Assessing the Effects of Trout Stocking on Native Amphibian Communities in Small Boreal Foothills Lakes of Alberta

Total Page:16

File Type:pdf, Size:1020Kb

Assessing the Effects of Trout Stocking on Native Amphibian Communities in Small Boreal Foothills Lakes of Alberta University of Alberta Assessing the effects of trout stocking on native amphibian communities in small boreal foothills lakes of Alberta By Candra Margaret May Schank A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science In Ecology Department of Biological Sciences Edmonton, Alberta Fall 2008 Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-47406-8 Our file Notre reference ISBN: 978-0-494-47406-8 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation. reproduced without the author's permission. In compliance with the Canadian Conformement a la loi canadienne Privacy Act some supporting sur la protection de la vie privee, forms may have been removed quelques formulaires secondaires from this thesis. ont ete enleves de cette these. While these forms may be included Bien que ces formulaires in the document page count, aient inclus dans la pagination, their removal does not represent il n'y aura aucun contenu manquant. any loss of content from the thesis. Canada Abstract Creating or enhancing recreational fisheries through sport-fish stocking is an accepted practice, but can also have negative concequences on the recipient ecosystem. I studied 11 boreal foothills lakes, 5 with and 6 without stocked trout. All lakes supported native forage fish and 3 amphibian species: wood frog (Lithobates sylvaticus), boreal chorus frog {Pseudacris maculata), and western toad (Anaxyrus boreas). To assess effects of stocking on amphibian populations, I examined the relative abundance and size of adults and young-of year, and timing of metamorphosis over 3 years. For wood frogs and western toads, none of these parameters differed significantly between stocked and unstocked lakes. However, adult boreal chorus frogs were significantly more abundant on unstocked lakes. Wood frog abundance and size differed between 11 fish-bearing lakes and a Ashless lake, suggesting fish presence, per se, affects frog populations. I conclude that generally, stocked trout are not affecting amphibian populations in Alberta's boreal foothills. Acknowledgments This study could not have occurred without the financial and in-kind support from Alberta Sustainable Resource Development (ASRD), Alberta Conservation Association (ACA), Industrial Post Scholarship NSERC, Alberta Conservation Association Grant Eligible - Conservation Fund, Canada Circumpolar Institute - C/BAR fund, and the Alberta Sport, Recreation, Parks, Wildlife Foundation Development Initiatives Fund. I would like to acknowledge and send out a thank you to several people for making this study possible. The staff at the Rocky Mountain House government building in Alberta Sustainable Resource Development and Alberta Conservation Association offices were incredibly supportive and accommodating by providing housing, field, computer, and file resources, as well as volunteering their time. In particular I would like to say thanks to Steve Herman (ASRD), Rocky Konynenbelt (ASRD), Rod Burns (ASRD) and Cory Rasmussen (ACA). I would also like to thank the Grazing Association, local anglers, the Kutz Family, and Mr. and Mrs. Taylor for allowing us to have access to their land and providing us with local knowledge of the area. I am forever grateful to my dearest friend and side-kick in this project, Leslie Nasmith, for all her hard work in and out of the field for the past three years. She was my rock and this study would not have been the same without her. I would also like to thank my family for their support over the years. Without their kind words and gentil pushes, none of this would have been possible. Also, special thanks goes out to all the hard working enthusiastic field assistants that I had over the last three years - Colette Feehan, Katie Thompson, Justin Hanisch, Chantelle Allen, Paul Giang, Alissa Moenting, Darryl Edwards, Andre Caron, and Teela Stroll. This study would not have been possible without all of you. Thank-you! I would also like to send out a special thanks to the many members of my committee and lab: Bill Tonn, Garry Scrimgeour, and Lee Foote, the Pasz-Tonn team. Oh, and I could never forget my bio-core friends, Stephanie Nakada, Sarah lord, and Amy Darling for their assistance and advice and for always being there for me. Even with all the support and advice I have gathered from my friends, I am thankful and would like to give a 5-star special thanks to my supervisor, Cindy for her guidance, insight, contributions and patience with all my "silly questions" over the past three years. TABLE OF CONTENTS ABSTRACT ACHNOWLEDGMENTS TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES 1. INTRODUCTION 1 1.1 Sport-Fish Stocking: Management and Human Benefits 1 1.2 Sport-Fish Stocking: Effects on Receiving Ecosystems 3 1.3 Sport-Fish Stocking: Effects on Native Amphibians 5 1.4 The Structure of this Thesis 9 2. STUDY AREA AND SPECIES 10 2.1 Terrestrial and Aquatic Features 10 2.2 Fish Assemblages 12 2.3 Study Species: Amphibians 13 2.3 Predictions: Concerning Effects of Stocked Trout on Amphibian Populations 13 3. METHODS 14 3.1 Limnological Characteristics 14 3.2 Amphibian Surveys 15 3.3 Data Analysis 19 4. RESULTS 22 4.1 Limnological Characteristics 22 4.2 Amphibian Assemblages 23 4.3 Call Surveys and Egg Mass Searches 23 4.4 Overview: Transect Surveys and Pitfall Trapping 24 4.5 Transect Surveys: Relative Abundance - Catch-per-unit-effort 25 4.6 Pitfall Array Trapping: Relative abundance - Catch-per-unit-effort 26 4.7 Body Size 27 4.8 Timing of Wood Frog Metamorphosis 29 4.9 Additional Analyses Comparing Stocked and Unstocked Lakes 29 4.10 Fish-Bearing and Fishless Treatments 30 5. DISCUSSION 31 5.1 Main Results 31 5.2 Habitat Features 32 5.3 Trout Diet: What are Trout Eating? 33 5.4 Calling Behaviour 34 5.5 Relative Abundances of Amphibians 36 5.6 Relative Abundance as Measured by Pitfall Array Trapping and Differences between Sampling Methods 38 5.7 Indirect Effects of Predation: Body Size and Development Patterns 40 5.8 Does Wood Frog Body Size Affect Predation Risk? 42 5.9 Lakes With and Without Fish 43 5.10 Lake and Year Effects 44 6. CONCLUSIONS 46 6.1 North American Fisheries 46 6.2 Alberta's Fishing Policy 47 6.3 Stocking as a Tool 47 6.4 Management Actions 48 6.5 Use of Fish Hatcheries 49 6.6 Stocking Decisions 50 6.7 Recommendations 50 8. LITERATURE CITED 54 APPENDICES 96 A Two methodology diagrams: A) Transect surveys and B) Pitfall trap array 96 B Table showing raw wood frog call survey data for 2006 97 C Presence/absence of adult and YOY wood frog, boreal chorus frog, western toad in transect surveys and pitfall traps 98 D Presence/absence of adult and (YOY) wood frog, boreal chorus frog, and western toad from transect surveys 98 E Adult and (YOY) wood frog mean ± SE SUL 99 F Number of adult female and male wood frogs in transects 100 G Number of adult male and female wood frogs, boreal chorus frogs and western toad pitfall array traps 101 H Adult and YOY wood frog, western toad, and boreal chorus frog transect CPUES for 1) 2005, 2) 2006, 3) 2007 102 I Means (± SE) for catch-per-unit-effort for all 3 species and two age classes 112 LIST OF TABLES Table 1 Physical characteristics of all 12 study lakes in the boreal foothills 68 Table 2 Information for 12 study lakes in the boreal foothills, Alberta, on stocking status, native and non-native species 69 Table 3 Stocking information for the 5 stocked study lakes 70 Table 4 Temperature and water chemistry of 12 small boreal foothills Study lakes 72 Table 5 Summary of the wood frog call and transect survey data from 2006, indicating the number of transects, point counts, and number of call codes observed in each rank index over the entire survey period 74 Table 6 Envrionmental parameter table showing means (± SE) and statistical test results for environmental parameters 75 Table 7 Occurrence on transects of adult and YOY of 3 species of amphibians at 5 stocked lakes and 5 or 6 unstocked lakes 76 Table 8 Summary of the number of wood frog egg masses. Egg masses counts are separated into three survey periods 77 Table 9 Summary of relative abundance Split-plot and Nested Anova outputs for 3 amphibian species and two age classes 78 Table 10 Summary of Wood frog Snout-Urostyle length Split-plot and Nested ANOVA output for two age classes 79 LIST OF FIGURES Figure 1 Mean (± SE) call Rank for adult male wood frogs in 2006.
Recommended publications
  • Target Species Mapping for the Green Visions Plan
    Target Species Habitat Mapping California Quail and Mountain Quail (Callipepla californica and Oreortyx pictus) Family: Phasianidae Order: Galliformes Class: Aves WHR #: B140 and B141 Distribution: California quail are found in southern Oregon, northern Nevada, California, and Baja California, and have been introduced in other states such as Hawaii, Washington, Idaho, Colorado, and Utah (Peterson 1961). In California, they are widespread but absent from the higher elevations of the Sierra Nevada, the Cascades, the White Mountains, and the Warner Mountains, and are replaced by the related Gambel’s quail (C. gambelii) in some desert regions (Peterson 1961, Small 1994). In southern California, they are found from the Coast Range south to the Mexican border, and occur as far east as the western fringes of the Mojave and Sonoran deserts, such as in the Antelope Valley (Garrett and Dunn 1981, Small 1994). California quail range from sea level to about 5000 ft (1524 meters; Stephenson and Calcarone 1999) Mountain quail are resident from northern Washington and northern Idaho, south through parts of Oregon, northwestern Nevada, California, and northern Baja California (Peterson 1961). In southern California, mountain quail are found in nearly all of the mountain ranges west of the deserts, including the southern Coast Ranges, from the Santa Lucia Mountains south through Santa Barbara and Ventura counties, and the Peninsular Ranges south to the Mexican border (Garrot and Dunn 1981, Small 1994). In the Transverse Ranges, a small population occurs in the western Santa Monica Mountains, and larger populations occur in the San Gabriel and San Bernardino Mountains (Small 1994). Mountain quail are found at elevations from below 2000 ft (610 meters) to over 9000 ft (2743 meters; Stephenson and Calcarone 1999).
    [Show full text]
  • Here Describe This Pattern of Absence and Lay out a Plan for Restoring the Species to Areas Where the Species Has Recently Gone Extinct
    San Joaquin Valley Natural Communities Conference March 25, 2021 Virtual Meeting via WHOVA Video Conferencing Program and Abstracts San Joaquin Valley Natural Communities Conference March 25, 2021 8:30 - 8:50 Brian Cypher Welcome to the Conference, Moderator 8:50 - 9:10 Xerónimo Castañeda Six years of Tricolored Blackbird Conservation in the San Joaquin Valley: Challenges and opportunities to save this imperiled species 9:10 - 9:30 Petros Chrysafis Scent deterrent as an applicable predator deterrent 9:30 -9:50 Mike Westphal Blunt-nosed Leopard Lizard occupancy in the Northern Clade: How do we reverse the recent pattern of extinction? 9:50 - 10:10 Deborah Woollett Guidelines, applications, and caveats to using detection dogs to find Blunt-nosed Leopard Lizard scat 10:10 – 10:30 BREAK 10:30 - 10:50 Erica Kelly Impact of a Sarcoptic Mange Epidemic on a Population of Endangered San Joaquin Kit Foxes 10:50 – 11:30 Nicole Deatherage Urban Landscape Attributes and Competition Affect San Joaquin Kit Fox Occupancy and Spatiotemporal Activity 11:30 – 12:00 LUNCH BREAK 12:00 – 12:30 Quick Talk Presentations Anna Doty Effects of fire on summer roost selection and torpor expression of bats in Sequoia and Kings Canyon National Parks: a planned project Patrick Walker Central Valley California tiger salamander behavior within vernal pool grassland complex in Madera County Christopher Lortie Too much of a good thing: richness and restoration in drylands Petros Chrysafis Contribution to eMammal’s Snapshot USA Project Kristie Stein Tricolored Blackbird
    [Show full text]
  • California Wildlife Habitat Relationships System California Department of Fish and Wildlife California Interagency Wildlife Task Group
    California Wildlife Habitat Relationships System California Department of Fish and Wildlife California Interagency Wildlife Task Group SIERRA NEWT Taricha sierrae Family: SALAMANDRIDAE Order: CAUDATA Class: AMPHIBIA A075 Written by: S. Morey Reviewed by: T. Papenfuss Updated by: CWHR Staff May 2013 and Dec 2018 DISTRIBUTION, ABUNDANCE, AND SEASONALITY The Sierra newt is found the length of the Sierra, primarily in the foothills; an isolated population also occurs near the headwaters of Shasta Reservoir in Shasta Co. A few populations are also known from the floor of the Central Valley. Occurs primarily in valley- foothill hardwood, valley-foothill hardwood-conifer, coastal scrub and mixed chaparral, but is also known from annual grassland and mixed conifer types. Elevation range extends from near sea level to about 1830 m (6000 ft) (Jennings and Hayes 1994). SPECIFIC HABITAT REQUIREMENTS Feeding: Postmetamorphic juveniles and terrestrial adults take earthworms, snails, slugs, sowbugs, and insects (Stebbins 1972). Adult males at breeding ponds have been shown to take the eggs and hatching larvae of their own species (Kaplan and Sherman 1980) late in the breeding season, the eggs of other amphibians and trout, as well as adult and larval aquatic insects, small crustaceans, snails, and clams (Borell 1935). Aquatic larvae eat many small aquatic organisms, especially crustaceans. Cover: Terrestrial individuals seek cover under surface objects such as rocks and logs, within hollowed out trees, or in mammal burrows, rock fissures, or human-made structures such as wells. Aquatic larvae find cover beneath submerged rocks, logs, debris, and undercut banks. Reproduction: Eggs are laid in small firm clusters on the submerged portion of emergent vegetation, on submerged vegetation, rootwads, unattached sticks, and on the underside of cobbles off the bottom.
    [Show full text]
  • A Co-Evolutionary Arms Race: Sierra Garter Snake Vs. Sierra Newt by Denise De Carion
    FLOG A Co-Evolutionary Arms Race: Sierra garter snake vs. Sierra newt By Denise De Carion Photo credits: Patrick Hilton (left) and Denise De Carion (right). In the Tuolumne River watershed, there is a co-evolutionary arms race occurring between the Sierra garter snake (Thamnophis couchii) and the Sierra newt (Taricha sierrae) and it has become apparent that the Sierra garter snake is winning. The Sierra newt is an amphibious species whose conspicuous orange coloration provides a warning signal to predators (Petranka, 1998). This animal produces a potent neurotoxin called tetrodotoxin, which if ingested, binds to sodium ion channels in nerves and muscles, causing imminent mortality (Brodie, 2005). It is this molecular mechanism that allows the newt, which is slow-moving and often found out in exposed, shallow pool habitat, to avoid predation by almost all animals occupying higher trophic levels ―except for one. The Sierra garter snake has evolved an elevated resistance to tetrodotoxin, which prevents the toxin from binding to its pores. The deadly toxin is considered to be the phenotypic interface of interactions between these two species that has allowed them to co-evolve via natural selection. In other words, this example of a parallel “arms race” between predator and prey demonstrates that co-evolution of two species surrounding a toxin has been a result of each species having the genetic ability to respond and reciprocate to selection (Brodie et al., 2005). If you are planning to go ‘herping,’ or searching for reptiles and amphibians, on the Tuolumne River, the following words of advice should be followed.
    [Show full text]
  • Salamander Species Listed As Injurious Wildlife Under 50 CFR 16.14 Due to Risk of Salamander Chytrid Fungus Effective January 28, 2016
    Salamander Species Listed as Injurious Wildlife Under 50 CFR 16.14 Due to Risk of Salamander Chytrid Fungus Effective January 28, 2016 Effective January 28, 2016, both importation into the United States and interstate transportation between States, the District of Columbia, the Commonwealth of Puerto Rico, or any territory or possession of the United States of any live or dead specimen, including parts, of these 20 genera of salamanders are prohibited, except by permit for zoological, educational, medical, or scientific purposes (in accordance with permit conditions) or by Federal agencies without a permit solely for their own use. This action is necessary to protect the interests of wildlife and wildlife resources from the introduction, establishment, and spread of the chytrid fungus Batrachochytrium salamandrivorans into ecosystems of the United States. The listing includes all species in these 20 genera: Chioglossa, Cynops, Euproctus, Hydromantes, Hynobius, Ichthyosaura, Lissotriton, Neurergus, Notophthalmus, Onychodactylus, Paramesotriton, Plethodon, Pleurodeles, Salamandra, Salamandrella, Salamandrina, Siren, Taricha, Triturus, and Tylototriton The species are: (1) Chioglossa lusitanica (golden striped salamander). (2) Cynops chenggongensis (Chenggong fire-bellied newt). (3) Cynops cyanurus (blue-tailed fire-bellied newt). (4) Cynops ensicauda (sword-tailed newt). (5) Cynops fudingensis (Fuding fire-bellied newt). (6) Cynops glaucus (bluish grey newt, Huilan Rongyuan). (7) Cynops orientalis (Oriental fire belly newt, Oriental fire-bellied newt). (8) Cynops orphicus (no common name). (9) Cynops pyrrhogaster (Japanese newt, Japanese fire-bellied newt). (10) Cynops wolterstorffi (Kunming Lake newt). (11) Euproctus montanus (Corsican brook salamander). (12) Euproctus platycephalus (Sardinian brook salamander). (13) Hydromantes ambrosii (Ambrosi salamander). (14) Hydromantes brunus (limestone salamander). (15) Hydromantes flavus (Mount Albo cave salamander).
    [Show full text]
  • Amphibian Watch 2018 ELDORADO NATIONAL FOREST
    Amphibian Watch 2018 ELDORADO NATIONAL FOREST PRESENTED BY HEATHER PERRY, PhD A Few Rules No handling of amphibians or reptiles under any circumstance Health and Safety of animals & humans No harassing of amphibians Especially during breeding No sharing of data Amphibian Morphology IN ALL THINGS OF NATURE THERE IS SOMETHING OF THE MARVELOUS ~ARISTOTLE Frogs and Toads Smooth skin Dry skin & warts/bumps Often reside near aquatic Parotoid glands that produce environments as adults defensive secretions, located behind eye Egg masses in clumps Migrate between terrestrial & aquatic ecosystems during breeding season Eggs laid in strings External Morphology Breeding & Egg Masses Toads in amplexus; eggs laid in string formation Frogs in amplexus; eggs laid in clumps/masses Amplexus: the mating method in frogs and toads where the male clasps the female about the back. Eggs are fertilized externally. Females are often larger than males. Salamanders and Newts Photo G. Nafis Rough-skinned when in the Well developed toes for digging terrestrial phase Long, rounded tails Aquatic during breeding Smooth skin season Paddle-like tail Breeding and Egg Masses Sierra Newts are more commonly encountered during mating season. They return to aquatic systems and can be seen in amplexus or mating balls. Eggs are laid and attached to submerged substrates. Long toed salamander eggs attached to submerged woody debris. Photos G. Nafis Tadpole vs. Larvae Tadpoles Larvae • Generally no external gills • External gills • Hind legs develop first • Forelegs develop first • Head is globular • Body is generally more slender Frogs & Toads THREATENED & ENDANGERED Sierra Nevada Yellow-legged Frog Distribution (Rana sierrae) High elevation species (ENDEMIC) Status: Endangered Declines are attributed to: pesticides, chytridiomycosus, and fish introductions Highly sensitive to climate change due to changes in wildfire and hydrologic regimes Audio by G.
    [Show full text]
  • A Co-Evolutionary Arms Race: Sierra Garter Snake Vs. Sierra Newt by Denise De Carion
    FLOG A Co-Evolutionary Arms Race: Sierra garter snake vs. Sierra newt By Denise De Carion In the Tuolumne River watershed, there is a co-evolutionary arms race occurring between the Sierra garter snake (Thamnophis couchii) and the Sierra newt (Taricha sierrae) and it has become apparent that the Sierra garter snake is winning. The Sierra newt is an amphibious species whose conspicuous orange coloration provides a warning signal to predators (Petranka, 1998). This animal produces a potent neurotoxin called tetrodotoxin, which if ingested, binds to sodium ion channels in nerves and muscles, causing imminent mortality (Brodie, 2005). It is this molecular mechanism that allows the newt, which is slow-moving and often found out in exposed, shallow pool habitat, to avoid predation by almost all animals occupying higher trophic levels ―except for one. The Sierra garter snake has evolved an elevated resistance to tetrodotoxin, which prevents the toxin from binding to its pores. The deadly toxin is considered to be the phenotypic interface of interactions between these two species that has allowed them to co-evolve via natural selection. In other words, this example of a parallel “arms race” between predator and prey demonstrates that co-evolution of two species surrounding a toxin has been a result of each species having the genetic ability to respond and reciprocate to selection (Brodie et al., 2005). If you are planning to go ‘herping,’ or searching for reptiles and amphibians, on the Tuolumne River, the following words of advice should be followed. Sierra newts can be found in abundance during their breeding season, January through May, in a small tributary that is located on the other side of the river from the frequently visited campsite Indian Creek.
    [Show full text]
  • Herpetological Conservation in Northwestern North America
    NORTHWESTERN NATURALIST 90:61–96 AUTUMN 2009 HERPETOLOGICAL CONSERVATION IN NORTHWESTERN NORTH AMERICA DEANNA HOLSON (coordinating editor) Pacific Northwest Research Station, USDA Forest Service, 3200 SW Jefferson Way, Corvallis, OR 97331 ABSTRACT—Conservation of the 105 species of amphibians, reptiles, and turtles in the northwestern United States and western Canada is represented by a diverse mix of projects and programs across ten states, provinces, and territories. In this paper, 29 contributing authors review the status of herpetofauna by state, province or territory, and summarize the key issues, programs, projects, partnerships, and regulations relative to the species and habitats in those areas. Key threats to species across this expansive area include habitat degradation or loss, invasive species, disease, and climate change. Many programs and projects currently address herpetological conservation issues, including numerous small-scale monitoring and research efforts. However, management progress is hindered in many areas by a lack of herpetological expertise and basic knowledge of species’ distribution patterns, limited focus within management programs, insufficient funds, and limited communication across the region. Common issues among states and provinces suggest that increased region-wide communication and coordination may aid herpetological conservation. Regional conservation collaboration has begun by the formation of the Northwest working group of Partners in Amphibian and Reptile Conservation. Key words: amphibians, reptiles, turtles, Canada, Pacific Northwest, declines, management, PARC The conservation of amphibians, reptiles and 1983; Stebbins 1985; Storm and Leonard 1995; St. turtles in North America is now of paramount John 2002; Maxell and others 2003; Werner and concern because these taxonomic groups are the others 2004; Jones and others 2005; Matsuda and most threatened among vertebrates worldwide others 2006; Corkran and Thoms 2006; Slough (Turtle Conservation Fund 2002; Stuart and and Mennell 2006).
    [Show full text]
  • A Brief Introduction to California Newts
    A BRIEF INTRODUCTION TO CALIFORNIA NEWTS CDA2A71D93BB.html Oct 10, 2019 The Pacific Newts Genus Taricha California Newt Taricha torosa Rough-skinned Newt Taricha granulosa Red-bellied newt Taricha rivularis (note all dark eye) Sierra Newt Taricha sierrae Newt Life Cycle: What makes a newt a newt? (Newts are a type of salamander) “Typical” Newt life cycle: Pacific Newts are exceptional! Newts are VERY poisonous ~2,000 mice killed by 1 California Newt ~20,000 mice killed by 1 Rough-skinned Newt Rough-skinned Newt California Newt •Eyes don’t protrude past head outline •Eyes protrude past head outline •Dark around eyes •Light around eyes California Newt Life Cycle Terrestrial life – not much information on this phase May move 3 or more miles from breeding site. Breeding Behavior • Males migrate to bodies of water before females – Wait for females – Spend extended time in water • Male physical changes – Vent swells – Skin becomes smooth – Tail becomes laterally flattened – Limbs swell – Toes become more rough Eggs Rough-skinned Newt egg California Newt eggs California Newt laying Eggs Rough-skinned vs. California • More likely in streams in • More likely in ponds in forests grassland • Eggs laid singly • Eggs laid in clusters • Slow development • Quick development of egg and larvae of egg and larvae • Un-striped larvae • Striped larvae Larval Stage Duration varies greatly Only stage without toxic protection Metamorphosis and upland migration So, when are newts on the move? 1.Metamorphs move upland. Midsummer – Fall 2.Adults move to breeding sites. Fall – winter (Males may move annually, females every 2 – 3 years) 3.Post breeding adults return to upland habitat.
    [Show full text]
  • Measures to Reduce Road Impacts on Amphibians and Reptiles in California Best Management Practices and Technical Guidance
    STATE OF CALIFORNIA • DEPARTMENT OF TRANSPORTATION ADA Notice TECHNICAL REPORT DOCUMENTATION PAGE For individuals with sensory disabilities, this document is available in alternate TR0003 (REV 10/98) formats. For information call (916) 654-6410 or TDD (916) 654-3880 or write Records and Forms Management, 1120 N Street, MS-89, Sacramento, CA 95814. 1. REPORT NUMBER 2. GOVERNMENT ASSOCIATION NUMBER 3. RECIPIENT'S CATALOG NUMBER CA20-2700 4. TITLE AND SUBTITLE 5. REPORT DATE Mea sures to Reduce Road Impacts on Amphibians and Reptiles in Ca lifornia: Best Management Practices and Technical Guidance Ma rch 2021 6. PERFORMING ORGANIZATION CODE N/A 7. AUTHOR 8. PERFORMING ORGANIZATION REPORT NO. Thomas E.S. La ngton a nd Anthony P. Clevenger N/A 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NUMBER Western Tra nsportation Institute Montana State University N/A 2327 University Way, Bozeman 11. CONTRACT OR GRANT NUMBER Montana 59715 N/A 12. SPONSORING AGENCY AND ADDRESS 13. TYPE OF REPORT AND PERIOD COVERED Ca lifornia Department of Tra nsportation (Caltrans) Final Report Division of Research, Innovation and System Information, MS-83 1727 30th Street Sacramento, CA 95816 14. SPONSORING AGENCY CODE N/A 15 . SUPPLEMENTARY NOTES 16 . ABSTRACT The main objective of this project was to develop this Best Management Practices (BMP) document for constructing and maintaining amphibian and reptile road crossing systems. U.S. Geological Survey (USGS) researchers collaborated with the project teamby conducting studies on California tiger salamanders (CTS) in Stanford, CA and on Yosemite toadsin the Sierra National Forest with respect to passage spacing, barrier fencing materials, and the effectiveness of turnarounds and jump-outs.
    [Show full text]
  • Phenotypic, Physiological, and Genetic Patterns of TTX Resistance in the Sierra Garter Snake Thamnophis Couchii
    University of Nevada, Reno Evolution of an Adaptive Trait: Phenotypic, Physiological, and Genetic Patterns of TTX Resistance in the Sierra Garter Snake Thamnophis couchii A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Ecology, Evolution, and Conservation Biology by Jessica Summer Reimche Dr. Chris Feldman/Dissertation Advisor Dr. Karen Schlauch/Dissertation Advisor December 2020 Copyright © by Jessica Summer Reimche 2020 All Rights Reserved THE GRADUATE SCHOOL We recommend that the dissertation prepared under our supervision by Jessica Summer Reimche entitled Evolution of an Adaptive Trait: Phenotypic, Physiological, and Genetic Patterns of TTX Resistance in the Sierra Garter Snake Thamnophis couchii be accepted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chris R. Feldman, Ph.D., Advisor Karen Schlauch, Ph.D., Co-advisor Thomas L. Parchman, Ph.D., Committee Member Julie M. Allen Ph.D., Committee Member Normand Leblanc, Ph.D., Graduate School Representative David W. Zeh, Ph.D., Dean, Graduate School December 2020 i ABSTRACT Understanding the molecular evolution of adaptive traits is central to advancing evolutionary biology. Thus, describing the genetic architecture of such traits is necessary to understand how adaptations arise, spread, and fix across populations. Where exactly these adaptive traits originate in the underlying genetic architecture remains a topic of controversy, with some evolutionary biologists arguing that origination of adaptive phenotypes occurs from changes in regulatory non-protein coding regions of the genome, while others claim they stem from structural mutations in protein coding regions. Complex phenotypes such as adaptations are inherently difficult to study, typically involving multiple, potentially independent, genetic mechanisms that can be challenging to recognize.
    [Show full text]
  • 7.3 Aquatic Resources
    Yuba County Water Agency Yuba River Development Project FERC Project No. 2246 7.3 Aquatic Resources 7.3.1 Overview This section discusses aquatic resources in the vicinity1 of Yuba County Water Agency’s (YCWA’s or Licensee’s) Yuba River Development Project (Project) and is divided into four topics. Section 7.3.2 describes the history of fishes in the Yuba River Basin. Section 7.3.3 identifies specific special-status aquatic species that have the potential to be affected by continued Project operation and maintenance (O&M), provides a brief life history description for each of the special-status aquatic species, and describes the known occurrence of the special- status aquatic species in relation to Project facilities and features. Section 7.3.4 describes relevant and reasonably available information regarding aquatic resources in areas upstream of the Project, within the Project Area,2 and downstream of the Project. Areas upstream of the Project include the Middle Yuba River upstream of Our House Diversion Dam, Oregon Creek upstream of Log Cabin Diversion Dam, South Yuba River upstream of the mouth of the river at the United States Army Corps of Engineers’ (USACE’s) Englebright Reservoir, and on the North Yuba River upstream of New Bullards Bar Reservoir. The area downstream of the Project includes the lower Yuba River downstream of USACE’s Daguerre Point Dam to the confluence with the Feather River. 7.3.2 Historic Distribution of Fish and Influences Affecting Yuba River Fisheries 7.3.2.1 Historic Distribution Climatic and geologic forces are the dominant architects of Sierra Nevada ecosystems (SNEP 1997).
    [Show full text]