Aquatic Insect Assemblages Associated with Subalpine Stream Segment Types in Relict Glaciated Headwaters

Total Page:16

File Type:pdf, Size:1020Kb

Aquatic Insect Assemblages Associated with Subalpine Stream Segment Types in Relict Glaciated Headwaters Insect Conservation and Diversity (2012) doi: 10.1111/j.1752-4598.2012.00210.x Aquatic insect assemblages associated with subalpine stream segment types in relict glaciated headwaters JOSHUA S. KUBO,1,2 CHRISTIAN E. TORGERSEN,2 SUSAN M. 1 2 1 BOLTON, ANNE A. WEEKES and ROBERT I. GARA 1School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA and 2U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Cascadia Field Station, University of Washington, Seattle, WA, USA Abstract. 1. Aquatic habitats and biotic assemblages in subalpine headwaters are sensitive to climate and human impacts. Understanding biotic responses to such perturbations and the contribution of high-elevation headwaters to riverine biodiversity requires the assessment of assemblage composition among habitat types. We compared aquatic insect assemblages among headwater stream seg- ment types in relict glaciated subalpine basins in Mt. Rainier National Park, Washington, USA. 2. Aquatic insects were collected during summer and autumn in three head- water basins. In each basin, three different stream segment types were sam- pled: colluvial groundwater sources, alluvial lake inlets, and cascade-bedrock lake outlets. Ward’s hierarchical cluster analysis revealed high b diversity in aquatic insect assemblages, and non-metric multidimensional scaling indicated that spatial and temporal patterns in assemblage composition differed among headwater stream segment types. Aquatic insect assemblages showed more fidelity to stream segment types than to individual basins, and the principal environmental variables associated with assemblage structure were temperature and substrate. 3. Indicator species analyses identified specific aquatic insects associated with each stream segment type. Several rare and potentially endemic aquatic insect taxa were present, including the recently described species, Lednia borealis (Bau- mann and Kondratieff). 4. Our results indicate that aquatic insect assemblages in relict glaciated sub- alpine headwaters were strongly differentiated among stream segment types. These results illustrate the contribution of headwaters to riverine biodiversity and emphasise the importance of these habitats for monitoring biotic responses to climate change. Monitoring biotic assemblages in high-elevation headwaters is needed to prevent the potential loss of unique and sensitive biota. Key words. Aquatic biomonitoring, aquatic insect assemblages, beta diversity, headwater stream types, subalpine headwaters. Introduction Correspondence: Joshua S. Kubo, PO Box 352100 School of Environmental and Forest Sciences, University of Washington, Environmental shifts caused by climate change are pre- Seattle, WA 98195, USA. E-mail: [email protected] dicted to strongly influence streams in alpine and high lat- Joshua S. Kubo and Anne A. Weekes are not currently itude ecosystems (Malmqvist & Eriksson, 1995; Solomon affiliated with U.S. geological survey, but were affiliated at the et al., 2007; Brown et al., 2007, 2009a,b; Hannah et al., time of this research. 2007). Aquatic insect assemblages in these streams © 2012 The Authors Insect Conservation and Diversity © 2012 The Royal Entomological Society 1 2 Joshua S. Kubo et al. may provide indicators for monitoring the effects of such processes (Weekes et al., 2012 in review-b; Brardinoni & environmental perturbations because they are integral to Hassan, 2006, 2007). These geohydrologic processes oper- aquatic food webs, and their distribution and abundance ate hierarchically, governing the type, structure, and are strongly influenced by temperature and stream flow dynamics of stream habitats. Within relict glaciated (Malmqvist & Eriksson, 1995; Milner et al., 2001a, 2001b; basins, longitudinal valley-step headwater habitats include Hauer & Resh, 2006; Hannah et al., 2007; Brown et al., the following stream segment types: colluvial groundwater 2009b; Muhlfeld et al., 2011). However, more information sources, alluvial lake inlets, and cascade-bedrock lake out- is needed on variation in assemblage composition among lets (Weekes et al., in review-a). For these stream segment geohydrologic stream habitat types (Weekes et al.,in types to be useful strata for biomonitoring, their relation- review-a). Such information could be used to better eluci- ship with aquatic biota needs to be quantified (Hawkins date the linkages between geohydrologic and ecological et al., 2000). processes. Headwater ecosystems provide an array of iso- Our goal was to compare aquatic insect assemblages lated, heterogeneous habitats that support genetically dis- among and within relict glaciated subalpine headwater tinct, rare, and often endemic species (Gomi et al., 2002; basins. Specifically, we evaluated associations between Clarke et al., 2008; Meyer et al., 2007; Price and Neville, aquatic insect assemblages and stream segment types. 2003). Although headwater streams are thought to be rel- Throughout our article, we refer to b diversity as the vari- atively depauperate, with low site-specific (a) diversity, ation in assemblage composition across stream segment Finn et al. (2011) found that headwaters not only have types (Anderson et al., 2011). We focused on aquatic high variations in diversity among sites (b), but signifi- insects because they account for more than 80% of fresh- cantly influence regional (c) diversity. Changes in stream water macroinvertebrate taxa (Heino, 2009), and have flow and temperature associated with climate change are been widely used for biomonitoring and habitat assess- expected to reduce biotic variation among headwater hab- ments (Vinson and Hawkins, 1998; Wallace and Webster, itats (Brown et al., 2007; Finn et al., 2011). Similarly, rare 1996; Townsend and Hildrew, 1994; Rosenberg et al., and endemic species may be highly sensitive to environ- 2008). Our first objective was to characterise spatial mental shifts (Gaston, 1994; Cao et al., 1998). Document- patterns in aquatic insect assemblage structure among ing and monitoring headwater taxa and habitat types is colluvial groundwater source, alluvial lake inlet, and therefore essential for conserving biodiversity within cascade-bedrock lake outlet stream segment types. We riverine ecosystems. However, few headwater studies have hypothesised that assemblage composition would vary focused on variation in assemblage composition among among these headwater segment types and that specific habitats in headwater systems (Heino et al., 2003a,b; Finn assemblages would be associated with each stream seg- & Poff, 2005, 2011; Clarke et al., 2008; Finn et al., 2011). ment type (Finn & Poff, 2005, 2011; Bogan & Lytle, 2007; In addition, there is a need to assess further headwater Brown et al., 2009a; Monaghan et al., 2005; Weekes assemblages within various ecoregions to evaluate the et al., in review-a). Our second objective was to compare influence of headwater systems in riverine b and c diver- temporal patterns in aquatic insect assemblage composi- sity (Heino et al., 2003b; Finn & Poff, 2005; Finn et al., tion among stream segment types and basins. We hypoth- 2011). esised that assemblage composition and temporal There has been much research on aquatic insect assem- variation would be related to geohydrologic processes blage patterns in active glaciated headwater systems (Weekes et al., in review-a). Our third objective was to (Lods-Crozet et al., 2001; Milner et al., 2001a,b; Friberg examine the taxonomic composition of aquatic insect et al., 2001; Hieber et al., 2005; Milner et al., 2009; Jacob- fauna unique to these stream segment types to identify sen et al., 2010; Hamerlik & Jacobsen, 2011). However, potentially rare and endemic species (Meyer et al., 2007; additional studies on assemblage patterns and geohydro- Brown et al., 2007, 2009b; Baumann & Kondratieff, logic-ecological linkages in relict (i.e. formerly) glaciated 2010). high-elevation headwaters are needed to assess location- specific ecological responses. In order for conservation and biomonitoring strategies to better facilitate global Methods progress in headwater ecology, research efforts must focus on the applicability of documented patterns and rela- Study area tionships throughout various headwater systems. Because headwater biomonitoring requires an accurate assessment Aquatic insect assemblages were assessed in three relict of distinct physical attributes and biotic assemblages glaciated subalpine basins in Mt. Rainier National Park, (Hawkins et al., 2000), stratifying the spatial and tempo- Washington, USA (Fig. 1). The basins that were selected ral variation in hydrologic, geomorphic, and biological for sampling were representative of valley-step channel attributes is essential for determining ecologically distinct classifications characterised by Weekes et al. (in review-a) processes (Gomi et al., 2002). Specifically, within relict which are based on longitudinal landscape units in mon- glaciated subalpine basins, predictable areas of a land- tane drainages (Montgomery and Buffington, 1997; scape can be characterised based on suites of related phys- Brardinoni & Hassan, 2006, 2007). These small valley-step ical attributes including hydrologic and geomorphologic basins had comparable elevations, slopes, and aspects © 2012 The Authors Insect Conservation and Diversity © 2012 The Royal Entomological Society, Insect Conservation and Diversity Subalpine aquatic insect assemblages 3 Sample site parameters At each stream segment sample location, point mea- surements of water temperature,
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Caspar Creek Macroinvertebrate Assemblage Responses to Forest Management
    Caspar Creek macroinvertebrate assemblage responses to forest management and hydrologic disturbance Robert J. Danehy1 and Ivan Arismendi2 1 Catchment Aquatic Ecology, 5335 Saratoga St., Eugene, OR 97405 2 Oregon State University, Department of Fisheries and Wildlife, 104 Nash Hall, Corvallis, OR 97331, USA. Citation: Danehy, R.J. and I. Arismendi. 2018. Caspar Creek macroinvertebrate assemblage responses to forest management and hydrologic disturbance. Unpublished Report prepared for the California Department of Forestry and Fire Protection, contract # 8CA03674. Sacramento, CA. 18 p. Title: Caspar Creek macroinvertebrate assemblage responses to forest management and hydrologic disturbance Danehy1 R.J. and I. Arismendi 2 Abstract: We analyzed data sets from the Caspar Creek Watershed study, with a 55-year comprehensive record of hydrologic regime in two sub-watersheds with different logging treatments, and three separate instream biologic studies conducted since 1990. Long-term data sets of instream biota are rare, and we used them to investigate sediment regime response to forest harvest and extremes in flow regime. Increases in sediment transport after logging were observed in the North Fork during second experiment at Caspar Creek in the 1990’s. Our analysis found turbidities were higher after logging across the range of flows including high magnitude/short duration as well as low magnitude/long duration events. However, few sediment impacts to macroinvertebrate assemblages were observed above and below tributaries with upstream harvest. Specifically, there were no differences in presence/absence of sediment sensitive taxa before and after logging. Moreover, North and South Forks sensitive taxa distributions were similar. With the South Fork, we compared 2016 and 2017 macroinvertebrate assemblages collected in July and May respectively.
    [Show full text]
  • Annual Newsletter and Bibliography of the International Society of Plecopterologists PERLA NO. 28, 2010
    PERLA Annual Newsletter and Bibliography of The International Society of Plecopterologists Pteronarcella regularis (Hagen), Mt. Shasta City Park, California, USA. Photograph by Bill P. Stark PERLA NO. 28, 2010 Department of Bioagricultural Sciences and Pest Management Colorado State University Fort Collins, Colorado 80523 USA PERLA Annual Newsletter and Bibliography of the International Society of Plecopterologists Available on Request to the Managing Editor MANAGING EDITOR: Boris C. Kondratieff Department of Bioagricultural Sciences And Pest Management Colorado State University Fort Collins, Colorado 80523 USA E-mail: [email protected] EDITORIAL BOARD: Richard W. Baumann Department of Biology and Monte L. Bean Life Science Museum Brigham Young University Provo, Utah 84602 USA E-mail: [email protected] J. Manuel Tierno de Figueroa Dpto. de Biología Animal Facultad de Ciencias Universidad de Granada 18071 Granada, SPAIN E-mail: [email protected] Kenneth W. Stewart Department of Biological Sciences University of North Texas Denton, Texas 76203, USA E-mail: [email protected] Shigekazu Uchida Aichi Institute of Technology 1247 Yagusa Toyota 470-0392, JAPAN E-mail: [email protected] Peter Zwick Schwarzer Stock 9 D-36110 Schlitz, GERMANY E-mail: [email protected] 2 TABLE OF CONTENTS Subscription policy……………………………………………………………………….4 Publication of the Proceedings of the International Joint Meeting on Ephemeroptera and Plecoptera 2008…………………………………….………………….………….…5 Ninth North American Plecoptera Symposium………………………………………….6
    [Show full text]
  • Comprehensive Conservation Plan Benton Lake National Wildlife
    Glossary accessible—Pertaining to physical access to areas breeding habitat—Environment used by migratory and activities for people of different abilities, es- birds or other animals during the breeding sea- pecially those with physical impairments. son. A.D.—Anno Domini, “in the year of the Lord.” canopy—Layer of foliage, generally the uppermost adaptive resource management (ARM)—The rigorous layer, in a vegetative stand; mid-level or under- application of management, research, and moni- story vegetation in multilayered stands. Canopy toring to gain information and experience neces- closure (also canopy cover) is an estimate of the sary to assess and change management activities. amount of overhead vegetative cover. It is a process that uses feedback from research, CCP—See comprehensive conservation plan. monitoring, and evaluation of management ac- CFR—See Code of Federal Regulations. tions to support or change objectives and strate- CO2—Carbon dioxide. gies at all planning levels. It is also a process in Code of Federal Regulations (CFR)—Codification of which the Service carries out policy decisions the general and permanent rules published in the within a framework of scientifically driven ex- Federal Register by the Executive departments periments to test predictions and assumptions and agencies of the Federal Government. Each inherent in management plans. Analysis of re- volume of the CFR is updated once each calendar sults helps managers decide whether current year. management should continue as is or whether it compact—Montana House bill 717–Bill to Ratify should be modified to achieve desired conditions. Water Rights Compact. alternative—Reasonable way to solve an identi- compatibility determination—See compatible use.
    [Show full text]
  • In Baltic Amber 85
    Overview and descriptions of fossil stoneflies (Plecoptera) in Baltic amber 85 Entomologie heute 22 (2010): 85-97 Overview and Descriptions of Fossil Stoneflies (Plecoptera) in Baltic Amber Übersicht und Beschreibungen von fossilen Steinfliegen (Plecoptera) im Baltischen Bernstein CELESTINE CARUSO & WILFRIED WICHARD Summary: Three new fossil species of stoneflies (Plecoptera: Nemouridae and Leuctridae) from Eocene Baltic amber are being described: Zealeuctra cornuta n. sp., Lednia zilli n. sp., and Podmosta attenuata n. sp.. Extant species of these three genera are found in Eastern Asia and in the Nearctic region. It is very probably that the genera must have been widely spread across the northern hemisphere in the Cretaceous period, before Europe was an archipelago in Eocene. The current state of knowledge about the seventeen Plecoptera species of Baltic amber is shortly presented. Due to discovered homonymies, the following nomenclatural corrections are proposed: Leuctra fusca Pictet, 1856 in Leuctra electrofusca Caruso & Wichard, 2010 and Nemoura affinis Berendt, 1856 in Nemoura electroaffinis Caruso & Wichard, 2010. Keywords: Fossil insects, fossil Plecoptera, Eocene, paleobiogeography Zusammenfassung: In dieser Arbeit werden drei neue fossile Steinfliegen-Arten (Plecoptera: Nemouridae und Leuctridae) des Baltischen Bernsteins beschrieben: Zealeuctra cornuta n. sp., Lednia zilli n. sp., Podmosta attenuata n. sp.. Rezente Arten der drei Gattungen sind in Ostasien und in der nearktischen Region nachgewiesen. Sehr wahrscheinlich breiteten sich die Gattungen in der Krei- dezeit über die nördliche Hemisphäre aus, noch bevor Europa im Eozän ein Archipel war. Der gegenwärtige Kenntnisstand über die siebzehn Plecoptera Arten des Baltischen Bernsteins wird kurz dargelegt. Wegen bestehender Homonymien werden folgende nomenklatorische Korrekturen vorgenommen: Leuctra fusca Pictet, 1856 in Leuctra electrofusca Caruso & Wichard, 2010 und Nemoura affinis Berendt, 1856 in Nemoura electroaffinis Caruso & Wichard, 2010.
    [Show full text]
  • 2002 Benthic Sites with Data Types Available for Each Site
    APPENDIX A 2002 Benthic Sites with Data Types Available for Each Site 04-1422-022.1 King County 2002 Benthic Macroinvertebrate Data Analyses FINAL August 2004 A-1 APPENDIX A - 2002 Benthic Sites with Data Types Available for Each Site Land WQ Hydrology Benthic Use Habitat Station WQ Station Hydrology Watershed Site Code Site Name Data Data Data Code Data Code Data Green-Duwamish 09BLA0675 Black 0675 x x x Green-Duwamish 09BLA0716 Black 0716 x x x Green-Duwamish 09BLA0722 Black 0722 x x x A326 x Green-Duwamish 09BLA0756 Black 0756 x x x Green-Duwamish 09BLA0768 Black 0768 x x x 03B x Green-Duwamish 09BLA0768 Black 0768 Replicate x x x 03B x Green-Duwamish 09BLA0771 Black 0771 x x x Green-Duwamish 09BLA0772 Black 0772 x x x Green-Duwamish 09BLA0813 Black 0813 x x x Green-Duwamish 09BLA0817 Black 0817 x x x Green-Duwamish 09BLA0817 Black 0817 Replicate x x x Green-Duwamish 09COV1165 Covington Basin 1165 x x x Green-Duwamish 09COV1418 Covington Basin 1418 x x x C320 x Green-Duwamish 09COV1753 Covington Basin 1753 x x x Green-Duwamish 09COV1798 Covington Basin 1798 x x x Green-Duwamish 09COV1862 Covington Basin 1862 x x x Green-Duwamish 09COV1864 Covington Basin 1864 x x x Green-Duwamish Covington Basin Soos 03 x x Green-Duwamish 09DEE2163 Deep/Coal Basin 2163 x x x Green-Duwamish 09DEE2208 Deep/Coal Basin 2208 x x x Green-Duwamish 09DEE2211 Deep/Coal Basin 2211 x x x Green-Duwamish 09DEE2266 Deep/Coal Basin 2266 x x x Green-Duwamish 09DEE2294 Deep/Coal Basin 2294 x x x Green-Duwamish 09DEE2294 Deep/Coal Basin 2294 Replicate x x x Green-Duwamish
    [Show full text]
  • Phenology and Diversity of Adult Stoneflies (Plecoptera) of a Small Coastal Stream, California
    Bottorff, Richard L., Loren D. Bottorff, 2007. Phenology and diversity of adult stoneflies (Plecoptera) of a small coastal stream, California. Illiesia, 3(1):1‐9. Available online: http://www2.pms‐lj.si/illiesia/Illiesia03‐01.pdf PHENOLOGY AND DIVERSITY OF ADULT STONEFLIES (PLECOPTERA) OF A SMALL COASTAL STREAM, CALIFORNIA Richard L. Bottorff1 and Loren D. Bottorff 2 11963 Toppewetah Street, South Lake Tahoe, CA 96150, E‐mail: [email protected] 23265 Sandhurst Court, Cameron Park, CA 95682, E‐mail: [email protected] ABSTRACT Collections of adult stoneflies over a full year at Irish Gulch Creek, Mendocino Co., California, revealed 23 species. Adults were present at all times of the year. Species number varied from an autumnal low of 2 to a spring peak of 13. Adults of most species were present for less than 3 months, but Malenka depressa adults were present year‐round. Hesperoperla hoguei was the only strictly autumnal‐emerging species. The report of Suwallia dubia from Irish Gulch Creek represents a new California record. The stonefly faunas of Irish Gulch Creek (low coastal) and Sagehen Creek (high Sierra Nevada) were compared. Both creeks had similar numbers of species, but the species composition differed greatly, reflecting dissimilar environments (elevation, water temperature, thermal accumulation, and discharge). Irish Gulch Creek had uniform warmer temperatures; Sagehen Creek had variable colder temperatures. Peak emergence at Irish Gulch Creek occurred 2 months earlier than at Sagehen Creek. Keywords: Plecoptera, seasonal flight period, biodiversity, thermal stability, North Coast bioregion INTRODUCTION we studied these aspects for a small stream on the As might be expected from its varied topography, north coast of California.
    [Show full text]
  • Monitoring Wilderness Stream Ecosystems
    United States Department of Monitoring Agriculture Forest Service Wilderness Stream Rocky Mountain Ecosystems Research Station General Technical Jeffrey C. Davis Report RMRS-GTR-70 G. Wayne Minshall Christopher T. Robinson January 2001 Peter Landres Abstract Davis, Jeffrey C.; Minshall, G. Wayne; Robinson, Christopher T.; Landres, Peter. 2001. Monitoring wilderness stream ecosystems. Gen. Tech. Rep. RMRS-GTR-70. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 137 p. A protocol and methods for monitoring the major physical, chemical, and biological components of stream ecosystems are presented. The monitor- ing protocol is organized into four stages. At stage 1 information is obtained on a basic set of parameters that describe stream ecosystems. Each following stage builds upon stage 1 by increasing the number of parameters and the detail and frequency of the measurements. Stage 4 supplements analyses of stream biotic structure with measurements of stream function: carbon and nutrient processes. Standard methods are presented that were selected or modified through extensive field applica- tion for use in remote settings. Keywords: bioassessment, methods, sampling, macroinvertebrates, production The Authors emphasize aquatic benthic inverte- brates, community dynamics, and Jeffrey C. Davis is an aquatic ecolo- stream ecosystem structure and func- gist currently working in Coastal Man- tion. For the past 19 years he has agement for the State of Alaska. He been conducting research on the received his B.S. from the University long-term effects of wildfires on of Alaska, Anchorage, and his M.S. stream ecosystems. He has authored from Idaho State University. His re- over 100 peer-reviewed journal ar- search has focused on nutrient dy- ticles and 85 technical reports.
    [Show full text]
  • Effects of Hydrological Connectivity on the Benthos of a Large River (Lower Mississippi River, USA)
    University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 1-1-2018 Effects of Hydrological Connectivity on the Benthos of a Large River (Lower Mississippi River, USA) Audrey B. Harrison University of Mississippi Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Biology Commons Recommended Citation Harrison, Audrey B., "Effects of Hydrological Connectivity on the Benthos of a Large River (Lower Mississippi River, USA)" (2018). Electronic Theses and Dissertations. 1352. https://egrove.olemiss.edu/etd/1352 This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. EFFECTS OF HYDROLOGICAL CONNECTIVITY ON THE BENTHOS OF A LARGE RIVER (LOWER MISSISSIPPI RIVER, USA) A Dissertation presented in partial fulfillment of requirements for the degree of Doctor of Philosophy in the Department of Biological Sciences The University of Mississippi by AUDREY B. HARRISON May 2018 Copyright © 2018 by Audrey B. Harrison All rights reserved. ABSTRACT The effects of hydrological connectivity between the Mississippi River main channel and adjacent secondary channel and floodplain habitats on macroinvertebrate community structure, water chemistry, and sediment makeup and chemistry are analyzed. In river-floodplain systems, connectivity between the main channel and the surrounding floodplain is critical in maintaining ecosystem processes. Floodplains comprise a variety of aquatic habitat types, including frequently connected secondary channels and oxbows, as well as rarely connected backwater lakes and pools. Herein, the effects of connectivity on riverine and floodplain biota, as well as the impacts of connectivity on the physiochemical makeup of both the water and sediments in secondary channels are examined.
    [Show full text]
  • Automated Taxonomic Identification of Insects with Expert-Level
    Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology Syst. Biol. 68(6):876–895, 2019 © The Author(s) 2019. Published by Oxford University Press on behalf of the Society of Systematic Biologists. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. DOI:10.1093/sysbio/syz014 Advance Access publication March 2, 2019 Automated Taxonomic Identification of Insects with Expert-Level Accuracy Using Effective Feature Transfer from Convolutional Networks , , ,∗ , , MIROSLAV VALAN1 2 3 ,KAROLY MAKONYI1 4,ATSUTO MAKI5,DOMINIK VONDRÁCEKˇ 6 7, AND FREDRIK RONQUIST2 1Savantic AB, Rosenlundsgatan 52, 118 63 Stockholm, Sweden; 2Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Frescativagen 40, 114 18 Stockholm, Sweden; 3Department of Zoology, Stockholm University, Universitetsvagen 10, 114 18 Stockholm, Sweden; 4Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Nuclear Physics, Uppsala University, 751 20 Uppsala, Sweden; 5School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, SE-10044 Sweden; 6Department of Zoology, Faculty of Science, Charles University in Prague, Viniˇcná 7, CZ-128 43 Praha 2, Czech Republic; 7Department of Entomology, National Museum, Cirkusová 1740, CZ-193 00 Praha 9 - Horní Poˇcernice, Czech
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]
  • Dimensions of Biodiversity
    Dimensions of Biodiversity NATIONAL SCIENCE FOUNDATION CO-FUNDED BY 2010–2015 PROJECTS Introduction 4 Project Abstracts 2015 8 Project Updates 2014 30 Project Updates 2013 42 Project Updates 2012 56 Project Updates 2011 72 Project Updates 2010 88 FRONT COVER IMAGES A B f g h i k j C l m o n q p r D E IMAGE CREDIT THIS PAGE FRONT COVER a MBARI & d Steven Haddock f Steven Haddock k Steven Haddock o Carolyn Wessinger Peter Girguis e Carolyn g Erin Tripp l Lauren Schiebelhut p Steven Litaker b James Lendemer Wessinger h Marty Condon m Lawrence Smart q Sahand Pirbadian & c Matthew L. Lewis i Marty Condon n Verity Salmon Moh El-Naggar j Niklaus Grünwald r Marty Condon FIELD SITES Argentina France Singapore Australia French Guiana South Africa Bahamas French Polynesia Suriname Belize Germany Spain Bermuda Iceland Sweden Bolivia Japan Switzerland Brazil Madagascar Tahiti Canada Malaysia Taiwan China Mexico Thailand Colombia Norway Trinidad Costa Rica Palau United States Czech Republic Panama United Kingdom Dominican Peru Venezuela Republic Philippines Labrador Sea Ecuador Poland North Atlantic Finland Puerto Rico Ocean Russia North Pacific Ocean Saudi Arabia COLLABORATORS Argentina Finland Palau Australia France Panama Brazil Germany Peru Canada Guam Russia INTERNATIONAL PARTNERS Chile India South Africa China Brazil China Indonesia Sri Lanka (NSFC) (FAPESP) Colombia Japan Sweden Costa Rica Kenya United Denmark Malaysia Kingdom Ecuador Mexico ACKNOWLEDGMENTS Many NSF staff members, too numerous to We thank Mina Ta and Matthew Pepper for mention individually, assisted in the development their graphic design contribution to the abstract and implementation of the Dimensions of booklet.
    [Show full text]