Thermogenesis, Muscle Hyperplasia, and the Origin of Birds

Total Page:16

File Type:pdf, Size:1020Kb

Thermogenesis, Muscle Hyperplasia, and the Origin of Birds Volume 33 No. 9 September 2011 · ISSN 0265-9247 9/11 Ideas that Push the Boundaries Hypotheses Perspectives Reviews www.bioessays-journal.com Insights & Perspectives Ideas & Speculations Thermogenesis, muscle hyperplasia, and the origin of birds Stuart A. Newman A striking feature of all birds is the than flight itself, was the dominant arrangement, which is accompanied presence of massive skeletal muscles, theme in the transition from dinosaurs by an interruption in the overlying particularly as compared with related to birds. muscles, divides the bird body into taxa such as lizards or mammals. Birds are bipedal (as were their dino- relatively independent anterior and Depending on whether a bird is flight- saur ancestors), a condition inevitably posterior ‘‘locomotor modules’’ [5]. less or volant, a runner or swimmer, it associated with enlarged thigh muscles. Apart from the synsacrum and avian will have either hyperplastic thigh These are particularly massive in dino- hip, the posterior locomotor module muscles, breast muscles, or both. The saurs and flightless birds (Fig. 1). The contains several additional bird-specific anatomical diversity of birds, the most bipedality of birds, however, is distinct modifications of the pelvis and legs species-rich and ecologically diverse of from that inferred for any dinosaur, associated with unique functional adap- the vertebrate classes, is remarkable. being associated with unique skeletal tations. Unfused pubic bones permit the Nonetheless, the enormous, independ- modifications to the pelvis and the eggs of birds to be larger relative to body ently arising depots of skeletal muscle in bones of the lower limb. For example, size than those of any dinosaur. Plates of both the anterior and posterior body the femur is held nearly horizontal, and an expanded pelvic ischium define an regions represent, along with feathers its articulation with the pelvis (the avian abdominal vault that protects the elab- and beaks, a unifying motif across all hip) is essentially immobile, both owing orate digestive system (relative to other the specialized avian orders. While bird to the hyperplastic musculature [4]. reptiles), as well as the oviduct and evolution has generally been considered Birds have no separate lumbar eggs. In addition, the mentioned immo- to be driven by the evolution of feathers vertebrae. Instead, a synsacrum, con- bilization of the femur by the bulky and flight [1, 2], new evidence suggests sisting of a variable (depending on the musculature surrounding it has been that the loss of a single gene, that encod- species) group of lower vertebrae fused compensated by a unique specialization ing the mitochondrial uncoupling to each other and to the pelvis, exhibits of the avian leg in which skeletal novel- protein UCP1, in the reptilian ancestors independent mobility from the thoracic ties derived from fusion of ancestral of birds, led to crisis in which survival portion of the vertebral column at an bones, the tibiotarsus, syndesmosis of this lineage depended on marked interface referred to as the ‘‘lumbar’’ tibiofibularis, and tarsometatarsus, expansion of skeletal muscles [3]. The joint [4]. While some dinosaurs also mediate (along with their associated fact that the lineage did survive suggests had a synsacrum, fossil evidence for a muscles) locomotory patterns of walk- that this flight-enabling anatomical lumbar joint only appears with ances- ing, running, and swimming unlike and physiological specialization, rather tral birds, i.e. Archaeopteryx.This those of other tetrapods [4, 5]. The anterior locomotor module is associated with its own set of massive Keywords: muscles, most prominently the pector- alis, which raises the wings or paddles bipedality; brown fat; mechanobiology; plasticity; skeletal muscle; UCP1 . during flying and swimming, and the supracoracoideus (particularly exten- sive in penguins), which lowers them. DOI 10.1002/bies.201100061 Among the skeletal novelties of this region (aside from those of the highly Department of Cell Biology and Anatomy, New Abbreviations: disparate forelimbs, which became ves- York Medical College, Valhalla, NY, USA BAT, brown adipose tissue; UCP1, mitochondrial uncoupling protein 1. tigial in some dinosaurs and birds, and evolved into wings and paddles in other Corresponding author: Stuart A. Newman birds) are several unique structures of E-mail: [email protected] the thorax. These include the keel, an Bioessays 33: 653–656,ß 2011 WILEY Periodicals, Inc. www.bioessays-journal.com 653 S. A. Newman Insights & Perspectives ..... also those most dependent on muscular activity for their normal morphogenesis [8, 10, 13]. The clavicles, e.g., which are fused into the furcula in birds and some dinosaurs, were underdeveloped and unfused in chick embryos whose muscles were paralyzed [8, 10]. It is probable that the typical nonavian tet- rapod clavicle would form in birds in which the developing primordia were subject to a balance of forces intermedi- ate between that exerted by the bird musculature and the paralyzed state, i.e. the typical tetrapod configuration. The bipedal condition itself has developmental effects during the post- natal period, some of which echo the Ideas & Speculations novelties of avian skeletal anatomy. A dramatic demonstration of this comes from observations of a goat born with- out fore legs, described by Slijper [14], Figure 1. Schematic illustration of muscle hyperplasia hypothesis for the origin of birds. which learned to hop actively on its Animals represented in the red oval – bony fish, amphibians, and mammals – all have the gene hind legs. When dissected upon its for UCP1, although only mammals have thermogenic BAT. Animals represented in the blue accidental death at 1 year old, its mus- oval – birds and lizards – lack UCP1 and thus BAT. The common ancestor of lizards and birds, culoskeletal system exhibited a number and its dinosaur descendants, must also have lacked UCP1. The loss of UCP1 is presumed to of accommodations not characteristic have occurred within a group of tetrapods (represented by the animal in the purple sector) that contained ancestors of both saurians and mammals (which retained the gene). The muscle of goats, including a flattened and hyperplasia hypothesis asserts that selective pressure for maintenance of elevated body extended pelvic ischium. temperature of adults and particularly hatchlings in endothermic egg-laying saurian ancestors Explanations of bird origins based of birds in the absence of BAT led to increase in the mass of thermogenic thigh and breast on selection for suites of characters with muscles (pink). In consequence, descendents exhibited a bipedal stance and sustained ten- no evident functions in their incipient sion- and motility-based modifications in their developing skeletons, which generated numerous stages become unnecessary if bird- bird-specific novelties of the legs and thorax. specific skeletal novelties arose as side effects of hyperplastic skeletal muscles, either directly via forces exerted on the extension of the sternum unique to birds cal niches coming, in some cases, after developing skeleton during embryogen- [6], which provides an anchor for the the fact [7]. If this was indeed the esis, or indirectly via mechanical effects breast muscles, and the furcula (wish- trajectory of avian evolution, the char- on the immature postnatal skeleton. bone), formed by the fusion of the acters or functions that were modified But what evolutionary forces drove the clavicles. The latter was present in a during the early stages could not have muscle expansion? rudimentary form in some dinosaurs been directly related to the capacity of One peculiarity (relative to all and in Archaeopteryx, but only took ancestors to either fly or swim. other vertebrates) of the physiological on its definitive U shape in modern Focusing on embryonic develop- genetics of the reptilian ancestors of birds. The furcula is considered a stabi- ment provides an intrinsic connection birds indeed predisposed the endo- lizing adaptation for flight, so its pres- between increased muscle mass and therms among them to sustain a uni- ence in flightless dinosaurs has been the unique features of the avian directional increase in the mass of puzzling [1, 2]. skeleton. It is well documented that skeletal muscle. Birds have long been Evolutionary scenarios in which the mechanical activity of the embryo known to lack brown fat, a tissue that these innovations arose separately or is required for the ontogeny of the nor- generates heat in mammals [15]. Some coordinately by successive cycles of mal forms of many skeletal elements of avian species have aggregates of cells selection in an ancestral dinosaur line- vertebrates, particularly in birds ([8–11]; that resemble mammalian brown age, with anatomies adapted to flying, reviewed in refs. [12] and [13]). Paralyzed adipose tissue (BAT) [16, 17], and cells swimming, or bottom-heavy bipedality chick embryos fail to develop the fibular nearly identical to brown fat adipocytes (which seems antithetical to the first crest [9], which is a morphological nov- can be induced from chicken mesen- two) emerging at the end of multiple elty in theropod dinosaurs and a necess- chyme in vitro [3]. These tissues and millions of years of change, seem ary component in the development of cells are non-thermogenic, however, improbable. An alternative possibility the avian-specific syndesmosis tibiofi- since birds lack the nuclear gene for is that selection for a simpler array of bularis [7]. Moreover, those
Recommended publications
  • Fuzzy Simplicial Networks: a Topology-Inspired Model to Improve Task Generalization in Few-Shot Learning
    Fuzzy Simplicial Networks: A Topology-Inspired Model to Improve Task Generalization in Few-shot Learning Henry Kvinge∗, Zachary New∗, Nico Courts∗y, Jung H. Lee∗, Lauren A. Phillipsz, Courtney D. Corleyz, Aaron Tuor∗, Andrew Avilaz, Nathan O. Hodasz September 24, 2020 Abstract Deep learning has shown great success in settings with massive amounts of data but has struggled when data is limited. Few-shot learning algorithms, which seek to address this limitation, are designed to generalize well to new tasks with limited data. Typically, models are evaluated on unseen classes and datasets that are defined by the same fundamental task as they are trained for (e.g. category membership). One can also ask how well a model can generalize to fundamentally different tasks within a fixed dataset (for example: moving from category membership to tasks that involve detecting object orientation or quantity). To formalize this kind of shift we define a notion of independence of tasks and identify three new sets of labels for established computer vision datasets that test a model's ability to generalize to tasks which draw on orthogonal attributes in the data. We use these datasets to investigate the failure modes of metric-based few-shot models. Based on our findings, we introduce a new few-shot model called Fuzzy Simplicial Networks (FSN) which leverages a construction from topology to more flexibly represent each class from limited data. In particular, FSN models can not only form multiple representations for a given class but can also begin to capture the low-dimensional structure which characterizes class manifolds in the encoded space of deep networks.
    [Show full text]
  • Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry Erick Charles Anderson [email protected]
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2016 Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry Erick Charles Anderson [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Animal Sciences Commons, Ecology and Evolutionary Biology Commons, and the Paleontology Commons Recommended Citation Anderson, Erick Charles, "Analyzing Pterosaur Ontogeny and Sexual Dimorphism with Multivariate Allometry" (2016). Theses, Dissertations and Capstones. 1031. http://mds.marshall.edu/etd/1031 This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. ANALYZING PTEROSAUR ONTOGENY AND SEXUAL DIMORPHISM WITH MULTIVARIATE ALLOMETRY A thesis submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences by Erick Charles Anderson Approved by Dr. Frank R. O’Keefe, Committee Chairperson Dr. Suzanne Strait Dr. Andy Grass Marshall University May 2016 i ii ii Erick Charles Anderson ALL RIGHTS RESERVED iii Acknowledgments I would like to thank Dr. F. Robin O’Keefe for his guidance and advice during my three years at Marshall University. His past research and experience with reptile evolution made this research possible. I would also like to thank Dr. Andy Grass for his advice during the course of the research. I would like to thank my fellow graduate students Donald Morgan and Tiffany Aeling for their support, encouragement, and advice in the lab and bar during our two years working together.
    [Show full text]
  • Beaks at the Bird Buffet
    Beaks at the Bird Buffet Introduction A bird’s beak is a bony elongation of its skull that is covered in keratin, the same material that makes up your hair and fingernails. Birds use their beaks as tools. Beaks help birds gather food, groom their feathers, defend themselves, and build their nests. The shape of a bird’s beak gives us clues to figuring out its main source of food, as a bird’s beak is designed for eating a particular type of food. Raptors like owls, hawks, and vultures have grasping beaks. These beaks are hooked shaped which allows for tearing apart prey or carrion. Similar to a raptor’s beak, a cardinal’s beaks is a heavy thick beak that they use to crack seeds. Birds like a spoonbill have a long, flat, scooping beak that scoops up food like fish or insects in the water. Ducks also get their food from the water. Their flat shovel beaks allow them to scoop up fish or plants and then drain out water before swallowing. A hummingbird’s beak is long and thin, which allows it to reach into tight places for its food-like getting nectar out of a flower. For this activity, you will need a clothes pin, a spoon, chopsticks, and a craft stick - these are your beaks. A cup or bowl will serve as your bird’s stomach. Lay your “food” out on a table and select your first beak. See how much food you are able to pick up with your beak and move to your stomach in 30 seconds.
    [Show full text]
  • Running Birds from Quail to Ostrich Prioritise Leg Safety and Economy
    © 2014. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2014) 217, 3786-3796 doi:10.1242/jeb.102640 RESEARCH ARTICLE Don’t break a leg: running birds from quail to ostrich prioritise leg safety and economy on uneven terrain Aleksandra V. Birn-Jeffery1,*,‡, Christian M. Hubicki2,‡, Yvonne Blum1, Daniel Renjewski2, Jonathan W. Hurst2 and Monica A. Daley1,§ ABSTRACT Daley, 2012; Dial, 2003; Jindrich et al., 2007; Rubenson et al., Cursorial ground birds are paragons of bipedal running that span a 2004). These athletes span the broadest body mass range among 500-fold mass range from quail to ostrich. Here we investigate the extant bipeds, over 500-fold from quail to ostrich. Birds thus provide task-level control priorities of cursorial birds by analysing how they a natural animal model for understanding the functional demands of negotiate single-step obstacles that create a conflict between body striding bipedalism and how these demands change with body size stability (attenuating deviations in body motion) and consistent leg (Gatesy and Biewener, 1991; Hutchinson and Garcia, 2002; Roberts force–length dynamics (for economy and leg safety). We also test the et al., 1998a). hypothesis that control priorities shift between body stability and leg Here, we ask two questions fundamental to locomotor behaviour: safety with increasing body size, reflecting use of active control to (1) what are the task-level leg control priorities of running animals; overcome size-related challenges. Weight-support demands lead to and (2) how do these priorities vary with terrain and body size? a shift towards straighter legs and stiffer steady gait with increasing Running animals must control their legs to balance numerous, body size, but it remains unknown whether non-steady locomotor sometimes conflicting, task-level demands including minimising priorities diverge with size.
    [Show full text]
  • Nitte University Journal March 2013.Cdr
    Published online: 2020-04-29 NUJHS Vol. 3, No.1, March 2013, ISSN 2249-7110 Nitte University Journal of Health Science Short Communication HOPPING IN BIRDS: IS THE CHOICE OF GAIT INFLUENCED BY CERVICAL MOBILITY AND FIELD OF VISION ? Arunachalam Kumar Professor & Head, Department of Anatomy, K.S. Hegde Medical Academy, Nitte University, Mangalore - 575 018, India. Correspondence: Arunachalam Kumar E-mail: [email protected] Abstract : One of the more intriguing questions in avian locomotion is why some birds, when on ground, choose to hop while others prefer walking. Biped gait is common to birds as well as the most evolved among mammals, man. Observations made show that, choice of gait in birds is determined by a remote factor – the range and extent of neck mobility. The wider the gamut of cervical mobility, the wider is the 'field of vision' available. Cervical movement capability is perhaps the single most deterministic factor in the bird's choice of terrestrial gait. Keywords: bipedal gait, avifauna, visual range, cervical vertebrae, hopping. Introduction : Observations & Discussion : One of the earliest bipeds to survive to modern era, are Observations on biped mobility on birds and their birds. Birds are unique in that many species among them locomotion reveal that, generally smaller birds hop while have capability of flying in air, walking on land and larger ones stride, strut or walk. Many theories and swimming in water. The talent to exploit all three mediums, hypotheses float around the word of ornithology and air, land and water for mobility makes birds occupy special kinematics on the how and why of avian locomotion.
    [Show full text]
  • The First Dsungaripterid Pterosaur from the Kimmeridgian of Germany and the Biomechanics of Pterosaur Long Bones
    The first dsungaripterid pterosaur from the Kimmeridgian of Germany and the biomechanics of pterosaur long bones MICHAEL FASTNACHT Fastnacht, M. 2005. The first dsungaripterid pterosaur from the Kimmeridgian of Germany and the biomechanics of pterosaur long bones. Acta Palaeontologica Polonica 50 (2): 273–288. A partial vertebral column, pelvis and femora of a newly discovered pterosaur are described. The remains from the Upper Jurassic (Kimmeridgian) of Oker (northern Germany) can be identified as belonging to the Dsungaripteridae because the cross−sections of the bones have relatively thick walls. The close resemblance in morphology to the Lower Cretaceous Dsungaripterus allows identification of the specimen as the first and oldest record of dsungaripterids in Central Europe. Fur− thermore, it is the oldest certain record of a dsungaripterid pterosaur world wide. The biomechanical characteristics of the dsungaripterid long bone construction shows that it has less resistance against bending and torsion than in non−dsungari− pteroid pterosaurs, but has greater strength against compression and local buckling. This supports former suggestions that dsungaripterids inhabited continental areas that required an active way of life including frequent take−off and landing phases. The reconstruction of the lever arms of the pelvic musculature and the mobility of the femur indicates a quadrupedal terrestrial locomotion. Key words: Reptilia, Pterosauria, Dsungaripteridae, locomotion, biomechanics, Jurassic, Germany. Michael Fastnacht [fastnach@uni−mainz.de], Palaeontologie, Institut für Geowissenschaften, Johannes Gutenberg− Universität, D−55099 Mainz, Germany. Introduction described from this site (Laven 2001; Mateus et al. 2004; Sander et al. 2004). This and further dinosaur material has In recent years, the northern part of Germany has yielded an been collected by members of the “Verein zur Förderung der increasing number of Upper Jurassic/Lower Cretaceous niedersächsischen Paläontologie e.V.”, who regularly collect archosaurian remains.
    [Show full text]
  • FORELIMB LAMENESS: the GREAT IMPERSONATOR Juliette Hart, DVM, MS, CCRT, CVA Cornell University Veterinary Specialists
    FORELIMB LAMENESS: THE GREAT IMPERSONATOR Juliette Hart, DVM, MS, CCRT, CVA Cornell University Veterinary Specialists. Stamford, CT Diagnosis of forelimb lameness in canine patients can often be a labor-intensive and time- consuming process, often with multiple factors being taken into account, regardless of the actual diagnosis. The dog’s age, activity level, co-morbidities, job and environment can be key players. Close examination of the dog in motion (in hospital and at home) can be helpful when determining type and degree of lameness, and may frequently assist the clinician in determining next appropriate diagnostic tests and treatment plans. This lecture will focus on differentials associated with forelimb lameness in dogs, current diagnostic tests and potential treatments available, and finally prognoses and outcomes for specific types of shoulder forelimb lameness in dogs. Lameness Evaluation The forelimb skeleton consists of the thoracic or pectoral girdle and the bones of the forelimb. The canine scapula itself is positioned close to the sagittal plane, and the humeral head is less rounded (as compared to the human head) to assist with weight bearing. The radius takes the majority of weight-bearing in the antebrachium. And, although small, the many sesamoid bones in the carpus/paw allow for biomechanically advantageous alignment of angles of insertion of tendons at their attachments.¹ While there can be tremendous variation in the sizes of the bones themselves comparing dog to dog, the literature have reported a roughly 60% body weight distribution in the thoracic limbs.² As a clinician evaluates a patient, lameness is a key element of that examination.
    [Show full text]
  • Alexander 2013 Principles-Of-Animal-Locomotion.Pdf
    .................................................... Principles of Animal Locomotion Principles of Animal Locomotion ..................................................... R. McNeill Alexander PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright © 2003 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 3 Market Place, Woodstock, Oxfordshire OX20 1SY All Rights Reserved Second printing, and first paperback printing, 2006 Paperback ISBN-13: 978-0-691-12634-0 Paperback ISBN-10: 0-691-12634-8 The Library of Congress has cataloged the cloth edition of this book as follows Alexander, R. McNeill. Principles of animal locomotion / R. McNeill Alexander. p. cm. Includes bibliographical references (p. ). ISBN 0-691-08678-8 (alk. paper) 1. Animal locomotion. I. Title. QP301.A2963 2002 591.47′9—dc21 2002016904 British Library Cataloging-in-Publication Data is available This book has been composed in Galliard and Bulmer Printed on acid-free paper. ∞ pup.princeton.edu Printed in the United States of America 1098765432 Contents ............................................................... PREFACE ix Chapter 1. The Best Way to Travel 1 1.1. Fitness 1 1.2. Speed 2 1.3. Acceleration and Maneuverability 2 1.4. Endurance 4 1.5. Economy of Energy 7 1.6. Stability 8 1.7. Compromises 9 1.8. Constraints 9 1.9. Optimization Theory 10 1.10. Gaits 12 Chapter 2. Muscle, the Motor 15 2.1. How Muscles Exert Force 15 2.2. Shortening and Lengthening Muscle 22 2.3. Power Output of Muscles 26 2.4. Pennation Patterns and Moment Arms 28 2.5. Power Consumption 31 2.6. Some Other Types of Muscle 34 Chapter 3.
    [Show full text]
  • Biomechanics of Terrestrial Locomotion: Asymmetric Octopedal and Quadrupedal Gaits
    SCUOLA DI DOTTORATO IN SCIENZE MORFOLOGICHE, FISIOLOGICHE E DELLO SPORT DIPARTIMENTO DI FISIOLOGIA UMANA DOTTORATO DI RICERCA IN FISIOLOGIA CICLO XXIV Biomechanics of terrestrial locomotion: asymmetric octopedal and quadrupedal gaits SETTORE SCIENTIFICO DISCIPLINARE BIO-09 PhD Student: Dott. Carlo M. Biancardi Matricola: R08161 Tutor: Prof. Alberto E. Minetti Coordinatore: Prof. Paolo Cavallari Anno Accademico 2010-2011 Table of Contents Abstract...................................................................................................... 5 Introduction ...............................................................................................8 Foreword.................................................................................................................. 8 Objectives .................................................................................................................8 Thesis structure........................................................................................................ 8 Terrestrial legged locomotion ..................................................................9 Introduction .............................................................................................................9 Energetics and mechanics of terrestrial legged locomotion ................................10 Limbs mechanics ..........................................................................................................10 Size differences .............................................................................................................14
    [Show full text]
  • Body Form and Gait in Terrestrial Vertebrates1
    THE OHIO JOURNAL OF SCIENCE Vol. 72 JULY, 1972 No. 4 BODY FORM AND GAIT IN TERRESTRIAL VERTEBRATES1 WARREN F. WALKER, JR. Department of Biology, Oberlin College, Oberlin, Ohio 44074 One appeal of pure research is that in answering certain questions, new problems arise, and one is led on and on into a progressively deeper study of a problem. Certain aspects of terrestrial locomotion can be viewed as an example of how research in this area has shifted from description to quantitative analysis and on to a consideration of the interrelationships between form and function. Much research in anatomy today is at the functional level, that is, it is a search for an explanation of structure in terms of the functions the structures are performing, and the intermeshing of certain structures and their functions with those of other parts of the organism. My research animal has been the Central Painted Turtle (Chrysemys picta marginata). In common with other terrestrial ectotherms, turtles carry their body close to the ground when they walk, but turtles are unique in being encased in a protective shell. Corollaries of the shell are a short, broad, and rigid trunk, and these features have important locomotor consequences. Locomotion was studied first not in turtles but in mammals. Careful analyses of locomotion can be traced back to Eadweard Muybridge's study of horse gaits, which he began in 1872 (Muybridge, 1887). Muybridge was a photographer who, in a period preceding cine photography, devised an ingenious battery of 24 still cameras that could be triggered in quick succession to produce a series of still pictures indicating the sequence of limb movements (fig.
    [Show full text]
  • Maximizing Your Efforts Through
    DIAGNOSTIC TIPS ORTHOPEDICS FOR FORELIMB LAMENESS IN DOGS Randall B. Fitch, MS, DVM, DACVS The biomechanical demands placed on the canine forelimbs are considerable and complex. Diagnosis of forelimb lameness is often challenging, requiring a systematic and anatomically detailed approach. This discussion focuses on methods and diagnostics to improve your forelimb evaluation. Gait observation plays an essential role in improving your capability, accuracy, and efficiency of forelimb localization. Weight distribution between limbs is altered with weight shifting to unload painful limbs. Postural changes provide clues to localization. For example, cervical ventroflexion is suggestive of cervical disease, whereas cervical extension suggests caudal weight shifting, as commonly noted in patients with bilateral elbow pain. Abnormal forelimb motion is a tipoff for several conditions. Incomplete elbow extension suggests elbow disease, for instance, and limb circumduction suggests infraspinatus muscle contracture. Head carriage, joint extension, limb alignment, foot contact patterns, and limb motion pathways are visual clues to better understanding of mobility and function. A cursory standing orthopedic evaluation performed in combination with gait evaluation may be your stepping stone to discovering the cause of lameness in more difficult cases. Use palpation to detect pain and anatomic abnormality and magnify symptoms. This opens doors to more specific and confident localization and ultimately the underlying diagnosis. The cursory standing examination provides for a quick assessment that is adaptable, and can quickly be expanded into a more in-depth evaluation, including a neurologic examination combining flexibility with a thorough, systematic approach. In the forelimb presentation, this includes muscle symmetry palpation, cervical flexion and palpation, joint flexion and extension, and palpation of the joint capsule, major muscle groups, and long bones.
    [Show full text]
  • Bird Terrestrial Locomotion As Revealed by 3D Kinematics
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Bird terrestrial locomotion as revealed by 3D kinematics Anick Abourachid, Rémi Hackert, Marc Herbin, Paul Libourel, François Lambert, Henri Gioanni, Pauline Provini, Pierre Blazevic, Vincent Hugel To cite this version: Anick Abourachid, Rémi Hackert, Marc Herbin, Paul Libourel, François Lambert, et al.. Bird terrestrial locomotion as revealed by 3D kinematics. Zoology, Elsevier, 2011, 114 (6), pp.360-368. 10.1016/j.zool.2011.07.002. hal-02341355 HAL Id: hal-02341355 https://hal.archives-ouvertes.fr/hal-02341355 Submitted on 11 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g.
    [Show full text]