Northern Arabian Sea Circulation-Autonomous Research (Nascar): a Research Initiative Based on Autonomous Sensors

Total Page:16

File Type:pdf, Size:1020Kb

Northern Arabian Sea Circulation-Autonomous Research (Nascar): a Research Initiative Based on Autonomous Sensors OceTHE OFFICIALa MAGAZINEn ogOF THE OCEANOGRAPHYra SOCIETYphy CITATION Centurioni, L.R., V. Hormann, L.D. Talley, I. Arzeno, L. Beal, M. Caruso, P. Conry, R. Echols, H.J.S. Fernando, S.N. Giddings, A. Gordon, H. Graber, R.R. Harcourt, S.R. Jayne, T.G. Jensen, C.M. Lee, P.F.J. Lermusiaux, P. L’Hegaret, A.J. Lucas, A. Mahadevan, J.L. McClean, G. Pawlak, L. Rainville, S.C. Riser, H. Seo, A.Y. Shcherbina, E. Skyllingstad, J. Sprintall, B. Subrahmanyam, E. Terrill, R.E. Todd, C. Trott, H.N. Ulloa, and H. Wang. 2017. Northern Arabian Sea Circulation-Autonomous Research (NASCar): A research initiative based on autonomous sensors. Oceanography 30(2):74–87, https://doi.org/10.5670/oceanog.2017.224. DOI https://doi.org/10.5670/oceanog.2017.224 COPYRIGHT This article has been published in Oceanography, Volume 30, Number 2, a quarterly journal of The Oceanography Society. Copyright 2017 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. DOWNLOADED FROM HTTP://TOS.ORG/OCEANOGRAPHY SPECIAL ISSUE ON AUTONOMOUS AND LAGRANGIAN PLATFORMS AND SENSORS (ALPS) Northern Arabian Sea Circulation- Autonomous Research (NASCar) A RESEARCH INITIATIVE BASED ON AUTONOMOUS SENSORS By Luca R. Centurioni, Verena Hormann, Lynne D. Talley, Isabella Arzeno, Lisa Beal, Michael Caruso, Patrick Conry, Rosalind Echols, Harindra J.S. Fernando, Sarah N. Giddings, Arnold Gordon, Hans Graber, Ramsey R. Harcourt, Steven R. Jayne, Tommy G. Jensen, Craig M. Lee, Pierre F.J. Lermusiaux, Pierre L’Hegaret, Andrew J. Lucas, Amala Mahadevan, Julie L. McClean, Geno Pawlak, Luc Rainville, Stephen C. Riser, Hyodae Seo, Andrey Y. Shcherbina, Eric Skyllingstad, Janet Sprintall, Bulusu Subrahmanyam, Eric Terrill, Robert E. Todd, Corinne Trott, Hugo N. Ulloa, and He Wang 74 Oceanography | Vol.30, No.2 ABSTRACT. The Arabian Sea circulation is forced by strong monsoonal winds and Arabian Sea. Although the frequency of is characterized by vigorous seasonally reversing currents, extreme differences in piracy incidents is declining, the region sea surface salinity, localized substantial upwelling, and widespread submesoscale from the east coast of Africa to the cen- thermohaline structures. Its complicated sea surface temperature patterns are important tral Arabian Sea (65°E) and from 5°S for the onset and evolution of the Asian monsoon. This article describes a program to 22°N is classified as high risk by the that aims to elucidate the role of upper-ocean processes and atmospheric feedbacks in United Kingdom Hydrographic Office, setting the sea surface temperature properties of the region. The wide range of spatial and access by scientific research vessels and temporal scales and the difficulty of accessing much of the region with ships due remains restricted, particularly in the to piracy motivated a novel approach based on state-of-the-art autonomous ocean oceanographically critical regions of the sensors and platforms. The extensive data set that is being collected, combined with Somali Current, the Red Sea, the Persian numerical models and remote sensing data, confirms the role of planetary waves in Gulf outflows, and the Arabian Peninsula the reversal of the Somali Current system. These data also document the fast response upwelling system. of the upper equatorial ocean to monsoon winds through changes in temperature and The complexity of the physical pro- salinity and the connectivity of the surface currents across the northern Indian Ocean. cesses involved and the need to col- New observations of thermohaline interleaving structures and mixing in setting the lect observations on scales ranging from surface temperature properties of the northern Arabian Sea are also discussed. one meter to thousands of kilometers in a region that is difficult to access with INTRODUCTION and submesoscale dynamics, planetary oceanographic research ships require a The Arabian Sea, in the northwestern waves, and upper-ocean mixing, in addi- novel approach. The central objectives Indian Ocean, plays a critical role in the tion to important ocean-atmosphere of the NASCar initiative are to exploit Asian monsoon and associated precipi- feedbacks (Vecchi et al., 2004). state-of-the-art autonomous instruments tation over the Indian subcontinent. The The hypothesized central role that (Box 1) to address outstanding scien- seasonal monsoonal winds in turn force oceanographic processes in the northern tific questions about oceanographic pro- the seasonally varying circulation in Arabian Sea play in the seasonal modu- cesses in the northern Arabian Sea, to fill the Arabian Sea (Schott and McCreary, lation of the Asian monsoon is accom- the observational gap accrued over the 2001; Trott et al., 2017), but the feed- panied by the realization that new in situ past two decades, and to demonstrate the back and adjustment processes between observations of currents, air-sea inter- maturity of an approach that does not the ocean circulation, sea surface tem- actions, and meso- to submesoscale inte- rely on the use of dedicated research ves- perature (SST), and the atmosphere are rior processes are needed to improve our sels and fixed mooring installations. not well understood. physical understanding and our ability to Several key features differentiate the The overarching goal of the Office of forecast oceanic and atmospheric condi- northern Indian Ocean from the Atlantic Naval Research (ONR)-funded Northern tions in the region. and Pacific Oceans and affect the air-sea Arabian Sea Circulation-autonomous In situ oceanographic observations in fluxes of heat and momentum over the research (NASCar) initiative is to the northern Arabian Sea have been diffi- basin. The presence of land to the north improve our understanding of the role cult to obtain for over two decades because limits the ocean’s poleward transport of that western tropical Indian Ocean pro- of piracy, with the notable exception heat and upper-ocean ventilation (Schott cesses, particularly those in the northern of measurements from Global Climate et al., 2009). Furthermore, the weak zonal Arabian Sea, play in the onset and evo- Observing System subarrays such as the component of the equatorial trade winds lution of the Indian monsoon. The work- Global Drifter Program (GDP), Argo, leads to mean downwelling along the ing hypothesis that connects the obser- the High-Resolution Expendable Bathy- equator (Wang and McPhaden, 2017), vational and modeling components of thermograph/Expendable Conductivity- which results in high SSTs throughout the NASCar is that our limited knowledge of Temperature-Depth (HR XBT/XCTD) tropical Indian Ocean. Another remark- the local air-sea fluxes in the northwest- network, the Research Moored Array able feature is the drastic difference in sea ern Indian Ocean limits the skills of mod- for African-Asian-Australian Monsoon surface salinity (SSS) across the northern els in correctly forecasting the onset and Analysis and Prediction (RAMA; Indian Ocean sub-basins—the Arabian intra seasonal-to-interannual variability McPhaden et al., 2009), and the devel- Sea and the Bay of Bengal (Figure 1). of the Asian monsoon, and that such oping Indian Ocean Observing System In the northern Arabian Sea, evapora- fluxes are influenced by ocean mesoscale (IndOOS) effort in the northeastern tion largely exceeds precipitation, while Oceanography | June 2017 75 Box 1. Autonomous NASCar Assets Water Level, 0 m 35 cm Stainless Steel Sealing Band 15 m 7.60 m Sea Surface Temperature Sensor Tether’s Strain Relief Tether 0.61 m APL/UW Photo credit: Tyler Hughen Surface Lagrangian SVP Drifter Underwater Gliders Wirewalker Wave-Powered Profilers SVP drifters use drogues centered at 15 m Three varieties of autonomous underwater The Wirewalker profiling system uses energy depth and are designed to follow the water gliders (Rudnick, 2016) have been used during from surface ocean waves to drive a vehicle with an accuracy of 0.01 m s–1 for winds up to NASCar. Seagliders (Eriksen et al., 2001) mea- vertically along a wire. In the case described 10 m s–1. All drifters carry an SST sensor, and sured temperature, salinity, and depth- averaged here, a pair of Wirewalkers was configured to many of them also measure atmospheric pres- currents over the upper kilometer during mis- profile temperature, conductivity, and pressure sure. Using two-way Iridium satellite commu- sions lasting up to eight months. A Spray glider over 120 m and 200 m with a profile return rate nications, the data are available through the (Sherman et al., 2001; Rudnick et al., 2016) of 12 min and 20 min, respectively, and teleme- Global Telecommunication System in near-real focused on sampling near the equator during a ter the data over the Iridium satellite. See Pinkel time. They can also be configured to measure three-month mission. In addition to a CTD, the et al. (2011) for more details. surface wind, salinity, and subsurface tempera- Spray glider carried a small acoustic Doppler ture. Undrogued drifters can measure direc- current profiler (Todd et al., 2017) to measure tional spectral properties of surface waves. See profiles of horizontal currents near the equator http://ldl-drifter.org for more details. where geostrophic estimates are not possible. A Slocum glider with an externally mounted tur- bulence package (Wolk et al., 2009; Fer et al., 2014) collected profiles of the dissipation rate of turbulent kinetic energy in the vicinity of the Mascarene Plateau during a month-long mis- sion. All gliders telemetered real-time data via the Iridium network, and raw data are pro- cessed after recovery of the gliders. Miniature Wave Buoys The Miniature Wave Buoy (MWB) is a compact, inexpensive, easy-to-deploy/recover, ocean- ographic buoy that uses state-of-the-art GPS Profiling Floats technology to measure waves.
Recommended publications
  • Arabian Sea and the Gulf of Oman by Global Ocean Associates Prepared for Office of Naval Research – Code 322 PO
    An Atlas of Oceanic Internal Solitary Waves (February 2004) Arabian Sea and the Gulf of Oman by Global Ocean Associates Prepared for Office of Naval Research – Code 322 PO Arabian Sea and the Gulf of Oman Overview The Arabian Sea is located in the northwest Indian Ocean. It is bounded by India (to the east), Iran (to the north) and the Arabian Peninsula (in the west)(Figure 1). The Gulf of Oman is located in the northwest corner of the Arabian Sea. The continental shelf in the region is widest off the northwest coast of India, which also experiences wind-induced upwelling. [LME, 2004]. The circulation in the Arabian Sea is affected by the Northeast (March-April) and Southwest (September -October) Monsoon seasons [Tomczak et al. 2003]. Figure 1. Bathymetry of Arabian Sea [Smith and Sandwell, 1997]. 501 An Atlas of Oceanic Internal Solitary Waves (February 2004) Arabian Sea and the Gulf of Oman by Global Ocean Associates Prepared for Office of Naval Research – Code 322 PO Observations There has been some scientific study of internal waves in the Arabian Sea and Gulf of Oman through the use of satellite imagery [Zheng et al., 1998; Small and Martin, 2002]. The imagery shows evidence of fine scale internal wave signatures along the continental shelf around the entire region. Table 1 shows the months of the year when internal wave observations have been made. Table 1 - Months when internal waves have been observed in the Arabian Sea and Gulf of Oman (Numbers indicate unique dates in that month when waves have been noted) Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 2 552 1251 Small and Martin [2002] reported on internal wave signatures observed in ERS SAR images of the Gulf of Oman.
    [Show full text]
  • It Is Well Known That the Upwelling Along the West Coast of India Is
    Results (modifications) It is well known that the upwelling along the west coast of India is influenced by local winds as well as remotely forcing (Yu et al., 1991; McCreary et al., 1993; Shankar and Shetye, 1997; Shankar et al., 2002). A modelling study by Suresh et al. (2016) has shown that winds near Sri Lanka drive 60% of seasonal sea level of Indian west coast where as the contribution from Bay of Bengal wind forcing is only 20%. They also pointed out that sea level signals forced by the winds near Sri Lanka extend westward into the eastern Arabian Sea with more than 50% contribution in the Lakshadweep high/low region. Negative seasonal sea level anomaly and associated thermocline shoaling in the southeastern Arabian Sea (Lakshdweep low region) during the summer monsoon brings nutrients near the surface causes phytoplankton bloom, and thus influences the food chain with a direct impact on the local fisheries (Madhupratap et al., 2001). A recent study by Suresh et al. (2018) showed that during positive IOD events downwelling Kelvin waves induce a positive sea level anomaly and a deep thermocline along the west coast of India very quickly (within days) during fall. Also, the equatorial easterlies force upwelling Kelvin waves that travel through the Bay of Bengal coastal waveguide to the west coast of India very slowly finally resulting in negative sea level anomaly in winter. The sea level anomaly along the west coast thus shifts from positive in fall to negative in winter during positive IOD events. Our results have shown that chlorophyll concentration is low along the south west coast of India during positive IOD years when compared to neutral and negative IOD years (Fig.
    [Show full text]
  • Arabian Peninsula from Wikipedia, the Free Encyclopedia Jump to Navigationjump to Search "Arabia" and "Arabian" Redirect Here
    Arabian Peninsula From Wikipedia, the free encyclopedia Jump to navigationJump to search "Arabia" and "Arabian" redirect here. For other uses, see Arabia (disambiguation) and Arabian (disambiguation). Arabian Peninsula Area 3.2 million km2 (1.25 million mi²) Population 77,983,936 Demonym Arabian Countries Saudi Arabia Yemen Oman United Arab Emirates Kuwait Qatar Bahrain -shibhu l-jazīrati l ِش ْبهُ ا ْل َج ِزي َرةِ ا ْلعَ َربِيَّة :The Arabian Peninsula, or simply Arabia[1] (/əˈreɪbiə/; Arabic jazīratu l-ʿarab, 'Island of the Arabs'),[2] is َج ِزي َرةُ ا ْلعَ َرب ʿarabiyyah, 'Arabian peninsula' or a peninsula of Western Asia situated northeast of Africa on the Arabian plate. From a geographical perspective, it is considered a subcontinent of Asia.[3] It is the largest peninsula in the world, at 3,237,500 km2 (1,250,000 sq mi).[4][5][6][7][8] The peninsula consists of the countries Yemen, Oman, Qatar, Bahrain, Kuwait, Saudi Arabia and the United Arab Emirates.[9] The peninsula formed as a result of the rifting of the Red Sea between 56 and 23 million years ago, and is bordered by the Red Sea to the west and southwest, the Persian Gulf to the northeast, the Levant to the north and the Indian Ocean to the southeast. The peninsula plays a critical geopolitical role in the Arab world due to its vast reserves of oil and natural gas. The most populous cities on the Arabian Peninsula are Riyadh, Dubai, Jeddah, Abu Dhabi, Doha, Kuwait City, Sanaʽa, and Mecca. Before the modern era, it was divided into four distinct regions: Red Sea Coast (Tihamah), Central Plateau (Al-Yamama), Indian Ocean Coast (Hadhramaut) and Persian Gulf Coast (Al-Bahrain).
    [Show full text]
  • The Mineral Industries of the Middle East and North Africa in 2015
    2015 Minerals Yearbook THE MIDDLE EAST AND NORTH AFRICA [ADVANCE RELEASE] U.S. Department of the Interior July 2019 U.S. Geological Survey 10° W 0° 10° E 20° E 30° E 40° E 50° E 60° E 50° N 40° N E D I T M E R R A N E SYRIA A LEBANON ATLANTIC N S E A ISRAEL TUNISIA IRAQ (West Bank) IRAN OCEAN (Gaza) MOROCCO 30° N P E JORDAN R S ALGERIA IA KUWAIT N LIBYA EGYPT BAHRAIN GU SAUDI ARABIA LF Western Sahara R E D S E A QATAR UNITED ARAB OMAN EMIRATES 20° N YEMEN ARABIAN SEA GULF OF ADEN 10° N Base modified from ESRI ArcGIS online world countries (generalized) map data, 2017 Mercator Auxiliary Sphere projection World Geodetic System 1984 datum Figure 1. Map of the Middle East and North Africa region. The countries covered in this report are labeled on the map; bordering countries are shown in gray and not labeled. The Mineral Industries of the Middle East and North Africa By Mowafa Taib, Sinan Hastorun, Glenn J. Wallace, Loyd M. Trimmer III, and David R. Wilburn The countries and territories of the Middle East and North their relatively small populations. The rate of growth of the GDP Africa (MENA) region that are covered in this chapter include in the MENA region was 0.3% in 2015 compared with 0.1% the following: Algeria, Bahrain, Egypt, Iran, Iraq, Israel, Jordan, in 2014 and 2.1% in 2013. The rates of growth for individual Kuwait, Lebanon, Libya, Morocco, Oman, Qatar, Saudi Arabia, countries within the region varied greatly; Egypt, Iraq, and Syria, Tunisia, the United Arab Emirates (UAE), the West Bank Morocco achieved the highest rates of economic growth in and Gaza Strip, Western Sahara, and Yemen.
    [Show full text]
  • Arab Cultural Awareness: 58 Factsheets
    TRADOC DCSINT HANDBOOK NO. 2 ARAB CULTURAL AWARENESS: 58 FACTSHEETS OFFICE OF THE DEPUTY CHIEF OF STAFF FOR INTELLIGENCE US ARMY TRAINING AND DOCTRINE COMMAND FT. LEAVENWORTH, KANSAS JANUARY 2006 PURPOSE This handbook is designed to specifically provide the trainer a ‘hip pocket training’ resource. It is intended for informal squad or small group instruction. The goal is to provide soldiers with a basic overview of Arab culture. It must be emphasized that there is no “one” Arab culture or society. The Arab world is full of rich and diverse communities, groups and cultures. Differences exist not only among countries, but within countries as well. Caveat: It is impossible to talk about groups of people without generalizing. It then follows that it is hard to talk about the culture of a group without generalizing. This handbook attempts to be as accurate and specific as possible, but inevitably contains such generalizations. Treat these generalizations with caution and wariness. They do provide insight into a culture, but the accuracy and usefulness will depend on the context and specific circumstances. Comments or Suggestions: Please forward all comments, suggestions or questions to: ADCINT-Threats, 700 Scott Ave, Ft. Leavenworth, KS 66027 or email [email protected] or phone 913.684.7920/DSN 552-7920. ii WHERE IS THE ARAB WORLD? • The Arab world stretches from Morocco across Northern Africa to the Persian Gulf. The Arab world is more or less equal to the area known as the Middle East and North Africa (MENA). Although this excludes Somalia, Djibouti, and the Comoros Islands which are part of the Arab world.
    [Show full text]
  • Lakshadweep) Sea As Observed by the Coastal Zone Color Scanner
    Seasonal and interannual variability of phytoplankton pigment in the Laccadive (Lakshadweep) Sea as observed by the Coastal Zone Color Scanner Lisa Jade Lierheimer1 and Karl Banse2 1U.S. Fish and Wildlife Service, Office of International Affairs, Division of Management Authority, 4401 North Fairfax Drive, Arlington, VA 22046 2Corresponding author: School of Oceanography, Box 357940, University of Washington, Seattle, WA 98195{7940, U.S.A. e-mail: [email protected] Based on Coastal Zone Color Scanner data from November 1978 through December 1981, the seasonal cycle of phytoplankton pigment in the upper part of the euphotic zone is established for the offshore Laccadive Sea. Year-round, the pigment content is low and the seasonal range is small, following the pattern of the nutrient-poor Arabian Sea to the west. Apparently, indigenous phytoplankton blooms are absent. July and August, however, were poorly studied because of cloud cover. Interannual differences during the northeast monsoon and the spring intermonsoon periods are minor. The abundant phytoplankton caused by the upwelling off India during the southwest monsoon remains essentially restricted to the shelf, but there are occasional large, zonal outbreaks into the Laccadive Sea, as well as others advected to the south of India. Visual inspection of the raw CZCS scenes for June through November 1982{1985, with almost no data until August or even September, shows such outbreaks of pigment-rich water to be common. Inspection of monthly SeaWiFS images for 1997 through part of 2001 confirms the absence of indigenous phytoplankton blooms. 1. Introduction cipitation, and is subject to seasonal reversal of surface currents.
    [Show full text]
  • Drainage System
    CHAPTER DRAINAGE SYSTEM ou have observed water flowing through 2006) in this class . Can you, then, explain the the rivers, nalas and even channels reason for water flowing from one direction to Yduring rainy season which drain the the other? Why do the rivers originating from the excess water. Had these channels not been Himalayas in the northern India and the Western there, large-scale flooding would have Ghat in the southern India flow towards the east occurred. Wherever channels are ill-defined or and discharge their waters in the Bay of Bengal? choked, flooding is a common phenomenon. The flow of water through well-defined channels is known as ‘drainage’ and the network of such channels is called a ‘drainage system’. The drainage pattern of an area is the outcome of the geological time period, nature and structure of rocks, topography, slope, amount of water flowing and the periodicity of the flow. Do you have a river near your village or city? Have you ever been there for boating or bathing? Figure 3.1 : A River in the Mountainous Region Is it perennial (always with water) or ephemeral (water during rainy season, and dry, otherwise)? A river drains the water collected from a Do you know that rivers flow in the same specific area, which is called its ‘catchment area’. direction? You have studied about slopes in the An area drained by a river and its tributaries other two textbooks of geography (NCERT, is called a drainage basin. The boundary line Important Drainage Patterns (i) The drainage pattern resembling the branches of a tree is known as “dendritic” the examples of which are the rivers of northern plain.
    [Show full text]
  • Southeast Asia.Pdf
    Standards SS7G9 The student will locate selected features in Southern and Eastern Asia. a. Locate on a world and regional political-physical map: Ganges River, Huang He (Yellow River), Indus River, Mekong River, Yangtze (Chang Jiang) River, Bay of Bengal, Indian Ocean, Sea of Japan, South China Sea, Yellow Sea, Gobi Desert, Taklimakan Desert, Himalayan Mountains, and Korean Peninsula. b. Locate on a world and regional political-physical map the countries of China, India, Indonesia, Japan, North Korea, South Korea, and Vietnam. Directions: Label the following countries on the political map of Asia. • China • North Korea • India • South Korea • Indonesia • Vietnam • Japan Directions: I. Draw and label the physical features listed below on the map of Asia. • Ganges River • Mekong River • Huang He (Yellow River) • Yangtze River • Indus River • Himalayan Mountains • Taklimakan Desert • Gobi Desert II. Label the following physical features on the map of Asia. • Bay of Bengal • Yellow Sea • Color the rivers DARK BLUE. • Color all other bodies of water LIGHT • Indian Ocean BLUE (or TEAL). • Sea of Japan • Color the deserts BROWN. • Korean Peninsula • Draw triangles for mountains and color • South China Sea them GREEN. • Color the peninsula RED. Directions: I. Draw and label the physical features listed below on the map of Asia. • Ganges River • Mekong River • Huang He (Yellow River) • Yangtze River • Indus River • Himalayan Mountains • Taklimakan Desert • Gobi Desert II. Label the following physical features on the map of Asia. • Bay of Bengal • Yellow Sea • Indian Ocean • Sea of Japan • Korean Peninsula • South China Sea • The Ganges River starts in the Himalayas and flows southeast through India and Bangladesh for more than 1,500 miles to the Indian Ocean.
    [Show full text]
  • CMFRI Bulletin 43
    CMFRI bulletin 43 APRIL 1989 MARINE LIVING RESOURCES OF THE UNION TERRITORY OF LAKSHADWEEP- An Indicative Survey With Suggestions For Development CENTRAL MARINE FISHERIES RESEARCH INSTITUTE (Indian Council of Agricultural Research) P, B. No. 2704, E. R. G. Road, Cochin-682 031, India Bulletins are issued periodically by Central Marine Fisheries Research Institute to interpret current knowledge in the various fields of research on marine fisheries and allied subjects in India Copyright Reserved © Published by P. S. B. R. JAMES Director Central Marine Fisheries Research Institute Cochin 682031, India Edited by C. SUSEELAN Scientist Central Marine Fisheries Research Institute Cochin 682031, India Limited Circulation 2. HISTORY OF MARINE RESEARCH IN LAKSHADWEEP p. S. B. R. James INTRODUCTION some environmental parameters. With the reali­ sation of the importance and scope for further The Lakshadweep consisting of a number development, attention is now being paid to of islands, islets and submerged reefs lie scattered take stock of the marine living resources by in the vast Arabian sea on the west coast of India. proper survey to assess and monitor these This geographic isolation has been a major resources to postulate management measures. impediment to maintain status quo with the progress and developmental activities on the The present review is to document all mainland. Of recent, the stress has been to available information on marine research in achieve a conduce growth of the economy of the Lakshadweep. The paper highlights essential islanders so as to improve their standard of aspects concerning the marine biological, living. Besides agriculture the traditional source fisheries and oceanographic research carried out of livelihood of the islanders is fishing which in Lakshadweep.
    [Show full text]
  • 7.1 Introduction Our Study of Islam Begins with the Arabian Peninsula
    Name and Date: _________________________ Text: HISTORY ALIVE! The Medieval World 7.1 Introduction Our study of Islam begins with the Arabian Peninsula, where Islam was first preached. The founder of Islam, Muhammad, was born on the peninsula in about 570 C.E. In this chapter, you’ll learn about the peninsula’s geography and the ways of life of its people in the sixth century. The Arabian Peninsula is in southwest Asia, between the Red Sea and the Persian Gulf. It is often called Arabia. Along with North Africa, the eastern Mediterranean shore, and present day Turkey, Iraq, and Iran, it is part of the modern Middle East. Most of the people living in Arabia in the sixth century were Arabs. Some Arabs call their home al-Jazeera, or “the Island.” But it is surrounded by water on only three sides. The Persian Gulf lies to the east, the Red Sea to the west, and the Indian Ocean to the south. To the north are lands bordering the Mediterranean Sea. These lands serve as a land bridge between Africa, Asia, and Europe. Imagine that you are flying over the Arabian Peninsula. As you look down, you see vast deserts dotted by oases. Coastal plains line the southern and western coasts. Mountain ranges divide these coastal plains from the desert. The hot, dry Arabian Peninsula is a challenging place to live. In this chapter, you will study the geography of Arabia and its different environments. You’ll see how people made adaptations in order to thrive there. 7.2 The Importance of the Arabian Peninsula and Surrounding Lands Arabia lies at the crossroads of Asia, Africa, and Europe.
    [Show full text]
  • Tectonic and Climatic Evolution of the Arabian Sea Region: an Introduction
    Downloaded from http://sp.lyellcollection.org/ by guest on October 2, 2021 Tectonic and climatic evolution of the Arabian Sea region: an introduction PETER D. CLIFT 1, DICK KROON 2, CHRISTOPH GAEDICKE 3 & JONATHAN CRAIG 4 1 Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA (e-mail: [email protected]) 2Institute of Earth Sciences, Free University Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands 3Bundesanstalt fiir Geowissenschafien und Rohstoffe (BGR), Stilleweg 2, D-30655 Hannover, Germany 4Lasmo plc, 101 Bishops Gate, London EC2M 3XH, UK The evolution of the global oceanic and atmo- The Arabian Sea is the natural laboratory to spheric circulation systems has been affected by study the interaction between orogenic growth and several forcing processes, with orbital variations regional climate change. Ocean Drilling Program being dominant on shorter geological time scales. (ODP) sampling of pelagic sediments on the Over longer periods of time (> 10 Ma) the tectonic Oman margin has revealed a detailed history of evolution of the solid Earth has been recognized monsoonal variability (Kroon et al. 1991; Prell et as the major control on the development of the al. 1992), most notably an intensification of the global climate system. Tectonic activity acts in monsoon at 8.5 Ma, as traced by the abundance of one of two different ways to influence regional Globigerina bulloides and other eutrophic species, and global climate. The earliest solid Earth- foraminifers associated with monsoon-induced climatic interaction recognized was the effect that coastal upwelling in the modern Arabian Sea. the opening and closure of oceanic gateways had Initially this result appeared to correlate well with on the circulation patterns in the global ocean.
    [Show full text]
  • Maritime Security in the Middle East and North Africa: a Strategic Assessment
    MARITIME SECURITY IN THE MIDDLE EAST AND NORTH AFRICA: A STRATEGIC ASSESSMENT By Robert M. Shelala II Research Analyst, Burke Chair in Strategy Anthony H. Cordesman Arleigh A. Burke Chair in Strategy [email protected] Table of Contents Executive Summary ........................................................................................................................ 3 Chapter I – A Brief Introduction to Maritime Security .................................................................. 4 Chapter II – The Suez Canal and the Growing Threat of Egyptian Terrorism ............................... 6 Background on the Canal ............................................................................................................ 6 The Threat of Terrorism .............................................................................................................. 8 Egyptian Maritime Security Capabilities .................................................................................. 13 Recommendations for Securing the Suez Canal ....................................................................... 17 Chapter III – The Gulf and Threats From Iran ............................................................................. 20 A Brief Introduction to the Gulf ................................................................................................ 20 Regional Tensions and Iranian Threats to Gulf Security .......................................................... 22 Escalation Drivers in Iranian Strategic Calculus......................................................................
    [Show full text]