Creating a Compiler Optimized Inlineable Implementation of Intel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Elementary Functions: Towards Automatically Generated, Efficient
Elementary functions : towards automatically generated, efficient, and vectorizable implementations Hugues De Lassus Saint-Genies To cite this version: Hugues De Lassus Saint-Genies. Elementary functions : towards automatically generated, efficient, and vectorizable implementations. Other [cs.OH]. Université de Perpignan, 2018. English. NNT : 2018PERP0010. tel-01841424 HAL Id: tel-01841424 https://tel.archives-ouvertes.fr/tel-01841424 Submitted on 17 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Délivré par l’Université de Perpignan Via Domitia Préparée au sein de l’école doctorale 305 – Énergie et Environnement Et de l’unité de recherche DALI – LIRMM – CNRS UMR 5506 Spécialité: Informatique Présentée par Hugues de Lassus Saint-Geniès [email protected] Elementary functions: towards automatically generated, efficient, and vectorizable implementations Version soumise aux rapporteurs. Jury composé de : M. Florent de Dinechin Pr. INSA Lyon Rapporteur Mme Fabienne Jézéquel MC, HDR UParis 2 Rapporteur M. Marc Daumas Pr. UPVD Examinateur M. Lionel Lacassagne Pr. UParis 6 Examinateur M. Daniel Menard Pr. INSA Rennes Examinateur M. Éric Petit Ph.D. Intel Examinateur M. David Defour MC, HDR UPVD Directeur M. Guillaume Revy MC UPVD Codirecteur À la mémoire de ma grand-mère Françoise Lapergue et de Jos Perrot, marin-pêcheur bigouden. -
Andre Heidekrueger
AMD Heterogenous Computing X86 in development AMD new CPU and Accelerator Designs Building blocks for Heterogenous computing with the GPU Accelerators and the Latest x86 Platform Innovations 1 | Hot Chips | August, 2010 Server Industry Trends China has Seismic The performance of the 265m datasets online gamers fastest supercomputer typically exceed a terabyte grew 500x in the last decade The top 8 systems Accelerator-based on the Green 500 list use accelerators 800 servers on the Green 500 images list are 3x as energy are uploaded to Facebook efficient as those without every second 2 | Hot Chips | August,accelerators 2010 2 Top500.org Performance Projections: Can the Current Trajectory Achieve Exascale? 1 EFlops Might get there on current trajectory, but… • Too late for major government programs leading to 2018 • System power in traditional x86 architecture would be unmanageable Source for chart: Top500.org; annotations by AMD 3 | Hot Chips | August, 2010 Three Eras of Processor Performance Multi-Core Heterogeneous Single-Core Systems Era Era Era Enabled by: Enabled by: Enabled by: Moore’s Law Moore’s Law Moore’s Law Voltage Scaling Desire for Throughput Abundant data parallelism Micro-Architecture 20 years of SMP arch Power efficient GPUs Constrained by: Constrained by: Temporarily constrained by: Power Power Programming models Complexity Parallel SW availability Communication overheads Scalability o o ? we are we are here o here we are Performance here thread Performance - Time Time Application Targeted Time Throughput Throughput Performance (# of Processors) (Data-parallel exploitation) Single 4 | Driving HPC Performance Efficiency Fusion Architecture The Benefits of Heterogeneous Computing x86 CPU owns GPU Optimized for the Software World Modern Workloads . -
Operating Systems and Applications for Embedded Systems >>> Toolchains
>>> Operating Systems And Applications For Embedded Systems >>> Toolchains Name: Mariusz Naumowicz Date: 31 sierpnia 2018 [~]$ _ [1/19] >>> Plan 1. Toolchain Toolchain Main component of GNU toolchain C library Finding a toolchain 2. crosstool-NG crosstool-NG Installing Anatomy of a toolchain Information about cross-compiler Configruation Most interesting features Sysroot Other tools POSIX functions AP [~]$ _ [2/19] >>> Toolchain A toolchain is the set of tools that compiles source code into executables that can run on your target device, and includes a compiler, a linker, and run-time libraries. [1. Toolchain]$ _ [3/19] >>> Main component of GNU toolchain * Binutils: A set of binary utilities including the assembler, and the linker, ld. It is available at http://www.gnu.org/software/binutils/. * GNU Compiler Collection (GCC): These are the compilers for C and other languages which, depending on the version of GCC, include C++, Objective-C, Objective-C++, Java, Fortran, Ada, and Go. They all use a common back-end which produces assembler code which is fed to the GNU assembler. It is available at http://gcc.gnu.org/. * C library: A standardized API based on the POSIX specification which is the principle interface to the operating system kernel from applications. There are several C libraries to consider, see the following section. [1. Toolchain]$ _ [4/19] >>> C library * glibc: Available at http://www.gnu.org/software/libc. It is the standard GNU C library. It is big and, until recently, not very configurable, but it is the most complete implementation of the POSIX API. * eglibc: Available at http://www.eglibc.org/home. -
Hierarchical Roofline Analysis for Gpus: Accelerating Performance
Hierarchical Roofline Analysis for GPUs: Accelerating Performance Optimization for the NERSC-9 Perlmutter System Charlene Yang, Thorsten Kurth Samuel Williams National Energy Research Scientific Computing Center Computational Research Division Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA Berkeley, CA 94720, USA fcjyang, [email protected] [email protected] Abstract—The Roofline performance model provides an Performance (GFLOP/s) is bound by: intuitive and insightful approach to identifying performance bottlenecks and guiding performance optimization. In prepa- Peak GFLOP/s GFLOP/s ≤ min (1) ration for the next-generation supercomputer Perlmutter at Peak GB/s × Arithmetic Intensity NERSC, this paper presents a methodology to construct a hi- erarchical Roofline on NVIDIA GPUs and extend it to support which produces the traditional Roofline formulation when reduced precision and Tensor Cores. The hierarchical Roofline incorporates L1, L2, device memory and system memory plotted on a log-log plot. bandwidths into one single figure, and it offers more profound Previously, the Roofline model was expanded to support insights into performance analysis than the traditional DRAM- the full memory hierarchy [2], [3] by adding additional band- only Roofline. We use our Roofline methodology to analyze width “ceilings”. Similarly, additional ceilings beneath the three proxy applications: GPP from BerkeleyGW, HPGMG Roofline can be added to represent performance bottlenecks from AMReX, and conv2d from TensorFlow. In so doing, we demonstrate the ability of our methodology to readily arising from lack of vectorization or the failure to exploit understand various aspects of performance and performance fused multiply-add (FMA) instructions. bottlenecks on NVIDIA GPUs and motivate code optimizations. -
Author Guidelines for 8
ACCELERATED CODE GENERATOR FOR PROCESSING OCEAN COLOR REMOTE SENSING DATA ON GPU Jae-Moo Heo1, Gangwon Jo2, Hee-Jeong Han1, Hyun Yang 1 1Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology, Pusan, South Korea 2Seoul National University and ManyCoreSoft Co., Ltd., Seoul, South Korea ABSTRACT GOCI-II ground system in July 2017 and decided to process As the satellite data gradually increases, the processing time algorithms on the Graphics Processing Unit (GPU) in order of the algorithm for remote sensing also increases. It is now to process large amounts of data. essential to make efforts to improve the processing Nowadays, we can take advantage of computation devices performance in various accelerators such as Graphics of various architectures: Many Integrated Core (i.e., Intel Processing Unit (GPU). However, it is very difficult to use Xeon Phi), GPU, and Filed Programmable Gate Array programming models that make programs to run on (FPGA). These accelerators are constantly improving and accelerators. Especially for scientists, easy programming changing. And, parallel programming models that are and performance are often more important than providing compatible with these various accelerators are being many optimization functions and directives. To meet these developed at the same time. However, algorithm source requirements, we developed the accelerated code generator codes have been generally improved for several years or based on Open Computing Language (OpenCL) for several decades and it is not easy to develop a large amount processing ocean color remote sensing data. We easily of these source codes into the existing parallel programming applied our generator to atmospheric correction program for models. -
Theoretical Peak FLOPS Per Instruction Set on Modern Intel Cpus
Theoretical Peak FLOPS per instruction set on modern Intel CPUs Romain Dolbeau Bull – Center for Excellence in Parallel Programming Email: [email protected] Abstract—It used to be that evaluating the theoretical and potentially multiple threads per core. Vector of peak performance of a CPU in FLOPS (floating point varying sizes. And more sophisticated instructions. operations per seconds) was merely a matter of multiplying Equation2 describes a more realistic view, that we the frequency by the number of floating-point instructions will explain in details in the rest of the paper, first per cycles. Today however, CPUs have features such as vectorization, fused multiply-add, hyper-threading or in general in sectionII and then for the specific “turbo” mode. In this paper, we look into this theoretical cases of Intel CPUs: first a simple one from the peak for recent full-featured Intel CPUs., taking into Nehalem/Westmere era in section III and then the account not only the simple absolute peak, but also the full complexity of the Haswell family in sectionIV. relevant instruction sets and encoding and the frequency A complement to this paper titled “Theoretical Peak scaling behavior of current Intel CPUs. FLOPS per instruction set on less conventional Revision 1.41, 2016/10/04 08:49:16 Index Terms—FLOPS hardware” [1] covers other computing devices. flop 9 I. INTRODUCTION > operation> High performance computing thrives on fast com- > > putations and high memory bandwidth. But before > operations => any code or even benchmark is run, the very first × micro − architecture instruction number to evaluate a system is the theoretical peak > > - how many floating-point operations the system > can theoretically execute in a given time. -
N2429 V 1 Function Failure Annotation
ISO/IEC JTC 1/SC 22/WG14 N2429 September 23, 2019 v 1 Function failure annotation Niall Douglas Jens Gustedt ned Productions Ltd, Ireland INRIA & ICube, Université de Strasbourg, France We have been seeing an evolution in proposals for the best syntax for describing how to mark how a function fails, such that compilers and linkers can much better optimise function calls than at present. These papers were spurred by [WG21 P0709] Zero-overhead deterministic exceptions, which proposes deterministic exception handling for C++, whose implementation could be very compatible with C code. P0709 resulted in [WG21 P1095] Zero overhead deterministic failure – A unified mecha- nism for C and C++ which proposed a C syntax and exception-like mechanism for supporting C++ deterministic exceptions. That was responded to by [WG14 N2361] Out-of-band bit for exceptional return and errno replacement which proposed an even wider reform, whereby the most popular idioms for function failure in C code would each gain direct calling convention support in the compiler. This paper synthesises all of the proposals above into common proposal, and does not duplicate some of the detail in the above papers for brevity and clarity. It hews closely to what [WG14 N2361] proposes, but with different syntax, and in addition it shows how the corresponding C++ features can be constructed on top of it, without loosing call compatibility with C. Contents 1 Introduction 2 1.1 Differences between WG14 N2361 and WG21 P1095 . .3 2 Proposed Design 4 2.1 errno-related function failure editions . .5 2.2 When to choose which edition . -
Arm C/C++ Compiler Developer and Reference Guide Document ID: 101458 21.1 01 En Version 21.1
Arm C/C++ Compiler Version 21.1 Developer and Reference Guide Non-Confidential Issue 01 Copyright © 2018–2021 Arm Limited (or its affiliates). 101458_21.1_01_en All rights reserved. Arm C/C++ Compiler Developer and Reference Guide Document ID: 101458_21.1_01_en Version 21.1 Arm C/C++ Compiler Developer and Reference Guide Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved. Release information Document history Issue Date Confidentiality Change 1900-00 2 November 2018 Non-Confidential Document release for Arm C/C++ Compiler version 19.0 1910-00 8 March 2019 Non-Confidential Update for Arm C/C++ Compiler version 19.1 1920-00 7 June 2019 Non-Confidential Update for Arm C/C++ Compiler version 19.2 1930-00 30 August 2019 Non-Confidential Update for Arm C/C++ Compiler version 19.3 2000-00 29 November 2019 Non-Confidential Update for Arm C/C++ Compiler version 20.0 2010-00 23 April 2020 Non-Confidential Update for Arm C/C++ Compiler version 20.1 2010-01 23 April 2020 Non-Confidential Documentation update 1 for Arm C/C++ Compiler version 20.1 2020-00 25 June 2020 Non-Confidential Update for Arm C/C++ Compiler version 20.2 2030-00 4 September 2020 Non-Confidential Update for Arm C/C++ Compiler version 20.3 2030-01 16 October 2020 Non-Confidential Documentation update 1 for Arm C/C++ Compiler version 20.3 2100-00 30 March 2021 Non-Confidential Update for Arm C/C++ Compiler version 21.0 2110-00 24 August 2021 Non-Confidential Update for Arm C/C++ Compiler version 21.1 2110-01 26 August 2021 Non-Confidential Documentation update 1 for Arm C/C++ Compiler version 21.1 Proprietary Notice This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. -
Introduction to Intel Scalable Architectures
Introduction to Intel scalable architectures Fabio Affinito (SCAI - Cineca) Available options... Right here, right now… two kind of solutions are available on the market: ● IBM+ nVIDIA (Coral-like) ● Intel-based (Xeon/Xeon Phi) IBM+NVIDIA Each node will be based on a Power CPU + 4/6/8 nVIDIA TESLA GPUs connected using an nVIDIA NVlink interconnect Intel Xeon and Xeon Phi Intel will keep on with the production of server processors on the Xeon line, together with the introduction of the Xeon Phi many-core chips Intel Xeon Phi will not be a co-processor anymore, but a self-standing CPU with a very high number of cores Such systems are integrated by several vendors in many different configurations (Cray, HP, Lenovo, E4..) MARCONI FERMI, the IBM BlueGene/Q deployed in Cineca ended its lifecycle in 2016 We needed a new HPC machine that could - increase the computational power - respect the agreements with PRACE - satisfy the needs of the italian computing community MARCONI MARCONI NeXtScale architecture nx360M5 nodes: Supporting Intel HSW & BDW Able to host both IB network Mellanox EDR & Intel Omni-Path Twelve nodes are grouped into a Chassis (6 chassis per rack) The compute node is made of: 2 x Intel Broadwell (Xeon processor E5-2697 v4) 18 cores, 2,3 HGz 8 x 16GB DIMM memory (RAM DDR4 2400 MHz), 128 GB total 1 x 129 GB SATA MLC S3500 Enterprise Value SSD Further details 1 x link OPA 100GBs 2*18*2,3*16 = 1.325 GFs peak 24 rack in total: 21 rack compute 1 rack service nodes 2 racks core switch MARCONI - Network MARCONI - Network MARCONI - Storage -
Intel® Architecture Instruction Set Extensions and Future Features
Intel® Architecture Instruction Set Extensions and Future Features Programming Reference May 2021 319433-044 Intel technologies may require enabled hardware, software or service activation. No product or component can be absolutely secure. Your costs and results may vary. You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. All product plans and roadmaps are subject to change without notice. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. Code names are used by Intel to identify products, technologies, or services that are in development and not publicly available. These are not “commercial” names and not intended to function as trademarks. Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be ob- tained by calling 1-800-548-4725, or by visiting http://www.intel.com/design/literature.htm. Copyright © 2021, Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. -
Cab Programming Manual
Product Marking 1 1 A+ series Mach 4 PX Print Module XD4 Programming Manual J-Script and abc for cab printers Edition 7.0 cab Produkttechnik GmbH & Co KG 1 2 2 JScript - the programming language for cab printers. The usage of all described functions in this manual requires firmware version 3.17 or higher. This is a generic manual which describes the commands for different printer models,which means that it may contain descriptions or explanations of features which are not available on every printer model. cab Produkttechnik GmbH & Co KG 2 3 3 cab Programming Manual valid for following printer types: A+ -Series TM XD4 -Series TM Mach 4 TM PX -Print Module TM and all printing systems based on the cab „X2“ board copyright © cab Produkttechnik GmbH & Co KG all rights reserved No parts of this manual may be copied, rewritten or used for anything else than for original cab printers. This interdicts the usage of the manual for OEM products unless you have a written permission. The cab printers command language is owned and copyrighted by cab Produkttechnik GmbH & Co KG cab Produkttechnik GmbH & Co KG Wilhelm Schickard Str. 14 76131 Karlsruhe / Germany Tel: +49 - 721-6626-0 Fax:+49 - 721-6626-239 Email: [email protected] http://www.cabgmbh.com All registered trademarks or product names are trademarks of their respectives companies SwissTM is registered Trademark of Bitstream Inc. cab Produkttechnik GmbH & Co KG 3 4 4 Table of contents copyright © cab Produkttechnik GmbH & Co KG.................................................................................. -
Intel(R) Advanced Vector Extensions Programming Reference
Intel® Advanced Vector Extensions Programming Reference 319433-011 JUNE 2011 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT- ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS. Intel may make changes to specifications and product descriptions at any time, without notice. Developers must not rely on the absence or characteristics of any features or instructions marked “re- served” or “undefined.” Improper use of reserved or undefined features or instructions may cause unpre- dictable behavior or failure in developer's software code when running on an Intel processor. Intel reserves these features or instructions for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from their unauthorized use. The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char- acterized errata are available on request. Hyper-Threading Technology requires a computer system with an Intel® processor supporting Hyper- Threading Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. For more information, see http://www.in- tel.com/technology/hyperthread/index.htm; including details on which processors support HT Technology.