Coal - Wikipedia Page 1 of 26
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chemical and Physical Structural Studies on Two Inertinite-Rich Lump
CHEMICAL AND PHYSICAL STRUCTURAL STUDIES ON TWO INERTINITE-RICH LUMP COALS. Nandi Malumbazo A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philoso- phy in the School of Chemical and Metallurgical Engineering at the University of the Witwatersrand. Johannesburg, 2011 DECLARATION I, Nandi Malumbazo, declare that the thesis entitled: “CHEMICAL AND PHYSICAL STRUCTURAL STUDIES ON TWO INER- TINITE-RICH LUMP COALS” is my own work and that all sources I have used or quoted have been indicated and ac- knowledged by means of references. Signature: ……………………………………………………………….. Date:………………………………………………………………………… Page i ABSTRACT ABSTRACT Two Highveld inertinite-rich lump coals were utilized as feed coal samples in order to study their physical, chemical structural and petrographic variations during heat treat- ment in a packed-bed reactor unit combustor. The two feed lump coals were selected as it is claimed that Coal B converts at a slower rate in a commercial coal conversion process when compared to Coal A. The reason for this requires detailed investigation. Chemical structural variations were determined by proximate and coal char CO2 reactiv- ity analysis. Physical structural variations were determined by FTIR, BET adsorption methods, XRD and 13C Solid state NMR analysis. Carbon particle type analysis was con- ducted to determine the petrographic constituents of the reactor generated samples, their maceral associations (microlithotype), and char morphology. This analysis was undertaken with the intention of tracking the carbon conversion and char formation and consumption behaviour of the two coal samples within the reactor. Proximate analysis revealed that Coal A released 10 % more of its volatile matter through the reactor compared to Coal B. -
Advanced Electrocatalysts for Low-Temperature Fuel Cells Francisco Javier Rodríguez-Varela Teko W
Advanced Electrocatalysts for Low-Temperature Fuel Cells Francisco Javier Rodríguez-Varela Teko W. Napporn Editors Advanced Electrocatalysts for Low-Temperature Fuel Cells Editors Francisco Javier Rodríguez-Varela Teko W. Napporn Cinvestav CNRS Ramos Arizpe, Coahuila, Mexico French National Center for Scientific Research Poitiers, France ISBN 978-3-319-99018-7 ISBN 978-3-319-99019-4 (eBook) https://doi.org/10.1007/978-3-319-99019-4 Library of Congress Control Number: 2018957465 © Springer International Publishing AG, part of Springer Nature 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. -
Technical and Scientific Half Year Progress Report
NMP-CT-2003-505567 BIOCELSOL Biotechnological Process for Manufacturing Cellulosic Products with Added Value Instrument: Specific Targeted Research Project (STREP) Thematic Priority: Nanotechnology and nanosciences, knowledge based multifunctional materials, new production processes and devices (NMP) FINAL REPORTS Part of D43, Public Publishable final activity report including publishable project results, and D29 Summary report of Interim progress reports (PU) Period covered: from 1.3.2004 to 28.2.2007 (project months 1–36) Start date of project: 1st March 2004 Duration: 36 months Project co-ordinator organisation name: Tamlink Ltd Project co-ordinator name: Sirkku Hoikkala Date of preparation: 12th April 2007 Revision: [ final version ] BIOCELSOL NMP2-CT-2003-505567 Publishable final activity report Introduction A novel biotechnology-based method for converting cellulose into fibres, films, casings, beads and sponges was studied and further developed during the Biocelsol project (1.3.2004 – 28.2.2007). In the method the dissolving grade pulp is modified to an alkali soluble form by treating it with enzymes. The treated pulp is thereafter dissolved and the cellulose solution regenerated into desired shapes. No hazardous and toxic carbon disulphide (CS2), which is used in the viscose method, is needed and thus no emissions to the air are liberated, contrary to the viscose process. The methodology used included the optimisation of 1) enzymatic action on cellulose, 2) dissolution technique of treated cellulose and 3) regeneration of alkaline cellulose solution. The research work was carried out in laboratory scale in five groups, which focused on the pulp treatments (WP1), dissolution of treated pulp (WP2), development of fibre spinning process (WP3), development of film and fibrous casings production processes (WP4) and development of beads and sponges production processes (WP5). -
L'uranium Des Charbons : Quelle Perspective De Réserve ?
URANIUM FROM COAL ASH: RESOURCE ASSESSMENT AND OUTLOOK ON PRODUCTION CAPACITIES Antoine Monnet, PhD candidate [email protected] CEA, DEN/DANS/I-tésé IAEA URAM, Vienna | 23-27 June 2014 | PAGE 1 CONTEXTUAL BACKGROUND Issues and challenges Milling process flow Key parameters COAL ASH: URANIUM RESOURCE ASSESSMENT RESOURCES AND From coal resources From coal-ash piles PRODUCTION CAPACITIES OUTLOOK ON RESERVES AND PRODUCTION Technical constraints Coal ash compared with other U productions Potential reserves Limits to production capacities CONTEXTUAL BACKGROUND Issues and challenges Milling process flow Key parameters COAL ASH: URANIUM RESOURCE ASSESSMENT RESOURCES AND From coal resources From coal-ash piles PRODUCTION CAPACITIES OUTLOOK ON RESERVES AND PRODUCTION Technical constraints Coal ash compared with other U productions Potential reserves Limits to production capacities MAIN ISSUES AND CHALLENGES Strategic challenges Long-term supply Small production when demand was high (Cold War) Significant supply source in case of new tensions on global supply? China Coal: world 1st producer (~50% of world production) Uranium: increasing imports and demand 2010: needs of 3900 tU vs. 1350tU in domestic production 2030: Demand 12300 to 16200 tU ! Typical mine lead time ~ 10 years Impacts on environmental and health hazards ? IAEA URAM Internation Symposium | 23-27 June 2014 | PAGE 4 KNOWN URANIUM+COAL DEPOSITS UDEPO Uranium Database (IAEA): well documented! Identified “lignite-coal” uranium deposits ~400 ktU (>400ppm) Lignite-coal category: only the most promising deposits UDEPO provides a good tool to follow rising projects in which uranium could be produced from coal either as a primary product or a co-product Prospective approach (long-term): also needs to assess the whole resource (even uranium as a potential by-product and potentially lower grades) UDEPO: not all the reported quantities are in the coal itself. -
Maceral Types and Quality of Coal in the Tuli Coalfield: a Case
applied sciences Article Maceral Types and Quality of Coal in the Tuli Coalfield: A Case Study of Coal in the Madzaringwe Formation in the Vele Colliery, Limpopo Province, South Africa Elelwani Denge * and Christopher Baiyegunhi Department of Geology and Mining, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa; [email protected] * Correspondence: [email protected] Featured Application: Authors are encouraged to provide a concise description of the specific application or a potential application of the work. This section is not mandatory. Abstract: The Madzaringwe Formation in the Vele colliery is one of the coal-bearing Late Palaeozoic units of the Karoo Supergroup, consisting of shale with thin coal seams and sandstones. Maceral group analysis was conducted on seven representative coal samples collected from three existing boreholes—OV125149, OV125156, and OV125160—in the Vele colliery to determine the coal rank and other intrinsic characteristics of the coal. The petrographic characterization revealed that vitrinite is the dominant maceral group in the coals, representing up to 81–92 vol.% (mmf) of the total sample. Collotellinite is the dominant vitrinite maceral, with a total count varying between 52.4 vol.% (mmf) and 74.9 vol.% (mmf), followed by corpogelinite, collodetrinite, tellinite, and pseudovitrinite with a Citation: Denge, E.; Baiyegunhi, C. count ranging between 0.8 and 19.4 vol.% (mmf), 1.5 and 17.5 vol.% (mmf), 0.8 and 6.5 vol.% (mmf) Maceral Types and Quality of Coal in the Tuli Coalfield: A Case Study of and 0.3 and 5.9 vol.% (mmf), respectively. The dominance of collotellinite gives a clear indication Coal in the Madzaringwe Formation that the coals are derived from the parenchymatous and woody tissues of roots, stems, and leaves. -
I~ Boreskov Institute of Catalysis Siberian Branch of Russian Academy of Sciences
I~ BORESKOV INSTITUTE OF CATALYSIS SIBERIAN BRANCH OF RUSSIAN ACADEMY OF SCIENCES ANNUAL REVIEW of Activities in Fundamental Areas 1999 BORESKOV INSTITUTE OF CATALYSIS SIBERIAN BRANCH OF RUSSIAN ACADEMY OF SCIENCES Novosibirsk Published by Boreskov Institute of Catalysis Pr. Akademika Lavrentieva, 5 Novosibirsk, 630090 Russia Phone: (007) 383 2 34 32 69 FAX: (007) 383 2 34 30 56 E-mail: [email protected] http: //www.catalysis.nsk.su © Boreskov Institute of Catalysis, 2000 2 Dear Colleagues, This is a real pleasure for me to present already the sixth issue of annual reviews of the Boreskov Institute of Catalysis in the main fields of its academic and R&D activities covering the year 1999. The Boreskov Institute of Catalysis is well known to experts in both academic and industrial catalysis not only in Russia and CIS, but also in many western and oriental countries. Since the sixties it has remained the largest chemical research institution in the Asian part of Russia having many deep and stable traditions and providing research in nearly all fields of catalysis. Its interests spread from the sophisticated purely academic research to the real applied problems, including commercial catalysts and catalytic technologies. During the last years according to numerous changes in Russia and its stepwise approach to the market economy, there were also some sufficient changes in the behavior and life of the Boreskov Institute of Catalysis. However, in spite of general instability in the country, the Institute could survive as a high quality specialized organization. Moreover, the intensity and quality of the research and engineering activity at the Institute became even higher. -
Challenges and Opportunities in Materials for Green Energy Production and Conversion
CONFERENCES VIRTUAL MEETING | 2021 15 - 17 June 2021 Challenges and opportunities in materials for green energy production and conversion LOCATION VIRTUAL MEETING CONVENORS Dr Edurne Serrano- Larrea FORMER LE STUDIUM RESEARCH FELLOW / ARD 2020 - LAVOISIER PROGRAMME Mineralogy and Petrology Department, UPV/ EHU - ES Dr Conchi Ania & Dr Encarnacion Raymundo-Piñero Extreme Conditions and Materials: High Temperature and Irradiation (CEMHTI) / CNRS - FR CONFERENCES VIRTUAL MEETING | 15-17 JUNE 2021 ABSTRACTS Challenges and opportunities in materials for green energy production and conversion CONVENORS Dr Edurne Serrano-Larrea FORMER LE STUDIUM RESEARCH FELLOW / LAVOISIER ARD 2020 PROGRAMME FROM: Mineralogy and Petrology Department, UPV/EHU - ES Dr Conchi Ania Extreme Conditions and Materials: High Temperature and Irradiation (CEMHTI) / CNRS - FR Dr Encarnacion Raymundo-Piñero Extreme Conditions and Materials: High Temperature and Irradiation (CEMHTI) / CNRS - FR ORGANIZING COMMITTEE Sophie Gabillet, General Secretary Dr Aurélien Montagu, Scientific Relations Manager Maurine Villiers, Communication & Events Manager LE STUDIUM Loire Valley Institute for Advanced Studies • Région Centre-Val de Loire • FR LE STUDIUM CONFERENCES Challenges and opportunities in materials for green energy production and conversion |15-17 June 2021 |3 EDITO Created in 1996 on the CNRS campus in Orleans La Source, LE STUDIUM has Development 2020 programmes initiated by the Centre-Val de Loire Regional evolved to become the multidisciplinary Loire Valley Institute for Advanced Council to support the smart specialisation strategy (S3) around 5 main axes: Studies (IAS), operating in the Centre-Val de Loire region of France. LE biopharmaceuticals, renewable energies, cosmetics, environmental metrology STUDIUM has its headquarters in the city centre of Orleans in a newly renovated and natural and cultural heritage. -
Pedro Arcelus Thesis
Heavy Oil Upgrading through Oxidative Cracking in Near-critical and Supercritical Water Pedro Manuel Arcelus Arrillaga Imperial College London Chemical Engineering Department Thesis submitted for the degree of Doctor of Philosophy (PhD) to Imperial College London Supervised by: Dr. Marcos Millan Agorio Prof. Klaus Hellgardt Declaration of Originality Declaration of Originality: The author declares that the contents of this work are the product of his original effort and that anything else has been appropriately referenced. Pedro Manuel Arcelus Arrillaga Copyright Declaration: The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. Abstract Abstract The gradual decline in conventional oil production combined with an increasing world energy demand has made the production and upgrading of heavy and extra heavy oil feedstocks crucial for the future of the global energy market. Properties of heavy oil such as high viscosity and high specific gravity as well as the high percentage of asphaltenes, heteroatoms and metals cause severe problems during extraction and refining processes. As a result, traditional upgrading technologies are not suitable as a standalone method to process these feedstocks. This makes necessary the development of alternative or complementary technologies to process heavy oil feedstocks in a more efficient and environmentally friendly way. -
Pl. Inv. CISOPC Lm 2015-2016 Eng
Field: Chemical Engineering valid beginning with Academic Year 2015-2016 Specialization: Chemistry and Engineering of Organic Substances, Petrochemistry and Carbochemistry, Language of instruction: Hungarian Curriculum valid beginning with Academic Year 20152016 III. NUMBER OF WEEKLY HOURS BABEBOLYAI UNIVERSITY OF CLUJNAPOCA Year of Study 1st Semester 2nd Semester FACULTY OF CHEMISTRY AND CHEMICAL ENGINEERING 1st Year 24 28 Field of study: CHEMICAL ENGINEERING 2nd Year 25 28 Specialization: CHEMISTRY AND ENGINEERING OF ORGANIC SUBSTANCES, 3rd Year 28 28+7.3 PETROCHEMISTRY AND CARBOCHEMISTRY 4th Year 25+4.9 27 Language of instruction: HUNGARIAN IV. GRADUATION DIPLOMA 1 8 July Name of qualification: ENGINEER Test 1: Fundamental and speciality knowledge assesment 10 credits Official length of the programme of study : 8 semesters (4 years) Test 2: Defense of the graduation thesis 10 credits Mode of study: FULL TIME I. REQUIREMENTS FOR THE GRADUATION DIPLOMA V. THE ELECTION OF ELECTIVE SUBJECTS 240 credits from which: 1st Sem: A subject will be chosen from the Elective package 1 st foreign language 211 credits for the compulsory subjects; 2nd Sem: A subject will be chosen from the Elective package 2nd foreign language 29 credits for elective subjects; 6th Sem: A subject will be chosen from the Elective package 3 rd. and: 7th Sem: A subject will be chosen from the Elective package 4th. 21 credits graduation examination 8th Sem: For 5th Elective A subject will be chosen from the other faculties of BabeBolyai University. According to Law 1/2011 of the National Education Law, article 238, paragraph (1) A subject will be chosen from the Elective package 6th. -
Table of Contents
Table of Contents Introduction ................................. xi Chemical Glossary ............................. xvii Chapter 1. From the Chemical Element to Solids......... 1 1.1.CarbononEarth........................... 1 1.2.Abriefhistoryofthechemistryofcarbon.......... 5 1.2.1.Thefirstdiscoveries:fire,heatandmetals........ 9 1.2.2.Exploitationofminedresources.............. 11 1.2.3. Uses of dispersed carbons .................. 13 1.3. Presentation of carbon solids................... 14 1.3.1.Comparisonofnaturalandartificialevolution..... 16 1.3.2. Production and development of carbonaceous products ................................. 17 1.4.Conclusionandperspectives................... 18 1.5.Bibliography............................. 19 Chapter 2. The Polymorphism of Carbon.............. 23 2.1. The carbon atom and its chemical bonds ........... 24 2.1.1. Chemical bonds and solid phases ............. 24 2.1.2.Carbonisotopes ........................ 26 2.2.Athermodynamicapproach................... 27 2.2.1. Some reminders about phenomenonological thermodynamics ............................ 27 vi Carbon Science and Technology 2.2.2. Diagram of equilibrium states of carbon......... 28 2.3. New molecular phases ...................... 30 2.4. Non-crystalline carbons ..................... 32 2.4.1. Principal processes ...................... 33 2.4.2.Evolutionandstructuralcharacterizations ....... 35 2.4.3. Homogeneous massive carbons .............. 40 2.4.4. Porous and dispersed carbons ............... 42 2.5.Fromsolidstomaterials.................... -
Scientific Program
Scientific Program of the Fifth International Conference CATALYSIS FOR RENEWABLE SOURCES: FUEL, ENERGY, CHEMICALS CRS-5 Agios Nikolaos, Crete, Greece, September 2-6, 2019 Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Aristotle University of Thessaloniki, Greece http://conf.nsc.ru/CRS5 Conference Co-Chairs Professor Konstantinos Triantafyllidis Professor Vadim Yakovlev Aristotle University of Thessaloniki Boreskov Institute of Catalysis SB RAS Greece Russia Conference Proceedings: Special Issue CATALYSIS TODAY ELSEVIER CATALYSIS FOR SUSTAINABLE ENERGY (de Gruyter Open access) International Scientific Committee Chair: Laureate of the Global Energy Prize, Professor Valentin Parmon, Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia Professor Donato Aranda, Federal University of Rio de Janeiro, Brazil Professor Anthony Bridgwater, Aston University, United Kingdom Professor Jean-Claude Charpentier, Nancy University, France Professor Raghunath Vitthal Chaudhari, University of Kansas, Lawrence, USA Professor David Chiaramonti, University of Florence, Italy Professor Erik Heeres, University of Groningen, The Netherlands Professor Sascha Kersten, University of Twente, The Netherlands Professor Ivan Kozhevnikov, University of Liverpool, United Kingdom Professor Can Li, Dalian Institute of Chemical Physics, CAS, China Professor Guy Marin, Ghent University, Belgium Professor Simoni Plentz Meneghetti, Federal University of Alagoas, Brazil Professor Claude Mirodatos, Institute of Researchers on Catalysis and Environment in Lyon, France Professor Dmitry Murzin, Ǻbo Akademi University, Turku, Finland Professor Parasuraman Selvam, Indian Institute of Technology, Madras, India Professor Sergei Varfolomeev, Emanuel Institute of Biochemical Physics RAS, Moscow, Russia Program Committee Co-Chairs: Dr. Eleni Heracleous Dr. Maria Alekseeva Chemical Process & Energy Resources Institute Boreskov Institute of Catalysis SB RAS Thessaloniki, Greece Novosibirsk, Russia Program Committee Dr. -
Annals of UPET
Annals of the University of Petro şani, Mining Engineering, 16 (2015) ISSN 1454-9174 ANNALS OF THE UNIVERSITY OF PETROSANI MINING ENGINEERING vol. 16 (XLIII) UNIVERSITAS PUBLISHING HOUSE Petro şani – ROMÂNIA, 2015 2 Annals of the University of Petro şani, Mining Engineering, 16 (2015) _______________________________________________________________ISSN 1454-9174 EDITOR OF PUBLICATION _____________________Prof.dr.eng, Ioan – Lucian BOLUNDU Ț_____________________ ADVISORY AND EDITORIAL BOARD OF MINING ENGINEERING ISSUES ADVISORY BOARD Prof. PhD. Eng. Roland MORARU University of Petro şani Prof. PhD. Eng. Andrei KORCEAK Moscow State Mining University Russia Prof. PhD. Eng. Lev Alexandrovich PUCHKOV Moscow State Mining University Russia Prof. PhD. Eng. Victor HARCENKO Moscow State Mining University Russia Prof. PhD. Eng. Vladimir LITVINENCO Moscow State Institute-Sankt Petersburg Russia Prof. PhD. Eng. Raimondo CICCU University of Cagliari - Italy Prof. PhD. Eng. Carsten DREBENSTEDT Technische Universitat Bergakademie Freiberg - Germany Assoc. Prof.PhD. Eng. Ventzislav IVANOV University of Mining and Geology – Sofia - Bulgaria Prof. PhD. Eng. Zacharis AGIOTANTIS Technical University of Crete - Greece Prof. PhD. Eng. Sukumar BANDOPADHYAY University of Alaska – Fairbanks, S.U.A Prof. PhD. Eng. Hani MITRI McGill University – Montreal, Canada Prof. PhD. Eng. Gheorghe MORARU Universitatea Tehnic ă a Moldovei – Chi şin ău, Moldova PhD.Eng. Raj SINGHAL Int. Journal of Mining, Reclamation and Environment - Canada Prof. PhD. Eng. I şik YILMAZ Cumhuriyet University – Istambul, Turcia Prof. PhD. Eng. Ingo VALMA Tallin University of Technology - Estonia EDITORIAL BOARD Editor-in-chief: Prof. PhD. Eng. Ilie ONICA University of Petro şani Associate Prof. PhD. Eng. Victor ARAD University of Petro şani editors: Assoc. Prof. PhD. Eng. Camelia B ĂDULESCU University of Petro şani Prof.