RESEARCH Lithospheric Structure and the Isostatic State of Eastern
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Longitudinal and Temporal Evolution of the Tectonic Style Along The
Longitudinal and Temporal Evolution of the Tectonic Style Along the Cyprus Arc System, Assessed Through 2-D Reflection Seismic Interpretation Vasilis Symeou, Catherine Homberg, Fadi H. Nader, Romain Darnault, Jean-claude Lecomte, Nikolaos Papadimitriou To cite this version: Vasilis Symeou, Catherine Homberg, Fadi H. Nader, Romain Darnault, Jean-claude Lecomte, et al.. Longitudinal and Temporal Evolution of the Tectonic Style Along the Cyprus Arc System, Assessed Through 2-D Reflection Seismic Interpretation. Tectonics, American Geophysical Union (AGU), 2018, 37 (1), pp.30 - 47. 10.1002/2017TC004667. hal-01827497 HAL Id: hal-01827497 https://hal.sorbonne-universite.fr/hal-01827497 Submitted on 2 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Longitudinal and Temporal Evolution of the Tectonic Style Along the Cyprus Arc System, Assessed Through 2-D Reflection Seismic Interpretation Vasilis Symeou1,2 , Catherine Homberg1, Fadi H. Nader2, Romain Darnault2, Jean-Claude Lecomte2, and Nikolaos Papadimitriou1,2 1ISTEP, Universite Pierre et Marie Curie, Paris, France, 2Geosciences Division, IFP Energies nouvelles, Rueil-Malmaison, Key Points: • Lateral changes from a compressional France to a strike-slip regime along the Cyprus Arc • Different crustal nature in the eastern Abstract The Cyprus Arc system constitutes a major active plate boundary in the eastern Mediterranean Mediterranean region. -
Glacial Rebound and Plate Spreading: Results from the First Countrywide GPS Observations in Iceland
Geophys. J. Int. (2009) 177, 691–716 doi: 10.1111/j.1365-246X.2008.04059.x Glacial rebound and plate spreading: results from the first countrywide GPS observations in Iceland ∗ T. Arnad´ ottir,´ 1 B. Lund,2 W. Jiang,1 H. Geirsson,3 H. Bjornsson,¨ 4 P. Einarsson4 and T. Sigurdsson5 1Nordic Volcanological Center, Institute of Earth Sciences, University of Iceland, IS-101 Reykjav´ık, Iceland. E-mail: [email protected] 2Department of Earth Sciences, Uppsala University, Villavagen¨ 16, 752 36 Uppsala, Sweden 3Physics Department, Icelandic Meteorological Office, Reykjav´ık, Iceland 4Institute of Earth Sciences, University of Iceland, IS-101 Reykjav´ık, Iceland 5National Land Survey of Iceland, Akranes, Iceland Downloaded from https://academic.oup.com/gji/article/177/2/691/2023257 by guest on 30 September 2021 Accepted 2008 December 10. Received 2008 December 5; in original form 2008 June 12 SUMMARY Iceland is one of the few places on Earth where a divergent plate boundary can be observed on land. Direct observations of crustal deformation for the whole country are available for the first time from nationwide Global Positioning System (GPS) campaigns in 1993 and 2004. The plate spreading across the island is imaged by the horizontal velocity field and high uplift rates (≥10 mm yr−1) are observed over a large part of central and southeastern Iceland. Several earthquakes, volcanic intrusions and eruptions occurred during the time spanned by the measurements, causing local disturbances of the deformation field. After correcting for the largest earthquakes during the observation period, we calculate the strain rate field and find that the main feature of the field is the extension across the rift zones, subparallel to the direction of plate motion. -
Iceland Is Cool: an Origin for the Iceland Volcanic Province in the Remelting of Subducted Iapetus Slabs at Normal Mantle Temperatures
Iceland is cool: An origin for the Iceland volcanic province in the remelting of subducted Iapetus slabs at normal mantle temperatures G. R. Foulger§1 & Don L. Anderson¶ §Department of Geological Sciences, University of Durham, Science Laboratories, South Rd., Durham, DH1 3LE, U.K. ¶California Institute of Technology, Seismological Laboratory, MC 252-21, Pasadena, CA 91125, U. S. A. Abstract The time-progressive volcanic track, high temperatures, and lower-mantle seismic anomaly predicted by the plume hypothesis are not observed in the Iceland region. A model that fits the observations better attributes the enhanced magmatism there to the extraction of melt from a region of upper mantle that is at relatively normal temperature but more fertile than average. The source of this fertility is subducted Iapetus oceanic crust trapped in the Caledonian suture where it is crossed by the mid-Atlantic ridge. The extraction of enhanced volumes of melt at this locality on the spreading ridge has built a zone of unusually thick crust that traverses the whole north Atlantic. Trace amounts of partial melt throughout the upper mantle are a consequence of the more fusible petrology and can explain the seismic anomaly beneath Iceland and the north Atlantic without the need to appeal to very high temperatures. The Iceland region has persistently been characterised by complex jigsaw tectonics involving migrating spreading ridges, microplates, oblique spreading and local variations in the spreading direction. This may result from residual structural complexities in the region, inherited from the Caledonian suture, coupled with the influence of the very thick crust that must rift in order to accommodate spreading-ridge extension. -
Plate Tectonics Review from Valerie Nulisch Some Questions (C) 2017 by TEKS Resource System
Plate Tectonics Review from Valerie Nulisch Some questions (c) 2017 by TEKS Resource System. Some questions (c) 2017 by Region 10 Educational Service Center. Some questions (c) 2017 by Progress Testing. Page 2 GO ON A student wanted to make a model of the Earth. The student decided to cut a giant Styrofoam ball in half and paint the layers on it to show their thickness. 1 Which model below best represents the layers of the Earth? A B C D Page 3 GO ON 2 A student is building a model of the layers of the Earth. Which material would best represent the crust? F Grouping of magnetic balls G Styrofoam packing pellets H Bag of shredded paper J Thin layer of graham crackers 3 Your teacher has asked you to make a model of the interior of the Earth. In your model, how do the thicknesses of the lithosphere and crust compare? A The lithosphere is thinner than the crust. B The lithosphere is exactly the same thickness as the crust. C The lithosphere is thicker than the crust. D The lithosphere is thicker than the oceanic crust, but thinner than the continental crust. 4 Sequence the layers of the Earth in order from the exterior surface to the interior center. F Lithosphere, mantle, inner core, outer core, crust, asthenosphere G Inner core, outer core, mantle, asthenosphere, lithosphere, crust H Crust, mantle, outer core, inner core, asthenosphere, lithosphere J Crust, lithosphere, asthenosphere, mantle, outer core, inner core Page 4 GO ON 5 The tectonic plate labeled A in the diagram is the A Eurasian Plate B Indo-Australian Plate C Pacific Plate D African Plate Page 5 GO ON 6 The tectonic plate labeled B in the diagram is the — F Eurasian Plate G Indo-Australian Plate H Pacific Plate J North American Plate Page 6 GO ON Directions: The map below shows Earth's tectonic plates; six of them are numbered. -
Crustal Structure of the Eastern Anatolia Region (Turkey) Based on Seismic Tomography
geosciences Article Crustal Structure of the Eastern Anatolia Region (Turkey) Based on Seismic Tomography Irina Medved 1,2,* , Gulten Polat 3 and Ivan Koulakov 1 1 Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, Prospekt Koptyuga, 3, 630090 Novosibirsk, Russia; [email protected] 2 Sobolev Institute of Geology and Mineralogy SB RAS, Prospekt Koptyuga, 3, 630090 Novosibirsk, Russia 3 Department of Civil Engineering, Yeditepe University, 26 Agustos Yerleskesi, 34755 Istanbul, Turkey; [email protected] * Correspondence: [email protected]; Tel.: +7-952-922-49-67 Abstract: Here, we investigated the crustal structure beneath eastern Anatolia, an area of high seismicity and critical significance for earthquake hazards in Turkey. The study was based on the local tomography method using data from earthquakes that occurred in the study area provided by the Turkiye Cumhuriyeti Ministry of Interior Disaster and Emergency Management Directorate Earthquake Department Directorate of Turkey. The dataset used for tomography included the travel times of 54,713 P-waves and 38,863 S-waves from 6355 seismic events. The distributions of the resulting seismic velocities (Vp, Vs) down to a depth of 60 km demonstrate significant anomalies associated with the major geologic and tectonic features of the region. The Arabian plate was revealed as a high-velocity anomaly, and the low-velocity patterns north of the Bitlis suture are mostly associated with eastern Anatolia. The upper crust of eastern Anatolia was associated with a ~10 km thick high-velocity anomaly; the lower crust is revealed as a wedge-shaped low-velocity anomaly. This kind of seismic structure under eastern Anatolia corresponded to the hypothesized existence of Citation: Medved, I.; Polat, G.; a lithospheric window beneath this collision zone, through which hot material of the asthenosphere Koulakov, I. -
Reading Comprehension Skills of Bilingual Children in Turkey
European Journal of Education Studies ISSN: 2501 - 1111 ISSN-L: 2501 - 1111 Available on-line at: www.oapub.org/edu doi: 10.5281/zenodo.572344 Volume 3 │ Issue 6 │ 2017 READING COMPREHENSION SKILLS OF BILINGUAL CHILDREN IN TURKEY Seher Bayati University of Ordu, Turkey Abstract: This study aims to compare the reading comprehension skills of the bilingual students studying at the 4th Grade of the Primary School with the monolingual students studying at the 4th Grade. With this purpose, 303 students were included from the Black Sea Region, where mainly monolingual students studied and 247 students were included from the Eastern and South-eastern Regions, where bilingual students studied. Furthermore, in order to expand the scope of the research, it was intended to find out the views of class teachers about the reading comprehension skills of bilingual students. So in the research, the mixed method and the parallel pattern converging from the patterns of the mixed method were used. The research result presented a significant difference between the reading comprehension skills of the monolingual 4th grade students from the Black Sea Region and the students from the Eastern and South- eastern Regions. This difference was in favour of the monolingual students. On the other hand, reading comprehension skills of the 4th graders in the Eastern and South- eastern Regions did not significantly differ within itself depending on bilingualism. Keywords: bilingual children, native language, reading comprehension, Turkish, Kurdish, Arabic 1. Introduction The official language and medium of instruction is Turkish in Turkey. According to Article 42 of the Constitution of the Republic of Turkey, “No language other than Turkish shall be taught as a mother tongue to Turkish citizens at any institutions of training or education. -
3D Seismic Velocity Structure Around Plate Boundaries and Active Fault Zones 47
ProvisionalChapter chapter 3 3D Seismic Velocity Structure AroundAround PlatePlate BoundariesBoundaries and Active Fault Zones and Active Fault Zones Mohamed K. Salah Mohamed K. Salah Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/65512 Abstract Active continental margins, including most of those bordering continents facing the Pacific Ocean, have many earthquakes. These continental margins mark major plate boundaries and are usually flanked by high mountains and deep trenches, departing from the main elevations of continents and ocean basins, and they also contain active volcanoes and, sometimes, active fault zones. Thus, most earthquakes occur predomi‐ nantly at deep‐sea trenches, mid‐ocean spreading ridges, and active mountain belts on continents. These earthquakes generate seismic waves; strong vibrations that propagate away from the earthquake focus at different speeds, due to the release of stored stress. Along their travel path from earthquake hypocenters to the recording stations, the seismic waves can image the internal Earth structure through the application of seismic tomography techniques. In the last few decades, there have been many advances in the theory and application of the seismic tomography methods to image the 3D structure of the Earth's internal layers, especially along major plate boundaries. Applications of these new techniques to arrival time data enabled the detailed imaging of active fault zones, location of magma chambers beneath active volcanoes, and the forecasting of future major earthquakes in seismotectonically active regions all over the world. Keywords: 3D seismic structure, seismic tomography, Vp/Vs ratio, plate boundaries, crustal structure 1. -
Azores and Iceland
13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2369 A COMPARATIVE STUDY ON STRONG GROUND MOTION IN TWO VOLCANIC ENVIRONMENTS: AZORES AND ICELAND Carlos S. OLIVEIRA1, Ragnar SIGBJÖRNSSON2, Simon ÓLAFSSON3 SUMMARY The objective of this paper is to present the main results of a comparative study of strong ground motion on the Azores and Iceland. These islands are a super-structural part of the Mid Atlantic Ridge, which marks the boundary between the North-American Plate and the Eurasian Plate and creates a north-south oriented belt of seismic and volcanic activity. The tectonic environments are described and compared emphasising the similarities in the geological structure, including surface geology and its effects on strong ground motion. Furthermore, the seismicity of the Azores and Iceland is compared based on earthquake catalogues using statistical analysis. The strong-motion networks on the islands are described along with the strong-motion data used in the subsequent analysis. The strong-motion data are compared using statistical analysis. The main emphasis is put on attenuation of strong-motion data, characterised by root mean square acceleration and peak ground acceleration. The attenuation is also compared to some of the common attenuation relationships, used by the engineering community in Europe and America. The main findings are that there are significant similarities between the tectonic environments of the Azores and Iceland. Furthermore, the similarities found in seismicity are statistically significant. The attenuation is characterised by rapid decay with increasing distance and high acceleration in the near source area. It is found that the same ground motion estimation models can be applied on the Azores and in Iceland. -
A New Classification of the Turkish Terranes and Sutures and Its Implication for the Paleotectonic History of the Region
Available online at www.sciencedirect.com Tectonophysics 451 (2008) 7–39 www.elsevier.com/locate/tecto A new classification of the Turkish terranes and sutures and its implication for the paleotectonic history of the region ⁎ Patrice Moix a, , Laurent Beccaletto b, Heinz W. Kozur c, Cyril Hochard a, François Rosselet d, Gérard M. Stampfli a a Institut de Géologie et de Paléontologie, Université de Lausanne, CH-1015 Lausanne, Switzerland b BRGM, Service GEOlogie / Géologie des Bassins Sédimentaires, 3 Av. Cl. Guillemin - BP 36009, FR-45060 Orléans Cedex 2, France c Rézsü u. 83, H-1029 Budapest, Hungary d IHS Energy, 24, chemin de la Mairie, CH-1258 Perly, Switzerland Received 15 October 2007; accepted 6 November 2007 Available online 14 December 2007 Abstract The Turkish part of the Tethyan realm is represented by a series of terranes juxtaposed through Alpine convergent movements and separated by complex suture zones. Different terranes can be defined and characterized by their dominant geological background. The Pontides domain represents a segment of the former active margin of Eurasia, where back-arc basins opened in the Triassic and separated the Sakarya terrane from neighbouring regions. Sakarya was re-accreted to Laurasia through the Balkanic mid-Cretaceous orogenic event that also affected the Rhodope and Strandja zones. The whole region from the Balkans to the Caucasus was then affected by a reversal of subduction and creation of a Late Cretaceous arc before collision with the Anatolian domain in the Eocene. If the Anatolian terrane underwent an evolution similar to Sakarya during the Late Paleozoic and Early Triassic times, both terranes had a diverging history during and after the Eo-Cimmerian collision. -
Plate Tectonics Passport
What is plate tectonics? The Earth is made up of four layers: inner core, outer core, mantle and crust (the outermost layer where we are!). The Earth’s crust is made up of oceanic crust and continental crust. The crust and uppermost part of the mantle are broken up into pieces called plates, which slowly move around on top of the rest of the mantle. The meeting points between the plates are called plate boundaries and there are three main types: Divergent boundaries (constructive) are where plates are moving away from each other. New crust is created between the two plates. Convergent boundaries (destructive) are where plates are moving towards each other. Old crust is either dragged down into the mantle at a subduction zone or pushed upwards to form mountain ranges. Transform boundaries (conservative) are where are plates are moving past each other. Can you find an example of each type of tectonic plate boundary on the map? Divergent boundary: Convergent boundary: Transform boundary: What do you notice about the location of most of the Earth’s volcanoes? P.1 Iceland Iceland lies on the Mid Atlantic Ridge, a divergent plate boundary where the North American Plate and the Eurasian Plate are moving away from each other. As the plates pull apart, molten rock or magma rises up and erupts as lava creating new ocean crust. Volcanic activity formed the island about 16 million years ago and volcanoes continue to form, erupt and shape Iceland’s landscape today. The island is covered with more than 100 volcanoes - some are extinct, but about 30 are currently active. -
Earthquake Risk Transfer for Greece
Earthquake Risk Transfer for Greece Overview Figure 59. Hash circles represent current Earling undercover regions. Greece is located at the complex boundary zone in the eastern Mediterranean between the African Plate and the Eurasian Plate. The northern part of Greece lies on the Eurasian Plate while the southern part lies on the Aegean Sea Plate. The Aegean Sea Plate is moving southwestward with respect to the Eurasian Plate at about 30 mm/yr while the African Plate is subducting northwards beneath the Aegean Sea Plate at a rate of about 40 mm/yr. The northern plate boundary is a relatively 64 Earling Natural Risk Transfer Platform More; https://acircularworld.com diffuse divergent boundary while the southern convergent boundary forms the Hellenic arc. These two plate boundaries give rise to two contrasting tectonic styles, extension on east-west trending fault zones with strike-slip tectonics on SW-NE trending fault zones throughout west and central Greece, Peloponnese and the northern Aegean and contractional in the southern Aegean, continuing around to the Ionian islands. The south Aegean is the location of the volcanic arc and is characterized by extension. To the east of Crete along the Hellenic Arc, strike-slip tectonics with some extension become important. Earling can issue accurate earthquake preparedness alert especially for North of Greece. EPA Effect on Greece Insurance Loss Longterm Loss Millions $3,500 $1,300 $130 $600 Total Loss Insured Loss EPA Effect Figure 60. EPA effect on Sep 7, 1999, Greece earthquake (Higgins, 2016). 65 Earling Natural Risk Transfer Platform More; https://acircularworld.com EPA Effect on Greece Insurance Penetration Rate 38% 36% 33% 30% 28% 25% 23% 21% 17% 18% 15% 13% 2020 2021 2022 2023 2024 Figure 61. -
Sociolinguistic Situation of Kurdish in Turkey: Sociopolitical Factors and Language Use Patterns
DOI 10.1515/ijsl-2012-0053 IJSL 2012; 217: 151 – 180 Ergin Öpengin Sociolinguistic situation of Kurdish in Turkey: Sociopolitical factors and language use patterns Abstract: This article aims at exploring the minority status of Kurdish language in Turkey. It asks two main questions: (1) In what ways have state policies and socio- historical conditions influenced the evolution of linguistic behavior of Kurdish speakers? (2) What are the mechanisms through which language maintenance versus language shift tendencies operate in the speech community? The article discusses the objective dimensions of the language situation in the Kurdish re- gion of Turkey. It then presents an account of daily language practices and perceptions of Kurdish speakers. It shows that language use and choice are sig- nificantly related to variables such as age, gender, education level, rural versus urban dwelling and the overall socio-cultural and political contexts of such uses and choices. The article further indicates that although the general tendency is to follow the functional separation of languages, the language situation in this con- text is not an example of stable diglossia, as Turkish exerts its increasing pres- ence in low domains whereas Kurdish, by contrast, has started to infringe into high domains like media and institutions. The article concludes that the preva- lent community bilingualism evolves to the detriment of Kurdish, leading to a shift-oriented linguistic situation for Kurdish. Keywords: Kurdish; Turkey; diglossia; language maintenance; language shift Ergin Öpengin: Lacito CNRS, Université Paris III & Bamberg University. E-mail: [email protected] 1 Introduction Kurdish in Turkey is the language of a large population of about 15–20 million speakers.