Role of Arabian Sea and Bay of Bengal in Climate El Niño Phenomenon

Total Page:16

File Type:pdf, Size:1020Kb

Role of Arabian Sea and Bay of Bengal in Climate El Niño Phenomenon Ocean and Climate 650 Solar heating is distributed unequally over the Earth's surface. Oceanic motion makes an 600 important contribution to the transport of heat 550 and reduces the equator-pole temperature 500 gradient over the Earth. On an average, the ocean transports as much heat to the higher 450 latitudes, as does the atmosphere. 400 350 300 El Niño Phenomenon 250 A more easily observable that occurs example 200 of the ocean's role in climate is El Niño, a phenomenon that occurs in the equatorial 150 Pacific Ocean. When an El Niño occurs, the 100 waters off Peru warm, and these warm waters 50 spread westward, increasing the sea surface temperature across the eastern and central 0 Pacific. This suppresses convection over 20 m s -1 Indonesia and the western Pacific. The effect of El Niños is not restricted to the equatorial Rainfall (colour, mm/month) and winds (vectors, m/s) during January (left) and July (right). Note the band of high rainfall in the vicinity of the equator during January; in the Indian Pacific. The large expanse of the basin, which Ocean, this band migrates northward over the Indian subcontinent during July. Also note covers almost half the globe, ensures that El that the western Pacific and eastern Indian Ocean are wetter than their eastern and western Niño has a global impact on climate. During El counterparts, respectively. Niño, with the atmospheric convection over the western Pacific being suppressed and the Role of Arabian sea and Bay of band of high rainfall shifting eastward, there is a tendency for rainfall over India also to Bengal in climate decrease. The Arabian Sea and the Bay of Bengal also exercise a profound influence on climate. Though both are located in the same latitude band and receive the same amount of solar radiation from the Sun, the Bay of Bengal is much warmer than the Arabian Sea and many more storms brew over the bay. Recent research shows that there are two causes. -2 0 5 10 15 20 25 28 31 18 19 20 21 22 23 24 25 26 27 28 29 30 1) The winds over the Arabian Sea are stronger 80°N because of the presence of the mountains of 20°N 40°N 10°N East Africa. These strong winds force a much 0° 0° more vigorous oceanic circulation and the heat 40°S 10°S received at the surface is transported 80°S 20°S southward and into the deeper ocean. The 50°E 150°E 110°W 10°W 40°E 60°E 80°E 100°E winds over the Bay of Bengal, in contrast, are Sea surface temperature (ºC) during Sea surface temperature (ºC) during July more sluggish and the bay is unable to remove May. Note the ‘warm pool’ that spreads in the Indian Ocean. Note that the the heat received at the surface. across the western Pacific and the north Arabian Sea cools during the monsoon, Indian Ocean. but the Bay of Bengal remains warm. 2) The bay receives more rainfall; it also receives more freshwater from the large rivers, especially the Ganga and the Brahmaputra, that empty into it. This freshens the surface of 0 20 40 60 80 100 120 140 160 180 200 220 240 0 20 40 60 80 100 120 140 160 the bay and stabilizes the water column, 30°N making it more difficult for the winds to mix the warm, stable surface layer with the cooler 20°N waters below. In the Arabian Sea, there is no 10°N such stabilizing effect. As a consequence, the mixing with the cooler waters below is more 0° vigorous. Since a sea surface temperature of 10°S about 28ºC is necessary for convection to take 30°E 50°E 70°E 90°E 110°E 30°E 50°E 70°E 90°E 110°E place in the atmosphere, this condition is Cumulative rainfall (colour bar, cm) and storm tracks during June-September and October- satisfied in the Bay of Bengal but not in much January. Data for 1990-1997 have been used. The light blue (cyan) tracks are for of the Arabian Sea. Thus, in spite of their depressions, the red tracks for cyclones (storms), and the black tracks for severe cyclones. Note the large number of depressions that form in the northern Bay of Bengal during June- geographical similarities, the two arms of the September, when cyclones are fewer. These depressions move northwestward into the north Indian Ocean are strikingly different when Gangetic plains and bring rain to much of northern India. During October-January, there are fewer depressions, but the number of cyclones is larger. it comes to climate..
Recommended publications
  • General Features and Fisheries Potential of Palk Bay, Palk Strait and Its Environs
    J. Natn.Sci.Foundation Sri Lanka 2005 33(4): 225-232 FEATURE ARTICLE GENERAL FEATURES AND FISHERIES POTENTIAL OF PALK BAY, PALK STRAIT AND ITS ENVIRONS S. SIVALINGAM* 18, Pamankade Lane, Colombo 6. Abstract: The issue of possible social and environmental serving in the former Department of Fisheries, impacts of the shipping canal proposed for the Palk Bay and Colombo (now Ministry of Fisheries and Aquatic Palk Strait area is a much debated topic. Therefore it is Resources) and also recently when consultation necessary to explore the general features of the said area to assess such impacts when formulating the development and assignments were done in these areas. Other management programmes relevant to the area. This paper available data have also been brought together discussed the general features of the area, its environmental and a comprehensive picture of the general and ecological condition and the fisheries potential in detail features and fisheries potential of the areas so as to give some insight to the reader on this important under study is presented below. topic. This article is based on the data collected from earlier field visits and other published information relevant to the subject. GENERAL FEATURES INTRODUCTION Palk Bay and Palk Strait together (also called Sethusamudram), consist of an area of about Considerable interest has been created in the 17,000km2. This is an almost enclosed shallow water Palk Bay, Palk Strait and its environs recently as body that separates Sri Lanka from the a result of the Indian project to construct a mainland India and opens on the east into the shipping canal to connect Gulf of Mannar BOB ( Figure 1 ).
    [Show full text]
  • Arabian Sea and the Gulf of Oman by Global Ocean Associates Prepared for Office of Naval Research – Code 322 PO
    An Atlas of Oceanic Internal Solitary Waves (February 2004) Arabian Sea and the Gulf of Oman by Global Ocean Associates Prepared for Office of Naval Research – Code 322 PO Arabian Sea and the Gulf of Oman Overview The Arabian Sea is located in the northwest Indian Ocean. It is bounded by India (to the east), Iran (to the north) and the Arabian Peninsula (in the west)(Figure 1). The Gulf of Oman is located in the northwest corner of the Arabian Sea. The continental shelf in the region is widest off the northwest coast of India, which also experiences wind-induced upwelling. [LME, 2004]. The circulation in the Arabian Sea is affected by the Northeast (March-April) and Southwest (September -October) Monsoon seasons [Tomczak et al. 2003]. Figure 1. Bathymetry of Arabian Sea [Smith and Sandwell, 1997]. 501 An Atlas of Oceanic Internal Solitary Waves (February 2004) Arabian Sea and the Gulf of Oman by Global Ocean Associates Prepared for Office of Naval Research – Code 322 PO Observations There has been some scientific study of internal waves in the Arabian Sea and Gulf of Oman through the use of satellite imagery [Zheng et al., 1998; Small and Martin, 2002]. The imagery shows evidence of fine scale internal wave signatures along the continental shelf around the entire region. Table 1 shows the months of the year when internal wave observations have been made. Table 1 - Months when internal waves have been observed in the Arabian Sea and Gulf of Oman (Numbers indicate unique dates in that month when waves have been noted) Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 2 552 1251 Small and Martin [2002] reported on internal wave signatures observed in ERS SAR images of the Gulf of Oman.
    [Show full text]
  • It Is Well Known That the Upwelling Along the West Coast of India Is
    Results (modifications) It is well known that the upwelling along the west coast of India is influenced by local winds as well as remotely forcing (Yu et al., 1991; McCreary et al., 1993; Shankar and Shetye, 1997; Shankar et al., 2002). A modelling study by Suresh et al. (2016) has shown that winds near Sri Lanka drive 60% of seasonal sea level of Indian west coast where as the contribution from Bay of Bengal wind forcing is only 20%. They also pointed out that sea level signals forced by the winds near Sri Lanka extend westward into the eastern Arabian Sea with more than 50% contribution in the Lakshadweep high/low region. Negative seasonal sea level anomaly and associated thermocline shoaling in the southeastern Arabian Sea (Lakshdweep low region) during the summer monsoon brings nutrients near the surface causes phytoplankton bloom, and thus influences the food chain with a direct impact on the local fisheries (Madhupratap et al., 2001). A recent study by Suresh et al. (2018) showed that during positive IOD events downwelling Kelvin waves induce a positive sea level anomaly and a deep thermocline along the west coast of India very quickly (within days) during fall. Also, the equatorial easterlies force upwelling Kelvin waves that travel through the Bay of Bengal coastal waveguide to the west coast of India very slowly finally resulting in negative sea level anomaly in winter. The sea level anomaly along the west coast thus shifts from positive in fall to negative in winter during positive IOD events. Our results have shown that chlorophyll concentration is low along the south west coast of India during positive IOD years when compared to neutral and negative IOD years (Fig.
    [Show full text]
  • Northern Arabian Sea Circulation-Autonomous Research (Nascar): a Research Initiative Based on Autonomous Sensors
    OceTHE OFFICIALa MAGAZINEn ogOF THE OCEANOGRAPHYra SOCIETYphy CITATION Centurioni, L.R., V. Hormann, L.D. Talley, I. Arzeno, L. Beal, M. Caruso, P. Conry, R. Echols, H.J.S. Fernando, S.N. Giddings, A. Gordon, H. Graber, R.R. Harcourt, S.R. Jayne, T.G. Jensen, C.M. Lee, P.F.J. Lermusiaux, P. L’Hegaret, A.J. Lucas, A. Mahadevan, J.L. McClean, G. Pawlak, L. Rainville, S.C. Riser, H. Seo, A.Y. Shcherbina, E. Skyllingstad, J. Sprintall, B. Subrahmanyam, E. Terrill, R.E. Todd, C. Trott, H.N. Ulloa, and H. Wang. 2017. Northern Arabian Sea Circulation-Autonomous Research (NASCar): A research initiative based on autonomous sensors. Oceanography 30(2):74–87, https://doi.org/10.5670/oceanog.2017.224. DOI https://doi.org/10.5670/oceanog.2017.224 COPYRIGHT This article has been published in Oceanography, Volume 30, Number 2, a quarterly journal of The Oceanography Society. Copyright 2017 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. DOWNLOADED FROM HTTP://TOS.ORG/OCEANOGRAPHY SPECIAL ISSUE ON AUTONOMOUS AND LAGRANGIAN PLATFORMS AND SENSORS (ALPS) Northern Arabian Sea Circulation- Autonomous Research (NASCar) A RESEARCH INITIATIVE BASED ON AUTONOMOUS SENSORS By Luca R. Centurioni, Verena Hormann, Lynne D.
    [Show full text]
  • Arabian Peninsula from Wikipedia, the Free Encyclopedia Jump to Navigationjump to Search "Arabia" and "Arabian" Redirect Here
    Arabian Peninsula From Wikipedia, the free encyclopedia Jump to navigationJump to search "Arabia" and "Arabian" redirect here. For other uses, see Arabia (disambiguation) and Arabian (disambiguation). Arabian Peninsula Area 3.2 million km2 (1.25 million mi²) Population 77,983,936 Demonym Arabian Countries Saudi Arabia Yemen Oman United Arab Emirates Kuwait Qatar Bahrain -shibhu l-jazīrati l ِش ْبهُ ا ْل َج ِزي َرةِ ا ْلعَ َربِيَّة :The Arabian Peninsula, or simply Arabia[1] (/əˈreɪbiə/; Arabic jazīratu l-ʿarab, 'Island of the Arabs'),[2] is َج ِزي َرةُ ا ْلعَ َرب ʿarabiyyah, 'Arabian peninsula' or a peninsula of Western Asia situated northeast of Africa on the Arabian plate. From a geographical perspective, it is considered a subcontinent of Asia.[3] It is the largest peninsula in the world, at 3,237,500 km2 (1,250,000 sq mi).[4][5][6][7][8] The peninsula consists of the countries Yemen, Oman, Qatar, Bahrain, Kuwait, Saudi Arabia and the United Arab Emirates.[9] The peninsula formed as a result of the rifting of the Red Sea between 56 and 23 million years ago, and is bordered by the Red Sea to the west and southwest, the Persian Gulf to the northeast, the Levant to the north and the Indian Ocean to the southeast. The peninsula plays a critical geopolitical role in the Arab world due to its vast reserves of oil and natural gas. The most populous cities on the Arabian Peninsula are Riyadh, Dubai, Jeddah, Abu Dhabi, Doha, Kuwait City, Sanaʽa, and Mecca. Before the modern era, it was divided into four distinct regions: Red Sea Coast (Tihamah), Central Plateau (Al-Yamama), Indian Ocean Coast (Hadhramaut) and Persian Gulf Coast (Al-Bahrain).
    [Show full text]
  • Grade 6 Social Studies
    Grade 6 SEPTEMBER OCTOBER NOVEMBER 5 Themes of Geography – Europe Europe st (1 week or 2) E.1 E.1 A. absolute and relative On a map of the world, locate On a map of the world, locate locations, B. climate, C. the continent of Europe. On a the continent of Europe. On a major physical characteristics, map of Europe, locate the map of Europe, locate the D. major natural resources, Atlantic Ocean, Arctic Ocean, Atlantic Ocean, Arctic Ocean, E. population size Norwegian Sea, and Barents Norwegian Sea, and Barents Sea. Locate the Volga, Sea. Locate the Volga, Europe Danube, Ural, Rhine, Elbe, Danube, Ural, Rhine, Elbe, E.1 Seine, Po, and Thames Seine, Po, and Thames On a map of the world, locate Rivers. Locate the Alps, Rivers. Locate the Alps, the continent of Europe. On a Pyrenees, and Balkan Pyrenees, and Balkan map of Europe, locate the Mountains. Locate the Mountains. Locate the Atlantic Ocean, Arctic Ocean, countries in the northern, countries in the northern, Norwegian Sea, and Barents southern, central, eastern, and southern, central, eastern, and Sea. Locate the Volga, western regions of Europe. western regions of Europe. Danube, Ural, Rhine, Elbe, E.2 E.2 Seine, Po, and Thames Use a map key to locate Use a map key to locate Rivers. Locate the Alps, countries and major cities in countries and major cities in Pyrenees, and Balkan Europe. (G) Europe. (G) Mountains. Locate the E.3 E.3 countries in the northern, Explain how the following five Explain how the following five southern, central, eastern, and factors have influenced factors have influenced western regions of Europe.
    [Show full text]
  • The Mineral Industries of the Middle East and North Africa in 2015
    2015 Minerals Yearbook THE MIDDLE EAST AND NORTH AFRICA [ADVANCE RELEASE] U.S. Department of the Interior July 2019 U.S. Geological Survey 10° W 0° 10° E 20° E 30° E 40° E 50° E 60° E 50° N 40° N E D I T M E R R A N E SYRIA A LEBANON ATLANTIC N S E A ISRAEL TUNISIA IRAQ (West Bank) IRAN OCEAN (Gaza) MOROCCO 30° N P E JORDAN R S ALGERIA IA KUWAIT N LIBYA EGYPT BAHRAIN GU SAUDI ARABIA LF Western Sahara R E D S E A QATAR UNITED ARAB OMAN EMIRATES 20° N YEMEN ARABIAN SEA GULF OF ADEN 10° N Base modified from ESRI ArcGIS online world countries (generalized) map data, 2017 Mercator Auxiliary Sphere projection World Geodetic System 1984 datum Figure 1. Map of the Middle East and North Africa region. The countries covered in this report are labeled on the map; bordering countries are shown in gray and not labeled. The Mineral Industries of the Middle East and North Africa By Mowafa Taib, Sinan Hastorun, Glenn J. Wallace, Loyd M. Trimmer III, and David R. Wilburn The countries and territories of the Middle East and North their relatively small populations. The rate of growth of the GDP Africa (MENA) region that are covered in this chapter include in the MENA region was 0.3% in 2015 compared with 0.1% the following: Algeria, Bahrain, Egypt, Iran, Iraq, Israel, Jordan, in 2014 and 2.1% in 2013. The rates of growth for individual Kuwait, Lebanon, Libya, Morocco, Oman, Qatar, Saudi Arabia, countries within the region varied greatly; Egypt, Iraq, and Syria, Tunisia, the United Arab Emirates (UAE), the West Bank Morocco achieved the highest rates of economic growth in and Gaza Strip, Western Sahara, and Yemen.
    [Show full text]
  • Arab Cultural Awareness: 58 Factsheets
    TRADOC DCSINT HANDBOOK NO. 2 ARAB CULTURAL AWARENESS: 58 FACTSHEETS OFFICE OF THE DEPUTY CHIEF OF STAFF FOR INTELLIGENCE US ARMY TRAINING AND DOCTRINE COMMAND FT. LEAVENWORTH, KANSAS JANUARY 2006 PURPOSE This handbook is designed to specifically provide the trainer a ‘hip pocket training’ resource. It is intended for informal squad or small group instruction. The goal is to provide soldiers with a basic overview of Arab culture. It must be emphasized that there is no “one” Arab culture or society. The Arab world is full of rich and diverse communities, groups and cultures. Differences exist not only among countries, but within countries as well. Caveat: It is impossible to talk about groups of people without generalizing. It then follows that it is hard to talk about the culture of a group without generalizing. This handbook attempts to be as accurate and specific as possible, but inevitably contains such generalizations. Treat these generalizations with caution and wariness. They do provide insight into a culture, but the accuracy and usefulness will depend on the context and specific circumstances. Comments or Suggestions: Please forward all comments, suggestions or questions to: ADCINT-Threats, 700 Scott Ave, Ft. Leavenworth, KS 66027 or email [email protected] or phone 913.684.7920/DSN 552-7920. ii WHERE IS THE ARAB WORLD? • The Arab world stretches from Morocco across Northern Africa to the Persian Gulf. The Arab world is more or less equal to the area known as the Middle East and North Africa (MENA). Although this excludes Somalia, Djibouti, and the Comoros Islands which are part of the Arab world.
    [Show full text]
  • Lakshadweep) Sea As Observed by the Coastal Zone Color Scanner
    Seasonal and interannual variability of phytoplankton pigment in the Laccadive (Lakshadweep) Sea as observed by the Coastal Zone Color Scanner Lisa Jade Lierheimer1 and Karl Banse2 1U.S. Fish and Wildlife Service, Office of International Affairs, Division of Management Authority, 4401 North Fairfax Drive, Arlington, VA 22046 2Corresponding author: School of Oceanography, Box 357940, University of Washington, Seattle, WA 98195{7940, U.S.A. e-mail: [email protected] Based on Coastal Zone Color Scanner data from November 1978 through December 1981, the seasonal cycle of phytoplankton pigment in the upper part of the euphotic zone is established for the offshore Laccadive Sea. Year-round, the pigment content is low and the seasonal range is small, following the pattern of the nutrient-poor Arabian Sea to the west. Apparently, indigenous phytoplankton blooms are absent. July and August, however, were poorly studied because of cloud cover. Interannual differences during the northeast monsoon and the spring intermonsoon periods are minor. The abundant phytoplankton caused by the upwelling off India during the southwest monsoon remains essentially restricted to the shelf, but there are occasional large, zonal outbreaks into the Laccadive Sea, as well as others advected to the south of India. Visual inspection of the raw CZCS scenes for June through November 1982{1985, with almost no data until August or even September, shows such outbreaks of pigment-rich water to be common. Inspection of monthly SeaWiFS images for 1997 through part of 2001 confirms the absence of indigenous phytoplankton blooms. 1. Introduction cipitation, and is subject to seasonal reversal of surface currents.
    [Show full text]
  • Bay of Bengal: Earthquake & Tsunami
    BAY OF BENGAL: Preliminary Appeal no. 28/2004 26 December 2004 EARTHQUAKE & TSUNAMI The Federation’s mission is to improve the lives of vulnerable people by mobilizing the power of humanity. It is the world’s largest humanitarian organization and its millions of volunteers are active in over 181 countries. In Brief THIS PRELIMINARY EMERGENCY APPEAL PROVISIONALLY SEEKS CHF 7,517,000 (USD 6,658,712 OR EUR 4,852,932) IN CASH, KIND, OR SERVICES TO ASSIST SOME 500,000 PEOPLE FOR 6 MONTHS CHF 1,000,000 HAS BEEN ALLOCATED FROM THE FEDERATION’S DISASTER RELIEF EMERGENCY FUND (DREF) (Click here to go directly to the attached preliminary appeal budget.) All International Federation assistance seeks to adhere to the Code of Conduct and is committed to the Humanitarian Charter and Minimum Standards in Disaster Response in delivering assistance to the most vulnerable. For support to or for further information concerning Federation programmes or operations in this or other countries, or for a full description of the national society profile, please access the Federation’s website at http://www.ifrc.org For further information specifically related to this operation please contact: • In Delhi; Alan Bradbury; Regional Programme Coordinator; phone: +91 98 103-019-84; email: [email protected] • In Sri Lanka; Alisdair Gordon-Gibson; Federation Representative; phone: +94 77 755 7001; • In Indonesia: Latifur Rachman, DM Delegate; phone: + 62 811 826 624; fax: + 622 1718 0905 email: [email protected] • In Bangkok: Dr. Ian Wilderspin, Head of Disaster Risk Management Unit: phone +662 640 8211; fax:+662 661 8220 0038E/11.03.04 2 Bay of Bengal: Earthquake and Tsunami; Appeal No.
    [Show full text]
  • Drainage System
    CHAPTER DRAINAGE SYSTEM ou have observed water flowing through 2006) in this class . Can you, then, explain the the rivers, nalas and even channels reason for water flowing from one direction to Yduring rainy season which drain the the other? Why do the rivers originating from the excess water. Had these channels not been Himalayas in the northern India and the Western there, large-scale flooding would have Ghat in the southern India flow towards the east occurred. Wherever channels are ill-defined or and discharge their waters in the Bay of Bengal? choked, flooding is a common phenomenon. The flow of water through well-defined channels is known as ‘drainage’ and the network of such channels is called a ‘drainage system’. The drainage pattern of an area is the outcome of the geological time period, nature and structure of rocks, topography, slope, amount of water flowing and the periodicity of the flow. Do you have a river near your village or city? Have you ever been there for boating or bathing? Figure 3.1 : A River in the Mountainous Region Is it perennial (always with water) or ephemeral (water during rainy season, and dry, otherwise)? A river drains the water collected from a Do you know that rivers flow in the same specific area, which is called its ‘catchment area’. direction? You have studied about slopes in the An area drained by a river and its tributaries other two textbooks of geography (NCERT, is called a drainage basin. The boundary line Important Drainage Patterns (i) The drainage pattern resembling the branches of a tree is known as “dendritic” the examples of which are the rivers of northern plain.
    [Show full text]
  • Southeast Asia.Pdf
    Standards SS7G9 The student will locate selected features in Southern and Eastern Asia. a. Locate on a world and regional political-physical map: Ganges River, Huang He (Yellow River), Indus River, Mekong River, Yangtze (Chang Jiang) River, Bay of Bengal, Indian Ocean, Sea of Japan, South China Sea, Yellow Sea, Gobi Desert, Taklimakan Desert, Himalayan Mountains, and Korean Peninsula. b. Locate on a world and regional political-physical map the countries of China, India, Indonesia, Japan, North Korea, South Korea, and Vietnam. Directions: Label the following countries on the political map of Asia. • China • North Korea • India • South Korea • Indonesia • Vietnam • Japan Directions: I. Draw and label the physical features listed below on the map of Asia. • Ganges River • Mekong River • Huang He (Yellow River) • Yangtze River • Indus River • Himalayan Mountains • Taklimakan Desert • Gobi Desert II. Label the following physical features on the map of Asia. • Bay of Bengal • Yellow Sea • Color the rivers DARK BLUE. • Color all other bodies of water LIGHT • Indian Ocean BLUE (or TEAL). • Sea of Japan • Color the deserts BROWN. • Korean Peninsula • Draw triangles for mountains and color • South China Sea them GREEN. • Color the peninsula RED. Directions: I. Draw and label the physical features listed below on the map of Asia. • Ganges River • Mekong River • Huang He (Yellow River) • Yangtze River • Indus River • Himalayan Mountains • Taklimakan Desert • Gobi Desert II. Label the following physical features on the map of Asia. • Bay of Bengal • Yellow Sea • Indian Ocean • Sea of Japan • Korean Peninsula • South China Sea • The Ganges River starts in the Himalayas and flows southeast through India and Bangladesh for more than 1,500 miles to the Indian Ocean.
    [Show full text]