Onco-Nephrology: Tumor Lysis Syndrome

Total Page:16

File Type:pdf, Size:1020Kb

Onco-Nephrology: Tumor Lysis Syndrome Onco-Nephrology: Tumor Lysis Syndrome F. Perry Wilson and Jeffrey S. Berns Summary Tumor lysis syndrome (TLS) describes the clinical and laboratory sequelae that result from the rapid release of intracellular contents of dying cancer cells. It is characterized by the release of potassium, phosphorous, and nucleic acids from cancer cells into the blood stream, with the potential to cause hyperkalemia; hyperphospha- temia and secondary hypocalcemia; hyperuricemia; AKI; and, should usual homeostatic mechanisms fail, death. TLS most commonly follows treatment of hematologic malignancies, such as acute lymphocytic or lymphoblastic Perelman School of Medicine at the leukemia, acute myeloid leukemia, and Burkitt lymphoma, but also occurs after treatment of other bulky or rapidly University of growing tumors, particularly if the patient is highly sensitive to the effects of cytotoxic chemotherapy. Prevention Pennsylvania, and treatment depend on prompt recognition of patients at risk, volume repletion, allopurinol, rasburicase Hospitalofthe (a novel recombinant urate oxidase), and, when indicated, dialysis. University of – Pennsylvania, Clin J Am Soc Nephrol 7: 1730 1739, 2012. doi: 10.2215/CJN.03150312 Philadelphia, Pennsylvania Introduction within a 24-hour period. This complicated time limi- Correspondence: Tumor lysis syndrome (TLS) describes the clinical and tation requires defining TLS according to a future Dr. Jeffrey S. Berns, laboratory sequelae that result from the rapid release event (the administration of chemotherapy) and Perelman School of Medicine at the of intracellular contents of dying cancer cells. It is the does not provide a framework for the diagnosis of University of single most common oncologic emergency and a spontaneous TLS (14). These definitions continue to Pennsylvania, frequent source of inpatient consultation for nephrol- be debated (2). From a nephrologic perspective, de- Hospitalofthe ogists (1). TLS is characterized by the release of po- fining AKI on the basis of a creatinine value .1.5 University of tassium, phosphorous, and nucleic acids from cancer Pennsylvania, 3400 times the upper limit of normal for patient age and Spruce Street, 1 cells into the blood stream, with the potential to cause sex is not typical and does not clearly distinguish Founders Pavilion, hyperkalemia; hyperphosphatemia and secondary CKD from AKI. It would seem appropriate to rede- Philadelphia, PA hypocalcemia; hyperuricemia;AKI;and,should fine the renal criteria for clinical TLS to an absolute 19104. Email: bernsj@ usual homeostatic mechanisms fail, death. TLS most 0.3-mg/dl increase or relative 50% increase in creati- uphs.upenn.edu commonly follows treatment of hematologic malig- nine over established baseline to be more closely nancies, such as acute lymphocytic or lymphoblastic aligned with commonly used AKI criteria (15). This leukemia, acute myeloid leukemia, and Burkitt lym- more sensitive definition would potentially identify pa- phoma, but also occurs after treatment of other bulky tients with TLS earlier, allowing for more rapid inter- or rapidly growing tumors, particularly if highly sensi- vention and perhaps improved outcomes. Use of tive to the effects of cytotoxic chemotherapy (2–4). TLS urinary and serum biomarkers may in the future allow has been reported after treatment with conventional diagnosis and treatment of very early TLS-associated chemotherapy, dexamethasone (5), and newer agents AKI but has not yet been studied. such as bortezomib (6,7), thalidomide (8,9), and rituximab (10); radiation therapy of radio-sensitive solid tumors (11); and total-body irradiation (12). Pathophysiology The clinical and laboratory complications of TLS are Definitions: The Cairo-Bishop Criteria due to release of intracellular contents into the extra- Although no classification scheme for TLS is uni- cellular space, overwhelming homeostatic mechanisms. fi formly accepted, that of Cairo and Bishop is often Although the electrolyte complications have signi - used (13). The lack of universal definitions for diag- cant morbid potential, the liberation of nucleic acids nosis has made the analysis of studies examining TLS plays a major role in the AKI seen in TLS (16). as an exposure or outcome complicated because of heterogeneity. The Cairo-Bishop definitions of “labo- Uric Acid ratory TLS” and “clinical TLS” are shown in Table 1. Following the release of intracellular nucleic acids, Clinical TLS requires the presence of laboratory TLS adenine and guanine are metabolized to xanthine, in addition to evidence of renal, cardiac, or neuro- which is broken down by xanthine oxidase to uric logic dysfunction. The Cairo-Bishop classification re- acid. This process and the relative solubilities of the quires an increase in electrolyte markers to occur molecules involved are displayed in Figure 1. In most between 3 days before and 7 days after initiation of animals, uric acid is metabolized to the highly soluble chemotherapy, with two markers being abnormal allantoin by urate oxidase. Humans and many other 1730 Copyright © 2012 by the American Society of Nephrology www.cjasn.org Vol 7 October, 2012 Clin J Am Soc Nephrol 7: 1730–1739, October, 2012 Tumor Lysis Syndrome, Wilson and Berns 1731 resistance beyond the peritubular capillaries was in- Table 1. Cairo-Bishop classification of tumor lysis syndrome in creased by more than three-fold. These findings demon- adults strated that acute uric acid nephropathy is related not only to tubular obstruction but also to marked hemody- Laboratory TLS Clinical TLS namic changes in multiple renal vessels. Even at soluble Uric acid: $8.0 AKI (defined as creatinine concentrations, uric acid may predispose to renal ische- mg/dl .1.53 the upper limit mia. Uric acid can scavenge bioavailable nitric oxide, lead- of normal for patient ing to vasoconstriction (19). Vascular smooth muscle cells age and sex) exposed to dissolved uric acid release the inflammatory $ Potassium: 6.0 Cardiac arrhythmia cytokines monocyte chemotactic protein-1, TNF-a,and mEq/dl other vasoactive mediators, leading to chemotaxis of Phosphorus: $4.6 Seizure, tetany, or other white cells and further inflammatory injury (20). Finally, mg/dl symptomatic hypocalcemia Calcium: #7.0 uric acid may inhibit proximal tubule cell proliferation, mg/dl prolonging the duration of kidney injury (21). Potassium Patients must meet more than two of four laboratory criteria in The intracellular concentration of potassium is as high the same 24-hour period within 3 days before to 7 days after chemotherapy initiation. A .25% increase from “baseline” 120 mEq/L (22,23). In the case of hematologic malignan- laboratory values is also acceptable (13). Other causes of AKI cies, much of the 2.6 kg of bone marrow in the average (e.g., nephrotoxin exposure, obstruction) should be excluded. human may be replaced by malignant cells. The rapid lib- TLS, tumor lysis syndrome. eration of potassium into the extracellular fluid will lead to severe hyperkalemia if it exceeds the normal homeostatic uptake of potassium into liver and muscle cells. In the primates lack this enzyme, making less soluble uric acid setting of CKD or AKI, renal clearance of potassium is the final end product of adenine and guanine metabolism. reduced, increasing the severity of hyperkalemia (24). Hy- Uric acid impairs kidney function via crystal-dependent perkalemia can lead to weakness and death via cardiac and crystal-independent mechanisms, with crystal-dependent arrhythmia. processes generally considered to be more important (17). An acid urine pH favors production of poorly soluble uric Phosphorous and Calcium acid over the more soluble urate, increasing the risk for TLS can rapidly liberate a large volume of intracellular precipitation of intratubular uric acid crystals. Conger phosphate. Hyperphosphatemia is less common in cases of and Falk evaluated uric acid nephropathy in a rat model, spontaneous TLS than in typical TLS, presumably because demonstrating marked increases in proximal and distal of the rapid uptake of extracellular phosphate by the remain- tubular pressures in rats given exogenous uric acid loads ing highly active residual tumor cells in the former condition along with a uricase inhibitor (18). In addition, peritubular (25–28). Hyperphosphatemia in patients with TLS will be capillary pressures were increased two-fold, and vascular further exacerbated by any associated AKI. Figure 1. | Metabolism of purine nucleic acids. In humans and apes, the end product is uric acid. Allopurinol inhibits metabolism of xanthine to uric acid. Recombinant urate oxidase catalyzes the metabolism of uric acid into the more soluble allantoin (55,94,95). Solubilities at a pH of 7 are shown in parentheses. 1732 Clinical Journal of the American Society of Nephrology The primary toxicity of hyperphosphatemia is the sec- medulloblastoma, hepatoblastoma, breast carcinoma, non– ondary hypocalcemia that results from chelation of calcium small-cell lung cancer, vulvar carcinoma, thymoma, ovarian by phosphate anions. Hypocalcemia can lead to cardiac ar- carcinoma, colorectal carcinoma, gastric carcinoma, mela- rhythmias, seizures, tetany, and death. Interestingly, pro- noma, hepatocellular carcinoma, and sarcoma (35). longed hypocalcemia has been described even after resolution Although a recommendation to include routine measure- of hyperphosphatemia in TLS, presumably due to a deficiency ment of serum uric acid, potassium, calcium, or phospho- of 1,25-vitamin D (29). rus during treatment of solid malignancies
Recommended publications
  • At an Increased Risk: Tumor Lysis Syndrome
    ONC O L O GY NURSING 101 DEBRA L. WINKELJ O HN , RN, MSN, AOCN®, CNS—ASS O CIATE ED IT O R At an Increased Risk: Tumor Lysis Syndrome Beth McGraw, RN, BSN, OCN® Patients at highest risk for tumor lysis hyperphosphatemia, hypocalcemia, and Gastrointestinal syndrome (TLS) often are diagnosed with hyperkalemia. Hyperuricemia occurs Hyperkalemia causes nausea, vomit- bulky, rapidly proliferating hematologic when the liver converts nucleic acids ing, and diarrhea (Cope, 2004). Anorexia, tumors, such as acute leukemia and non- into uric acid; hypocalcemia develops as abdominal cramping, and pain also may Hodgkin lymphoma (Kaplow & Hardin, serum calcium binds to elevated amounts occur because of the elevated potassium 2007). Patients with solid tumors, such of phosphorus within the bloodstream (McCance & Heuther, 2006). Decreased as mediastinal masses which are highly (Kaplow & Hardin). levels of serum calcium may cause in- sensitive to chemotherapy, also may de- testinal cramping and increased bowel velop TLS, although it is more common activity (McCance & Heuther). in patients undergoing treatment for leu- Clinical Findings kemia and lymphoma. TLS occurs from Laboratory findings will demonstrate the effect of chemotherapy or radiation electrolyte imbalances such as hyper- Cardiac on rapidly dividing cells. Patients with uricemia (more than 6.0 mg/dl), hyper- Serum potassium levels more than elevated lactic dehydrogenase (LDH), phosphatemia (more than 4.5 mg/dl), 5.3 mEq/l may cause irregular heart dehydration, and renal insufficiency are hypocalcemia (less than 8.5 mg/dl), and arrythmias and hypotension (Murphy- at greatest risk for developing TLS (Brant, hyperkalemia (more than 5.5 mEq/l) Ende & Chernecky, 2002).
    [Show full text]
  • Clinical Characteristics of Tumor Lysis Syndrome in Childhood Acute Lymphoblastic Leukemia
    www.nature.com/scientificreports OPEN Clinical characteristics of tumor lysis syndrome in childhood acute lymphoblastic leukemia Yao Xue1,2,22, Jing Chen3,22, Siyuan Gao1,2, Xiaowen Zhai5, Ningling Wang6, Ju Gao7, Yu Lv8, Mengmeng Yin9, Yong Zhuang10, Hui Zhang11, Xiaofan Zhu12, Xuedong Wu13, Chi Kong Li14, Shaoyan Hu15, Changda Liang16, Runming Jin17, Hui Jiang18, Minghua Yang19, Lirong Sun20, Kaili Pan21, Jiaoyang Cai3, Jingyan Tang3, Xianmin Guan4* & Yongjun Fang1,2* Tumor lysis syndrome (TLS) is a common and fatal complication of childhood hematologic malignancies, especially acute lymphoblastic leukemia (ALL). The clinical features, therapeutic regimens, and outcomes of TLS have not been comprehensively analyzed in Chinese children with ALL. A total of 5537 children with ALL were recruited from the Chinese Children’s Cancer Group, including 79 diagnosed with TLS. The clinical characteristics, treatment regimens, and survival of TLS patients were analyzed. Age distribution of children with TLS was remarkably diferent from those without TLS. White blood cells (WBC) count ≥ 50 × ­109/L was associated with a higher risk of TLS [odds ratio (OR) = 2.6, 95% CI = 1.6–4.5]. The incidence of T-ALL in TLS children was signifcantly higher than that in non-TLS controls (OR = 4.7, 95% CI = 2.6–8.8). Hyperphosphatemia and hypocalcemia were more common in TLS children with hyperleukocytosis (OR = 2.6, 95% CI = 1.0–6.9 and OR = 5.4, 95% CI = 2.0–14.2, respectively). Signifcant diferences in levels of potassium (P = 0.004), calcium (P < 0.001), phosphorus (P < 0.001) and uric acid (P < 0.001) were observed between groups of TLS patients with and without increased creatinine.
    [Show full text]
  • Management of Pediatric Tumor Lysis Syndrome
    Arab Journal of Nephrology and Transplantation. 2011 Sep;4(3):147-54 Review Article AJNT Management of Pediatric Tumor Lysis Syndrome Illias tazi*¹, Hatim Nafil¹, Jamila Elhoudzi², Lahoucine Mahmal¹, Mhamed Harif² 1. Hematology department, Chu Mohamed VI, Cadi Ayyad University, Marrakech, Morocco 2. Hematology and Pediatric Oncology department, Chu Mohamed VI, Cadi Ayyad University, Marrakech, Morocco Abstract Keyswords: Acute Renal Failure; Burkitt’s Lymphoma; Hematologic Malignancies; Hydration; Tumor Lysis Introduction: Tumor lysis syndrome (TLS) is a serious Syndrome complication of malignancies and can result in renal failure or death. The authors declared no conflict of interest Review: In tumors with a high proliferative rate with a relatively large mass and a high sensitivity to cytotoxic Introduction agents, the initiation of therapy often results in the rapid release of intracellular anions, cations and the Infection remains the leading cause of organ failure in metabolic products of proteins and nucleic acids into critically ill cancer patients, but several reports point the bloodstream. The increased concentrations of uric out the increasing proportion of patients admitted into acid, phosphates, potassium and urea can overwhelm intensive care units with organ failure related to the the body’s homeostatic mechanisms to process and malignancy itself [1]. Some of these complications excrete these materials and result in the clinical spectrum may be directly related to the extent of the malignancy. associated with TLS. Typical clinical sequelae include This may include acute renal failure, acute respiratory gastrointestinal disturbances, neuromuscular effects, failure and coma. Most of these specific organ failures cardiovascular complications, acute renal failure and will require initiation of cancer therapy along with the death.
    [Show full text]
  • Tumor Lysis Syndrome
    Tumor Lysis Syndrome Thomas B. Russell, MD,* David E. Kram, MD, MCR* *Section of Pediatric Hematology/Oncology, Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC Practice Gaps Along with knowledge of how to evaluate a pediatric patient with a suspected malignancy, general pediatricians must maintain a high level of suspicion of tumor lysis syndrome for initial management and timely patient referral. This syndrome is largely preventable, and certainly manageable, with prompt diagnosis and appropriate intervention. Objectives After completing this article, readers should be able to: 1. Define and diagnose tumor lysis syndrome (TLS). 2. Recognize the risk factors for TLS. 3. Stratify pediatric patients with cancer according to risk of developing TLS. 4. Identify interventions to prevent TLS. 5. Discuss management strategies for patients with TLS. INTRODUCTION Tumor lysis syndrome (TLS) is a life-threatening oncologic emergency that occurs when cancer cells break down, either spontaneously or after initiation of cytotoxic chemo- therapy, and release their intracellular contents into the bloodstream. This massive release of uric acid, potassium, and phosphorous, which under normal physiologic conditions are excreted in the urine, can lead to hyperuricemia, hyperkalemia, hyper- phosphatemia, and hypocalcemia. These metabolic derangements increase the risk of severe complications, including acute kidney injury (AKI), cardiac arrhythmias, sei- zures, and even death. TLS is the most common oncologic emergency, and it occurs AUTHOR DISCLOSURE Drs Russell and Kram fi most frequently in children with acute leukemia and non-Hodgkin lymphoma. TLS is have disclosed no nancial relationships relevant to this article. This commentary does often preventable; clinicians must maintain a high index of suspicion and rely on not contain a discussion of an unapproved/ effective prevention and treatment strategies.
    [Show full text]
  • Chapter 4: Tumor Lysis Syndrome
    Chapter 4: Tumor Lysis Syndrome † Amaka Edeani, MD,* and Anushree Shirali, MD *Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; and †Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut INTRODUCTION class specifies patients with normal laboratory and clinical parameters as having no LTLS or CTLS. Tumor lysis syndrome (TLS) is a constellation of Cairo and Bishop also proposed a grading system metabolic abnormalities resulting from either spon- combiningthedefinitionsofnoTLS,LTLS,andCTLS, taneous or chemotherapy-induced tumor cell death. with the maximal clinical manifestations in each Tumor cytotoxicity releases intracellular contents, affectedorgandefiningthegrade ofTLS(1).Although including nucleic acids, proteins, and electrolytes this grading system attempts to provide uniform def- into the systemic circulation and may lead to devel- initions to TLS severity, it is not widely used in clinical opment of hyperuricemia, hyperphosphatemia, hy- practice. pocalcemia,andhyperkalemia.Clinically,thisresults The Cairo-Bishop classification is not immune to in multiorgan effects such as AKI, cardiac arrhyth- critique despite its common use. Specifically, patients mias, and seizures (1,2). TLS is the most common with TLS may not always have two or more abnor- oncologic emergency (3), and without prompt rec- malities present at once, but one metabolic derange- ognition and early therapeutic intervention, mor- ment may precede another (2). Furthermore, a 25% bidity and mortality is high. change from baseline may not always be significant if it does not result in a value outside the normal range (2). From a renal standpoint, Wilson and Berns (5) DEFINITION have noted that defining AKI on the basis of a creat- inine value .1.5 times the upper limit of normal Hande and Garrow (4) first initiated a definition of does not clearly distinguish CKD from AKI.
    [Show full text]
  • A Systematic Review of Rhabdomyolysis for Clinical Practice Luis O
    Chavez et al. Critical Care (2016) 20:135 DOI 10.1186/s13054-016-1314-5 REVIEW Open Access Beyond muscle destruction: a systematic review of rhabdomyolysis for clinical practice Luis O. Chavez1, Monica Leon2, Sharon Einav3,4 and Joseph Varon5* Abstract Background: Rhabdomyolysis is a clinical syndrome that comprises destruction of skeletal muscle with outflow of intracellular muscle content into the bloodstream. There is a great heterogeneity in the literature regarding definition, epidemiology, and treatment. The aim of this systematic literature review was to summarize the current state of knowledge regarding the epidemiologic data, definition, and management of rhabdomyolysis. Methods: A systematic search was conducted using the keywords “rhabdomyolysis” and “crush syndrome” covering all articles from January 2006 to December 2015 in three databases (MEDLINE, SCOPUS, and ScienceDirect). The search was divided into two steps: first, all articles that included data regarding definition, pathophysiology, and diagnosis were identified, excluding only case reports; then articles of original research with humans that reported epidemiological data (e.g., risk factors, common etiologies, and mortality) or treatment of rhabdomyolysis were identified. Information was summarized and organized based on these topics. Results: The search generated 5632 articles. After screening titles and abstracts, 164 articles were retrieved and read: 56 articles met the final inclusion criteria; 23 were reviews (narrative or systematic); 16 were original articles containing epidemiological data; and six contained treatment specifications for patients with rhabdomyolysis. Conclusion: Most studies defined rhabdomyolysis based on creatine kinase values five times above the upper limit of normal. Etiologies differ among the adult and pediatric populations and no randomized controlled trials have been done to compare intravenous fluid therapy alone versus intravenous fluid therapy with bicarbonate and/or mannitol.
    [Show full text]
  • Understanding Tumor Lysis Syndrome Lara Zafrani1,2*, Emmanuel Canet3 and Michael Darmon1
    Intensive Care Med (2019) 45:1608–1611 https://doi.org/10.1007/s00134-019-05768-x UNDERSTANDING THE DISEASE Understanding tumor lysis syndrome Lara Zafrani1,2*, Emmanuel Canet3 and Michael Darmon1 © 2019 Springer-Verlag GmbH Germany, part of Springer Nature Tumor lysis syndrome (TLS) is a life-threatening condi- Current defnitions of TLS follow the classifca- tion in patients with extensive and chemosensitive malig- tion developed by Cairo and Bishop [6]. Accordingly, nancies. It usually occurs as a consequence of antican- laboratory TLS refers to the occurrence of metabolic cer treatments, although it can also arise spontaneously disturbances (hyperkalemia, hyperphosphatemia, hyper- (in up to a third of TLS cases) [1, 2]. TLS results from uricemia, and hypocalcemia) within the three days prior the rapid destruction of malignant cells, whose intracel- to or the seven days following the administration of lular content (ions, proteins, and metabolites) is conse- cancer chemotherapy, while clinical TLS refers to the quently released into the extracellular space. Potassium, presence of clinical manifestations (cardiac, renal, or calcium, phosphates, and deoxyribonucleic acid (DNA), neurological) in a patient with laboratory TLS. However, which are present in high concentrations in malignant despite these defnitions, TLS is not a straightforward cells, are released into the extracellular space, leading diagnosis, for several reasons. First of all, uremic syn- to hyperkalemia, hyperphosphatemia, and subsequent drome resulting from other causes may mimic TLS. In hypocalcemia. DNA catabolism leads to the release of this setting, electrolytic abnormalities kinetic (i.e increase adenosine and guanosine, which are converted into xan- of phosphatemia, kaliemia and lacticodehydrogenase lev- thine and then uric acid.
    [Show full text]
  • A Rare Cause of Tumour Lysis Syndrome and Acute Kidney Injury Ala Ali1, Rawaa D Al-Janabi2
    J R Coll Physicians Edinb 2020; 50: 35–8 | doi: 10.4997/JRCPE.2020.109 CASE REPORT A rare cause of tumour lysis syndrome and acute kidney injury Ala Ali1, Rawaa D Al-Janabi2 ClinicalTumour lysis syndrome is rare in solid malignancies. Here, we report a case Correspondence to: of tumour lysis syndrome and acute kidney injury in a 23-year-old female Ala Ali Abstract with gestational trophoblastic neoplasia. Hydration and early dialysis therapy Nephrology and Renal were started with good recovery. On follow up she progressed to chronic Transplantation Centre kidney disease. After 6 years of follow up, the patient conceived and delivered The Medical City successfully. Baghdad Iraq Keywords: acute kidney injury, AKI, gestational trophoblastic neoplasia, GTN, tumour lysis syndrome, TLS Email: [email protected] Financial and Competing Interests: No confl ict of interests declared Introduction It is very rare to have TLS in a solid tumour, especially in obstetric/gynaecology oncology. Literature review yielded only Tumour lysis syndrome (TLS) represents the metabolic one case report of TLS in metastatic gestational trophoblastic derangements resulting after the initiation of chemotherapy for neoplasia (GTN), reported by Schuman et al.7 in 2010. malignant tumours. TLS occurs because of the rapid destruction of tumour cells and the subsequent rapid release of intracellular Here, we present a case of TLS and AKI in an Iraqi female contents and proteins into the extracellular space. This will with an invasive mole who received aggressive chemotherapy, lead to hyperuricaemia, hyperkalaemia, hyperphosphataemia, treated with haemodialysis and followed up for 6 years. hypocalcaemia and acute kidney injury (AKI).1 Case presentation TLS follows the treatment of haematologic malignancies, such as acute leukaemia and lymphoma.
    [Show full text]
  • Hyperleukocytosis and Leukostasis in Acute Myeloid Leukemia: Can a Better Understanding of the Underlying Molecular Pathophysiology Lead to Novel Treatments?
    cells Review Hyperleukocytosis and Leukostasis in Acute Myeloid Leukemia: Can a Better Understanding of the Underlying Molecular Pathophysiology Lead to Novel Treatments? Jan Philipp Bewersdorf and Amer M. Zeidan * Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, PO Box 208028, New Haven, CT 06520-8028, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-203-737-7103; Fax: +1-203-785-7232 Received: 19 September 2020; Accepted: 15 October 2020; Published: 17 October 2020 Abstract: Up to 18% of patients with acute myeloid leukemia (AML) present with a white blood cell (WBC) count of greater than 100,000/µL, a condition that is frequently referred to as hyperleukocytosis. Hyperleukocytosis has been associated with an adverse prognosis and a higher incidence of life-threatening complications such as leukostasis, disseminated intravascular coagulation (DIC), and tumor lysis syndrome (TLS). The molecular processes underlying hyperleukocytosis have not been fully elucidated yet. However, the interactions between leukemic blasts and endothelial cells leading to leukostasis and DIC as well as the processes in the bone marrow microenvironment leading to the massive entry of leukemic blasts into the peripheral blood are becoming increasingly understood. Leukemic blasts interact with endothelial cells via cell adhesion molecules such as various members of the selectin family which are upregulated via inflammatory cytokines released by leukemic blasts. Besides their role in the development of leukostasis, cell adhesion molecules have also been implicated in leukemic stem cell survival and chemotherapy resistance and can be therapeutically targeted with specific inhibitors such as plerixafor or GMI-1271 (uproleselan).
    [Show full text]
  • Tumor Lysis Syndrome
    Oncologic Complications Resulting in Metabolic Disturbances: Tumor Lysis Syndrome Oncologic Complications Resulting in Metabolic Disturbances: Tumor Lysis Syndrome Authors: Belinda Mandrell, RN, MSN, St. Jude Children’s Research Hospital Ayda G. Nambayan, DSN, RN, St. Jude Children’s Research Hospital Content Reviewed by: Lisa South, RN, DSN, School of Nursing, University of Alabama at Birmingham Cure4Kids Release Date: 5 May 2006 Definition: Tumor lysis syndrome (A – 1) (TLS) is a metabolic disorder that results from the rapid release of intracellular contents (potassium, phosphorus and nucleic acids) into the circulation upon the rapid death of cells. The amounts of these intracellular products may exceed the body’s compensatory measures and cause four metabolic abnormalities: Hyperuricemia (A – 2) Hyperkalemia (A – 3) Hyperphosphatemia (A – 4) Hypocalcemia. Each of these electrolyte imbalances can occur individually or in combination, and severe increases in electrolyte concentrations can alter organ function. Risk Factors: Patients with large, rapidly growing tumors or pre-existing renal dysfunction are at greatest risk of TLS. Large tumor burdens may be clinically evident as hyperleukocytosis (increased white cell count [WBC] greater than 100,000/mm3), an increased concentration of lactose dehydrogenase (LDH), an increased concentration of uric acid, and massive enlargement of organs. Types of organ enlargement that might be seen are lymphadenopathy, a mediastinal mass and hepatosplenomegaly or other large abdominal tumors. Patients with chemosensitive tumors are also at risk of TLS. Therefore, this syndrome is most commonly associated with chemosensitive diseases that have a large tumor burden such as any leukemia with a high WBC count, Burkitt’s lymphoma and lymphocytic lymphoma.
    [Show full text]
  • Identification of Children with Acute Lymphoblastic Leukemia at Low
    isord D ers od & lo T r B f a n o s l f a u n s r Journal of i o u n o J Bahoush et al., J Blood Disord Transfus 2015, 6:6 ISSN: 2155-9864 Blood Disorders & Transfusion DOI: 10.4172/2155-9864.1000318 Research Article Open Access Identification of Children with Acute Lymphoblastic Leukemia at Low Risk for Tumor Lysis Syndrome Bahoush GR1*, Yazdi E2, Ansari SH3, Arjmandi KH3 and Vossough P3 1Department of Pediatrics, Pediatric Hematologist and Oncologist, Onco-Pathology Research Center, Ali-Asghar Children Hospital, Iran University of Medical Sciences, Tehran, Iran 2General Practitioner, Iran University of Medical Sciences, Tehran, Iran 3Department of Pediatrics, Pediatric Hematologist and Oncologist, Ali-Asghar Children Hospital, Iran University of Medical Sciences, Tehran, Iran *Corresponding author: Bahoush GR, Iran University of Medical Sciences, Tehran, Iran, Tel: +989171907100; E-mail: [email protected] Received date: Jul 06, 2015, Accepted date: Oct 29, 2015, Publication date: Nov 03, 2015 Copyright: © 2015 Bahoush GR, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Purpose: We determined the prevalence and predictors of TLS in children with acute lymphoblastic leukemia to develop a sensitive prediction rule to identify low risk patients. Methods: Predictors of TLS were determined in 160 childern with ALL, using univariate and multiple logistic regression analyses. Results: TLS was diagnosed in 41 cases. Univariate analysis showed splenomegaly, mediastinal mass, T-cell phenotype, central nervous system involvement, lactate dehydrogenase ≥2000 U/L, and white blood count (WBC) ≥20 × 109/L (P<0.001) were predictors of TLS in these cases.
    [Show full text]
  • Tumor Lysis Syndrome(TLS) Treatment Guidelines
    Tumor lysis syndrome(TLS) Treatment Guidelines DEFINITION Tumor lysis syndrome (TLS) is an oncologic emergency that is caused by massive tumor cell lysis with the release of large amounts of potassium, phosphate, and nucleic acids into the systemic circulation. Cairo-Bishop definition: Clinical TLS: laboratory TLS plus one or more of the following that was not directly or probably attributable to a therapeutic agent: increased serum creatinine concentration (≥1.5 times the ULN), cardiac arrhythmia/sudden death, or a seizure RISK FACTORS The risk is greatest in patients treated for hematologic malignancies; the tumors most frequently associated with TLS are clinically aggressive NHLs and acute lymphoblastic leukemia (ALL), particularly Burkitt lymphoma/leukemia Intrinsic tumor-related factors: 1. High tumor cell proliferation rate 2. Chemosensitivity of the malignancy 3. Large tumor burden, as manifested by bulky disease >10 cm in diameter and/or a white blood cell count >50,000 per microL, a pretreatment serum lactate dehydrogenase (LDH) more than two times the upper limit of normal, organ infiltration, or bone marrow involvement Clinical features that predispose to the development of TLS: 1. Pretreatment hyperuricemia (serum uric acid >7.5 mg/dL [446 micromol/L]) or hyperphosphatemia 2. A preexisting nephropathy or exposure to nephrotoxins 3. Oliguria and/or acidic urine 4. Dehydration, volume depletion, or inadequate hydration during treatment CLINICAL MANIFESTATIONS (signs and symptoms) The symptoms associated with tumor lysis syndrome (TLS) largely reflect the associated metabolic abnormalities (hyperkalemia, hyperphosphatemia, and hypocalcemia). They include nausea, vomiting, diarrhea, anorexia, lethargy, hematuria, heart failure, cardiac dysrhythmias, seizures, muscle cramps, tetany, syncope, flank pain if there is renal pelvic or ureteral stone formation, acute kidney injury and possible sudden death.
    [Show full text]