the approaches that to physics during from the visible to the entire electromagnetic seemed good at the time but did not work the years 1876–1976. spectrum and the introduction of photometers, out. If you do not understand them and the Strong role models spectroscopes, photomultipliers, CCDs and reasons why they do not succeed, you will for aspiring young fi bre optics. Th e magisterial survey in Th e be likely, sooner or later, to make the same physicists, both male Cosmic Century charts the broad sweep errors, believing you have made a grand and female. of how this understanding developed to new breakthrough, when in fact you have the present day, giving a clear and well- rediscovered a failed route of endeavour. So, balanced discussion of the major relevant knowing what our predecessors tried and why observational and experimental discoveries, it did not work is the sound foundation of a and the accompanying breakthroughs in deep understanding of a subject, and that is theoretical understanding. provided by the historical approach. I can envisage this book being useful to A good feature of the book is that it clearly physicists from other areas of specialization, separates speculation from well-established who would like an overview of astrophysics theory. Th ere are, of course, in a text of this and cosmology, or for workers in one of these magnitude, places where one will disagree areas who want to broaden their horizons. with the author. In my view, these include not It could also be a text for graduate students emphasizing the key role played by Eddington’s in astronomy, astrophysics or astrophysical proof of the instability of the Einstein static From Cosmos to cosmology, who want a synoptic overview universe in establishing the expanding Chaos: Th e Science of these areas. But is a walk through history universe theory, and Beatrice Tinsley’s role in of Unpredictability the best way to learn a subject? Might it demonstrating, despite strong opposition, by Peter Coles not be better just to give the present-day the importance of understanding galactic Oxford Univ. Press: understanding without having to go through evolution eff ects when interpreting the 2006. 211 pp. £25. the complexities of the rather tortuous way we cosmological magnitude–redshift diagram. came to comprehend them? But these are minor defects in a sound work Is there is link between There is a case that the historical that will be well appreciated. card games, whodunit approach is indeed a good way to develop cases in the courtroom an understanding of the subject. First, it is George Ellis and the Big Bang? interesting to learn of the historical struggles George Ellis is in the Department of Yes: probability theory. that took place, to contemplate the human Mathematics and Applied Mathematics, But don’t look here for face of science and to learn about the iconic University of Cape Town, Private Bag, tips for your next trip heroes who made it happen: people such Rondebosch 7701, South Africa. to the casino. nature physics | VOL 2 | SEPTEMBER 2006 | www.nature.com/naturephysics 577 © 2006 Nature Publishing Group.
Recommended publications
  • People and Things
    People and things Geoff Manning for his contributions Dirac Medal to physics applications at the Lab­ oratory, particularly in high energy At the recent symposium on 'Per­ physics, computing and the new spectives in Particle Physics' at Spallation Neutron Source. The the International Centre for Theo­ Rutherford Prize goes to Alan Ast- retical Physics, Trieste, ICTP Direc­ bury of Victoria, Canada, former tor Abdus Sa la m presided over co-spokesman of the UA 1 experi­ the first award ceremony for the ment at CERN. Institute's Dirac Medals. Although Philip Anderson (Princeton) and expected, Yakov Zeldovich of Abdus Sa la m (Imperial College Moscow's Institute of Space Re­ London and the International search was not able to attend to Centre for Theoretical Physics, receive his medal. Edward Witten Trieste) have been elected Hono­ of Princeton received his gold me­ rary Fellows of the Institute. dal alone from Antonino Zichichi on behalf of the Award Committee. Third World Prizes The 1985 Third World Academy UK Institute of Physics Awards of Sciences Physics Prize has been awarded to E. C. G. Sudarshan The Guthrie Prize and Medal of the from India for his fundamental con­ UK Institute of Physics this year tributions to the understanding of goes to Sir Denys Wilkinson of the weak nuclear force, in particu­ Sussex for his many contributions lar for his work with R. Marshak to nuclear physics. The Institute's on the theory which incorporates Glazebrook Prize goes to Ruther­ its parity (left/right symmetry) Friends and colleagues recently ford Appleton Laboratory director structure.
    [Show full text]
  • Cosmic Background Explorer (COBE) and Beyond
    From the Big Bang to the Nobel Prize: Cosmic Background Explorer (COBE) and Beyond Goddard Space Flight Center Lecture John Mather Nov. 21, 2006 Astronomical Search For Origins First Galaxies Big Bang Life Galaxies Evolve Planets Stars Looking Back in Time Measuring Distance This technique enables measurement of enormous distances Astronomer's Toolbox #2: Doppler Shift - Light Atoms emit light at discrete wavelengths that can be seen with a spectroscope This “line spectrum” identifies the atom and its velocity Galaxies attract each other, so the expansion should be slowing down -- Right?? To tell, we need to compare the velocity we measure on nearby galaxies to ones at very high redshift. In other words, we need to extend Hubble’s velocity vs distance plot to much greater distances. Nobel Prize Press Release The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2006 jointly to John C. Mather, NASA Goddard Space Flight Center, Greenbelt, MD, USA, and George F. Smoot, University of California, Berkeley, CA, USA "for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation". The Power of Thought Georges Lemaitre & Albert Einstein George Gamow Robert Herman & Ralph Alpher Rashid Sunyaev Jim Peebles Power of Hardware - CMB Spectrum Paul Richards Mike Werner David Woody Frank Low Herb Gush Rai Weiss Brief COBE History • 1965, CMB announced - Penzias & Wilson; Dicke, Peebles, Roll, & Wilkinson • 1974, NASA AO for Explorers: ~ 150 proposals, including: – JPL anisotropy proposal (Gulkis, Janssen…) – Berkeley anisotropy proposal (Alvarez, Smoot…) – Goddard/MIT/Princeton COBE proposal (Hauser, Mather, Muehlner, Silverberg, Thaddeus, Weiss, Wilkinson) COBE History (2) • 1976, Mission Definition Science Team selected by HQ (Nancy Boggess, Program Scientist); PI’s chosen • ~ 1979, decision to build COBE in-house at GSFC • 1982, approval to construct for flight • 1986, Challenger explosion, start COBE redesign for Delta launch • 1989, Nov.
    [Show full text]
  • Hawking Radiation and the Expansion of the Universe
    Hawking radiation and the expansion of the universe 1 2, 3 Yoav Weinstein , Eran Sinbar *, and Gabriel Sinbar 1 DIR Technologies, Matam Towers 3, 6F, P.O.Box 15129, Haifa, 319050, Israel 2 DIR Technologies, Matam Towers 3, 6F, P.O.Box 15129, Haifa, 3190501, Israel 3 RAFAEL advanced defense systems ltd., POB 2250(19), Haifa, 3102102, Israel * Corresponding author: Eran Sinbar, Ela 13, Shorashim, Misgav, 2016400, Israel, Telephone: +972-4-9028428, Mobile phone: +972-523-713024, Email: [email protected] ABSTRUCT Based on Heisenberg’s uncertainty principle it is concluded that the vacuum is filed with matter and anti-matter virtual pairs (“quantum foam”) that pop out and annihilate back in a very short period of time. When this quantum effects happen just outside the "event horizon" of a black hole, there is a chance that one of these virtual particles will pass through the event horizon and be sucked forever into the black hole while its partner virtual particle remains outside the event horizon free to float in space as a real particle (Hawking Radiation). In our previous work [1], we claim that antimatter particle has anti-gravity characteristic, therefore, we claim that during the Hawking radiation procedure, virtual matter particles have much larger chance to be sucked by gravity into the black hole then its copartner the anti-matter (anti-gravity) virtual particle. This leads us to the conclusion that hawking radiation is a significant source for continuous generation of mostly new anti-matter particles, spread in deep space, contributing to the expansion of space through their anti-gravity characteristic.
    [Show full text]
  • The Big Bang
    15- THE BIG ORIGINS BANGANAND NARAYANAN The Big Bang theory “Who really knows, who can declare? The scientific study of the origin and currently occupies When it started or where from? evolution of the universe is called the center stage in From when and where this creation has arisen cosmology. From the early years of the modern cosmology. 20th century, the observational aspects Perhaps it formed itself, perhaps it did not.” And yet, half a of scientific cosmology began to gather century ago, it was – Rig Veda (10:129), 9th century BCE. wide attention. This was because of only one among a a small series of startling discoveries few divergent world made by scientists like Edwin Hubble views, with competing hese words were written over 2000 years that changed the way we understood claims to the truth. ago. And yet, if they sound contemporary, it the physical universe. This article highlights Tis because they echo a trait that is distinctly a few trail-blazing human; the highly evolved ability of our species to Hubble had an advantage which few events in the journey look at the world around us and wonder how it all astronomers in the early 20th century of the Big Bang model came to be. How often have you asked these very had – access to the Mount Wilson from the fringes to same questions? Observatory in California. This the centerfold of particular observatory housed the astrophysics, a We assume that all things have a beginning. Could this be true for this vastly complex universe as well? largest telescopes of that time and journey that is yielded high quality data.
    [Show full text]
  • Frequency of Hawking Radiation of Black Holes
    International Journal of Astrophysics and Space Science 2013; 1(4): 45-51 Published online October 30, 2013 (http://www.sciencepublishinggroup.com/j/ijass) doi: 10.11648/j.ijass.20130104.15 Frequency of Hawking radiation of black holes Dipo Mahto 1, Brajesh Kumar Jha 2, Krishna Murari Singh 1, Kamala Parhi 3 1Dept. of Physics, Marwari College, T.M.B.U. Bhagalpur-812007, India 2Deptartment of Physics, L.N.M.U. Darbhanga, India 3Dept. of Mathematics, Marwari College, T.M.B.U. Bhagalpur-812007, India Email address: [email protected](D. Mahto), [email protected](B. K. Jha), [email protected](K. M. Singh), [email protected] (K . Parhi) To cite this article: Dipo Mahto, Brajesh Kumar Jha, Krishna Murari Singh, Kamala Parhi. Frequency of Hawking Radiation of Black Holes. International Journal of Astrophysics and Space Science. Vol. 1, No. 4, 2013, pp. 45-51. doi: 10.11648/j.ijass.20130104.15 Abstract: In the present research work, we calculate the frequencies of Hawking radiations emitted from different test black holes existing in X-ray binaries (XRBs) and active galactic nuclei (AGN) by utilizing the proposed formula for the 8.037× 10 33 kg frequency of Hawking radiation f= Hz and show that these frequencies of Hawking radiations may be the M components of electromagnetic spectrum and gravitational waves. We also extend this work to convert the frequency of Hawking radiation in terms of the mass of the sun ( M ⊙ ) and then of Chandrasekhar limit ( M ch ), which is the largest unit of mass. Keywords: Electromagnetic Spectrum, Hawking Radiation, XRBs and AGN Starobinsky showed him that according to the quantum 1.
    [Show full text]
  • Finding the Radiation from the Big Bang
    Finding The Radiation from the Big Bang P. J. E. Peebles and R. B. Partridge January 9, 2007 4. Preface 6. Chapter 1. Introduction 13. Chapter 2. A guide to cosmology 14. The expanding universe 19. The thermal cosmic microwave background radiation 21. What is the universe made of? 26. Chapter 3. Origins of the Cosmology of 1960 27. Nucleosynthesis in a hot big bang 32. Nucleosynthesis in alternative cosmologies 36. Thermal radiation from a bouncing universe 37. Detecting the cosmic microwave background radiation 44. Cosmology in 1960 52. Chapter 4. Cosmology in the 1960s 53. David Hogg: Early Low-Noise and Related Studies at Bell Lab- oratories, Holmdel, N.J. 57. Nick Woolf: Conversations with Dicke 59. George Field: Cyanogen and the CMBR 62. Pat Thaddeus 63. Don Osterbrock: The Helium Content of the Universe 70. Igor Novikov: Cosmology in the Soviet Union in the 1960s 78. Andrei Doroshkevich: Cosmology in the Sixties 1 80. Rashid Sunyaev 81. Arno Penzias: Encountering Cosmology 95. Bob Wilson: Two Astronomical Discoveries 114. Bernard F. Burke: Radio astronomy from first contacts to the CMBR 122. Kenneth C. Turner: Spreading the Word — or How the News Went From Princeton to Holmdel 123. Jim Peebles: How I Learned Physical Cosmology 136. David T. Wilkinson: Measuring the Cosmic Microwave Back- ground Radiation 144. Peter Roll: Recollections of the Second Measurement of the CMBR at Princeton University in 1965 153. Bob Wagoner: An Initial Impact of the CMBR on Nucleosyn- thesis in Big and Little Bangs 157. Martin Rees: Advances in Cosmology and Relativistic Astro- physics 163.
    [Show full text]
  • Brinson Mather 2011.Pptx
    From the Big Bang to the Nobel Prize and on to James Webb Space Telescope and the Discovery of Alien Life John C. Mather Senior Project Scientist, James Webb Space Telescope, NASA’s Goddard Space Flight Center Nov. 1, 2011 Nov. 1, 2011 Mather Brinson 2011 1 (as of 1985) 2 Nov. 1, 2011 Mather Brinson 2011 Can you imagine? Your chin is made of exploded stars! Nov. 1, 2011 Mather Brinson 2011 3 Looking Back in Time Nov. 1, 2011 Mather Brinson 2011 4 Measuring Distance This technique enables measurement of enormous distances Nov. 1, 2011 Mather Brinson 2011 5 Astronomer's Toolbox #2: Doppler Shift - Light Atoms emit light at discrete wavelengths that can be seen with a spectroscope This “line spectrum” identifies the atom and its velocity Nov. 1, 2011 Mather Brinson 2011 6 Hubble’s Law – 1929 Data Discovered by Lemaître, 1927! Speed proportional to distance Age = distance/speed Speed --> Nov. 1, 2011 Mather Brinson 2011 Distance --> 7 The Power of Thought Alexander Friedman Georges Lemaître & Albert Einstein George Gamow Robert Herman & Ralph Alpher Rashid Sunyaev Jim Peebles Nov. 1, 2011 Mather Brinson 2011 8 Nov. 1, 2011 Mather Brinson 2011 9 Big Bang - Cosmic Explosion 13.7 billion years ago IMPOSSIBLE TO DRAW A PICTURE! Nov. 1, 2011 Mather Brinson 2011 10 How did a smooth Big Bang make complicated things like us? • Gravity is long range attractive force – Matter distribution is unstable • Remove heat, and system heats up more • Makes condensed objects (stars, galaxies, etc.) • Gravitational energy flows support complexity • Stars release heat from nuclear reactions – Heat & light received by Earth support complexity, from weather to photosynthesis Nov.
    [Show full text]
  • Redshifts Vs Paradigm Shifts: Against Renaming Hubble's
    Redshifts vs Paradigm Shifts: Against Renaming Hubble’s Law Cormac O’Raifeartaigh and Michael O’Keeffe School of Science and Computing, Waterford Institute of Technology, Cork Road, Waterford, Ireland. Author for correspondence: [email protected] Abstract We consider the proposal by many scholars and by the International Astronomical Union to rename Hubble’s law as the Hubble-Lemaître law. We find the renaming questionable on historic, scientific and philosophical grounds. From a historical perspective, we argue that the renaming presents an anachronistic interpretation of a law originally understood as an empirical relation between two observables. From a scientific perspective, we argue that the renaming conflates the redshift/distance relation of the spiral nebulae with a universal law of spatial expansion derived from the general theory of relativity. We note that the first of these phenomena is merely one manifestation of the second, an important distinction that may be relevant to contemporary puzzles concerning the current rate of cosmic expansion. From a philosophical perspective, we note that many of the named laws of science are empirical relations between observables, limited in range, rather than laws of universal application derived from theory. 1 1. Introduction In recent years, many scholars1 have suggested that the moniker Hubble’s law – often loosely understood as a law of cosmic expansion – overlooks the seminal contribution of the great theoretician Georges Lemaître, the first to describe the redshifts of the spiral nebulae in the context of a cosmic expansion consistent with the general theory of relativity. Indeed, a number of authors2 have cited Hubble’s law as an example of Stigler’s law of eponymy, the assertion that “no scientific discovery is named after its original discoverer”.3 Such scholarship recently culminated in a formal proposal by the International Astronomical Union (IAU) to rename Hubble’ law as the “Hubble-Lemaître law”.
    [Show full text]
  • Interview with Alexander Ivanovich Pavlovskii
    Interview with Alexander Ivanovich Pavlovskii Interview with Alexander Ivanovich Pavlovskii t the end of the intense week-long meeting at Los Alamos in November 1992 among scientists from Arzamas-16, Los A Alamos, and Sandia, we met with the head of the Russian delegation, Alexander I. Pavlovskii, to talk about his expe- riences as a nuclear-weapons scientist in the former Soviet Union. Pavlovskii had been a protegé of Nobel Peace Prize winner Andrei Dmitrievich Sakharov. At the time of our conversation, he was Deputy Chief Scientist and Head of the Fundamental and Ap- plied Physics Department of the All-Russia Scientific Research In- stitute of Experimental Physics at Arzamas-16, Russia. Two translators were present: Elena Panevkina, who was by Pavlovskii’s side at all meetings with non-Russian speaking scientists, and Eugene Kutyreff from the Laboratory’s International Technology Division. We thank both of them for their patience and endurance. Just as we were preparing to send this interview to Pavlovskii for his review, we learned of his sudden death on February 12, 1993. We were honored to have met him and moved by the candor and depth of feeling he expressed during our interview. Many scientists at Los Alamos knew Pavlovskii well, and we hope they will find this interview a fitting memorial to an exceptional man. 82 Los Alamos Science Number 21 1993 Interview with Alexander Ivanovich Pavlovskii Los Alamos Science: Tell us how different. Sinelnikov didn’t really environment in the world, this type you got into science and how you want me to leave the Physicotechni- of weapon was absolutely necessary.
    [Show full text]
  • And Gamow Said, Let There Be a Hot Universe
    GENERAL I ARTICLE And Gamow said, Let there be a Hot Universe Somak Raychaudhury Soon after Albert Einstein published his general theory of relativity, in 1915, to describe the nature of space and time, the scientific community sought to apply it to understand the nature and origin of the Universe. One of the first people to describe the Universe using Einstein's equations was a Belgian priest called Abbe Georges Edouard Lemaitre, who had also studied math­ ematics at Cambridge with Arthur Eddington, one of the strongest exponents of relativity. Lemaitre realised Somak Raychaudhury teaches astrophysics at the that if Einstein's theory was right, the Universe could School of Physics and not be static. In fact, right now, it must be expanding. Astronomy, University of Birmingham, UK. He Working backwards, Lemaitre reasoned that the Uni­ studied at Calcutta, Oxford verse must have been a much smaller place in the past. and Cambridge, and has He knew about galaxies, having spent some time with been on the staff of the Harlow Shapley at Harvard, and knew about Edwin Harvard-Smithsonian Center for Astrophysics Hubble's pioneering measurements of the spectra of near­ and IUCAA (Pune). by galaxies, that implied that almost all galaxies are moving away from each other. This would mean that they were closer and closer together in the past. Going further back, there must have been a time when there was no space between the galaxies. Even further in the past, there would have been no space between the stars. Even earlier, the atoms that make up the stars must have been huddled together touching each other.
    [Show full text]
  • George Gamow and Barbara Gamow Papers
    George Gamow and Barbara Gamow Papers A Finding Aid to the Collection in the Library of Congress Manuscript Division, Library of Congress Washington, D.C. 2016 Revised 2016 December Contact information: http://hdl.loc.gov/loc.mss/mss.contact Additional search options available at: http://hdl.loc.gov/loc.mss/eadmss.ms010191 LC Online Catalog record: http://lccn.loc.gov/mm79021899 Prepared by Grover Batts, Carolyn Craig, and Paul Ledvina with the assistance of Thelma Queen Revised by Manuscript Division Staff Collection Summary Title: George Gamow and Barbara Gamow Papers Span Dates: 1915-1975 Bulk Dates: (bulk 1950-1975) ID No.: MSS21899 Creator: Gamow, George, 1904-1968 Creator: Gamow, Barbara, 1905-1976 Extent: 8,000 items ; 31 containers plus 1 oversize ; 13 linear feet Language: Collection material in English Location: Manuscript Division, Library of Congress, Washington, D.C. Summary: George Gamow, physicist, astronomer, and author. Barbara Gamow, editor and translator. Correspondence, drafts of speeches, articles, and books, and other papers relating principally to George Gamow's career as an astronomer, physicist, and popularizer of science and to Barbara Gamow's personal and literary associations. Selected Search Terms The following terms have been used to index the description of this collection in the Library's online catalog. They are grouped by name of person or organization, by subject or location, and by occupation and listed alphabetically therein. People Alpher, Ralph--Correspondence. Bedford, Sybille, 1911-2006--Correspondence. Brakhage, Stan--Correspondence. Brosche, P. (Peter)--Correspondence. Broughton, James, 1913-1999--Correspondence. Cockcroft, John, Sir, 1897-1967--Correspondence. Covici, Pascal, 1885-1964--Correspondence. Critchfield, Charles Louis, 1910- --Correspondence.
    [Show full text]
  • News and Views Yulii Khariton (1904-96)
    news and views Obituary design was detonated in 1951. The first Yulii Khariton (1904-96) Soviet hydrogen bomb was tested in August 1953, and the first two-stage Physicist, instrumental in thermonuclear weapon in November 1955. Khariton was in many ways a surprising developing Soviet nuclear choice as chief designer of nuclear weapons. weapons His two years in the West made him politically suspect. So, too, did the fact that Yuill Borisovich Khariton, who died on I9 his parents lived abroad: his mother December last year at the age of 92, was a emigrated to Palestine from Germany in the key figure in the Soviet nuclear weapons 1930s; and his father, who lived in Riga programme. For over 40 years he was before the war, was arrested and shot when scientific director ofArzamas-I6, the the Red Army occupied the Baltic states in Soviet equivalent of Los Alamos. 1940. Yet Khariton remained untouched Khariton was born into a literary and even by the anti-semitic campaign ofthe late artistic family in St Petersburg in I904, and 1940s. He met Stalin only once, but he had to throughout his life retained the manners work closely with Lavrentii Beria, the head and interests of a Russian intellectual. He ofthe secret police, whom he found efficient studied physics at the Polytechnical and correct in his dealings with scientists. Institute, and was invited by Nikolai Khariton remained scientific director of Semenov (who received the Nobel prize for Arzamas-16 until1992. His approach to chemistry in I956 for his work on chemical design and development was careful and chain reactions) to do research at the thorough: "We have to know ten times Leningrad Physicotechnical Institute, the more than we are doing" was his motto.
    [Show full text]