A Statistical Approach for Identifying Memory Leaks in Cloud Applications

Total Page:16

File Type:pdf, Size:1020Kb

A Statistical Approach for Identifying Memory Leaks in Cloud Applications A STATISTICAL APPROACH FOR IDENTIFYING MEMORY LEAKS IN CLOUD APPLICATIONS Vladimir Sorˇ and Satish Narayana Srirama Institute of Computer Science, University of Tartu, J. Liivi 2, Tartu, Estonia Keywords: Troubleshooting, JavaTM Virtual Machine, Byte code instrumentation, Cloud computing, Tools. Abstract: This position paper describes the attempt to automate the statistical approach for memory leak detection in JavaTM applications. Proposed system extends the basic statistical memory leak detection method with further intelligence to pinpoint the source of the memory leak in the source code. As the method adds only small overhead in runtime it is designed to be used in production systems and will help detecting memory leaks in production environments without constraint to the source of the leak. Architecture of the proposed approach is intended to use in cloud applications. 1 INTRODUCTION in production under very specific circumstances (of- ten hardly specifiable) can be very hard to find and fix Memory leaks can be a major problem in distributed in development and test environments. applications, depleting their performance, even if they This is the area we think we can improve by de- run on platforms with automatic memory manage- veloping the solution that uses efficient statistical al- ment like Java Virtual Machine. Finding memory gorithm to detect memory leaks in advance, imposes leaks is coveredby many researches and there are sev- low overhead in production system and would help eral tools and methodologies to find memory leaks. tracking down the source of the leak. The rest of the However, these tools are incorporated in profilers and paper is organized as follows. Section 2 address the are designed to use in the development phase. On one related work in detail. Section 3 describes the statisti- hand, this is perfectly justified, as memory leaks are cal method we propose along with preliminary analy- bugs in software and finding bugs is a work for devel- sis. Section 4 discusses how cloud computing benefits opers. For this to happen it is expected that such bugs from such a method. Section 6 concludes the paper are found in test environment, or at least they can be with future research directions. reproduced or simulated in test environment. On the other hand, configuration of the production environment (e.g. integrations with real systems), up- 2 RELATED WORK time of the system is much longer, and the usage pat- terns that real users generate are much more rich than Memory leaks have been studied in the industryand in teams of Q/A and analysts could think of. All this research community extensively and currently there means that in production could happen more untested are several approaches for finding memory leaks in situations that may result in memory leaks. And a Java applications. memory leak even in a modern JVM will inevitably First option is the offline memory dump analy- result in the need for a restart of the JVM. sis. Offline in this context means that the memory Use of clustering and cloud computing (Armbrust dump is taken and then analyzed outside of the run- et al., 2009) reduce the impact of such restarts for ning JVM. Memory dump can be either requested the end user, who may even not notice anything, from the live JVM (during this procedure JVM ex- but for operations this still is a problem. Moreover, ecution is stopped) or it can be generated automati- cloud computing and virtualization brings in addi- cally by the JVM when out of memory condition oc- tional uncertainty of not knowing the configuration of curs. There are several algorithms to analyze memory the physical hardware on which the application is ac- dumps to detect possible leaking objects. For exam- tually running. Thus, a memory leak that only occurs ple (Maxwell, 2010) shows usage of graph mining al- Šor V. and Narayana Srirama S.. 623 A STATISTICAL APPROACH FOR IDENTIFYING MEMORY LEAKS IN CLOUD APPLICATIONS. DOI: 10.5220/0003389906230628 In Proceedings of the 1st International Conference on Cloud Computing and Services Science (CLOSER-2011), pages 623-628 ISBN: 978-989-8425-52-2 Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.) CLOSER 2011 - International Conference on Cloud Computing and Services Science gorithms for this purpose. Eclipse Memory Analyzer ods for analyzing unnecessary references between ob- or MAT (The Eclipse Foundation, 2010) is an exam- jects: Cork, (Jump and McKinley, 2007) and stale ob- ple of productionquality heap dump analysis software jects: SWAT, (Chilimbi and Hauswirth, 2004). Cork which is freely available. However, such offline anal- implements statistical memory leak detection algo- ysis has several problems: heap dumps can be expen- rithm directly in the Virtual Machine by integrating sive to acquire in production environment (because the method in the garbage collector itself. Cork has generating a dump file requires freezing the applica- achieved significantly small performance penalty – tion) and heap dump files can be very big (up to sev- only 2% and good results in memory leak detection eral gigabytes, depending on the memory configura- (Jump and McKinley, 2007). The only problem is tion). Because of the file size it can be hard to run that this projectis implementedas a modulein the Re- analysis software on a regular development machine. search Virtual Machine (RVM) Jikes (The Jikes RVM Another drawback is the static nature of the memory Project, 2010), which makes it usable mostly in the dump – there is no information regarding the source research community, as the industry is not very keen of allocation of the objects, so finding the code re- anticipating the research VM. sponsible for memory leak is a separate task from just Biggest disadvantage of these methods is the need finding leaked objects. for qualified human operation to analyze gathered Another approach is to monitor certain collection data to find real place in the source code responsi- classes for unlimited growth. This approach relies ble for the memory leak. We think that this manual on bytecode instrumentation and one possible solu- decision and search process can also be automated. tion is described in (Xu and Rountev, 2008). This technique is also used in several Application Per- formance Monitoring (APM) suites. For example, 3 STATISTICAL APPROACH TO TM CA Wily IntroscopeR LeakHunter (CA Wily In- MEMORY LEAK DETECTION troscope, 2010) and AppDynamics (AppDynamics, 2010). Both APM suites add some intelligenceto ease Based on the review of related work we noted that finding the cause of the memory leak. Unfortunately there is still space for the automated end-to-end mem- there is no information about exact algorithms used in ory leak detection solution that would work on the them. Also, mentioned APM suites are targeted to the HotSpot or OpenJDK Java Virtual Machines, would Java Enterprise application and are not applicable for maximally assist the developer by pinpointing both example for desktop GUI applications. allocation and reference points of leaking objects and As alternative to direct bytecode instrumentation, would do that also in the distributed and cloud envi- aspect-oriented instrumentation may be used to find ronments with little performance penalty so it could the metrics needed for memory leak detection. Find- be usable in production systems. Similar idea about Leaks tool is using AspectJ pointcuts for this purpose memory leak detection with statistical method is de- to analyze references between objects and find out scribed in (Formanek and Sporar, 2006) as an ex- leaking objects together with the sites of allocation ample of application of dynamic Java byte code in- (Chen and Chen, 2007). In that paper only GUI ap- strumentation. However, so far it hasn’t been imple- plications were used for testing. mented end-to-endin any known profilers or scientific Profilers are often used in development for find- publications. ing memory leaks. Different profilers allow gathering There are several challenges for implementation different metrics that may help finding memory leaks. of this approach using standard tools: For example, profiler of the NetBeans IDE can obtain • Gathering the data with low overhead during run- object age which can then be used by human opera- time. As the number of objects during application tor to apply statistical method (Sedlacek, 2010). This is huge (for example, specJVM 2008 benchmark, data can be collected during object allocation profil- which we used to test performance impact, during ing. Major disadvantageof the profilersis the need for its 2 hour run created 877 958 317 objects). qualified and experienced operator who can find the actual leaking code. Inexperienced developer, given • Actually applying statistical method in real time the profiler, fact of the memory leak and reasonably to detect classes suspected to be leaking. big code base would be arguably successful in this • Apply dynamic byte code instrumentation to find process. spots of allocation and most importantly referenc- In addition to different instrumentation and byte ing objects (as actually objects referencing leak- code modification techniques there are several re- ing ones are sources of the leaks rather than those search projects applying different statistical meth- instantiating leaking objects). 624 A STATISTICAL APPROACH FOR IDENTIFYING MEMORY LEAKS IN CLOUD APPLICATIONS • Present findings in a user friendly way. space (Sun Microsystems Inc., 2003). So, as garbage The basis of the statistical method is the genera- collector has to keep track of object ages anyway to tional hypothesis or infant mortality of objects and it perform its work, the best place to collect the data is described in (Sun Microsystems Inc., 2003). Gen- for the statistical method would be the garbage col- erational hypothesis states that most of the objects lector itself. Unfortunately as of now it is not possible become unreachable very soon after creation, or in as there is no interface in OpenJDK or HotSpot vir- other words – they ”die” young.
Recommended publications
  • Ben Livshits 1 Basic Instrumentation
    Runtime monitoring CO444H Ben Livshits 1 Basic Instrumentation • Insert additional code into the program • This code is designed to record important events as they occur at runtime • Some examples • A particular function is being hit or a statement is being hit • This leads to function-level or line-level coverage • Each allocation to measure overall memory allocation 2 Levels of Instrumentation • Native code • Instrument machine code • Tools like LLVM are often used for rewriting • Bytecode • Common for languages such as Java and C# • A variety of tools are available for each bytecode format • JoeQ is in this category as well, although it’s a lot more general • Source code • Common for languages like JavaScript • Often the easiest option – parse the code and add more statements 3 Runtime Code Monitoring •Three major examples of monitoring • Purify/Valgrind • Detecting data races • Detecting memory leaks 4 5 Memory Error Detection Purify • C and C++ are not type-safe • The type system and the runtime fail to enforce type safety • What are some of the examples? • Possible to read and write outside of your intended data structures • Write beyond loop bounds • Or object bounds • Or overwrite the code pointer, etc. 6 Track Each Byte of Memory • Three states for every byte of tracker memory • Unallocated: cannot be read or written • Allocated but not initialized: cannot be read • Allocated and initialized: all operations are allowed 7 Instrumentation for Purify • Check the state of each byte at every access • Binary instrumentation: • Add
    [Show full text]
  • Memory Leak Or Dangling Pointer
    Modern C++ for Computer Vision and Image Processing Igor Bogoslavskyi Outline Using pointers Pointers are polymorphic Pointer “this” Using const with pointers Stack and Heap Memory leaks and dangling pointers Memory leak Dangling pointer RAII 2 Using pointers in real world Using pointers for classes Pointers can point to objects of custom classes: 1 std::vector<int> vector_int; 2 std::vector<int >* vec_ptr = &vector_int; 3 MyClass obj; 4 MyClass* obj_ptr = &obj; Call object functions from pointer with -> 1 MyClass obj; 2 obj.MyFunc(); 3 MyClass* obj_ptr = &obj; 4 obj_ptr->MyFunc(); obj->Func() (*obj).Func() ↔ 4 Pointers are polymorphic Pointers are just like references, but have additional useful properties: Can be reassigned Can point to ‘‘nothing’’ (nullptr) Can be stored in a vector or an array Use pointers for polymorphism 1 Derived derived; 2 Base* ptr = &derived; Example: for implementing strategy store a pointer to the strategy interface and initialize it with nullptr and check if it is set before calling its methods 5 1 #include <iostream > 2 #include <vector > 3 using std::cout; 4 struct AbstractShape { 5 virtual void Print() const = 0; 6 }; 7 struct Square : public AbstractShape { 8 void Print() const override { cout << "Square\n";} 9 }; 10 struct Triangle : public AbstractShape { 11 void Print() const override { cout << "Triangle\n";} 12 }; 13 int main() { 14 std::vector<AbstractShape*> shapes; 15 Square square; 16 Triangle triangle; 17 shapes.push_back(&square); 18 shapes.push_back(&triangle); 19 for (const auto* shape : shapes) { shape->Print(); } 20 return 0; 21 } 6 this pointer Every object of a class or a struct holds a pointer to itself This pointer is called this Allows the objects to: Return a reference to themselves: return *this; Create copies of themselves within a function Explicitly show that a member belongs to the current object: this->x(); 7 Using const with pointers Pointers can point to a const variable: 1 // Cannot change value , can reassign pointer.
    [Show full text]
  • Effective and Efficient Memory Protection Using Dynamic Tainting
    1 Effective and Efficient Memory Protection Using Dynamic Tainting Ioannis Doudalis, Student Member, IEEE, James Clause, Member, IEEE, Guru Venkataramani, Member, IEEE, Milos Prvulovic, Senior Member, IEEE, and Alessandro Orso, Member, IEEE, ! Abstract—Programs written in languages allowing direct access to pointer p or a pointer derived from p and 2) if the access memory through pointers often contain memory-related faults, which occurs during the interval when p is valid, (i.e. between the cause non-deterministic failures and security vulnerabilities. We present allocation and deallocation of m). All other accesses to m are a new dynamic tainting technique to detect illegal memory accesses. illegal memory accesses (IMAs), where a pointer is used to When memory is allocated, at runtime, we taint both the memory and the corresponding pointer using the same taint mark. Taint marks access memory outside the bounds of the memory area with are then propagated and checked every time a memory address m which it was originally associated, or outside the time period is accessed through a pointer p; if the associated taint marks differ, during which the pointer is valid. an illegal access is reported. To allow always-on checking using a IMAs are especially relevant for several reasons. First, they low-overhead, hardware-assisted implementation, we make several key are caused by typical programming errors, such as array-out- technical decisions. We use a configurable, low number of reusable taint of-bounds accesses and stale pointer dereferences, and are thus marks instead of a unique mark for each allocated area of memory, reducing the performance overhead without losing the ability to target widespread and common.
    [Show full text]
  • Tutorial on Debugging, Memory Leaks and Profiling
    High Performance Computing for Science and Engineering I Tutorial on debugging, memory leaks and profiling Michalis Chatzimanolakis Computational Science & Engineering Laboratory OUTLINE - Approaches to debug your code •Using assertions •Using a debugger •Memory sanitation •Using a profiler Assertions in C++ An assertion is a logical statement that will cause your code to abort execution, if it is false. Example: Assertions can affect performance, Assertions perform checks that make sure that as they are essentially ‘if’ statements. some conditions are met. However, it is good practice to add assertions in a code. A simple compilation flag can ignore all assertions, so it is generally a good idea to use them. It is useful to combine assertions with the std functions isinf and isnan They can also be used with screen output. Compiler warnings Compiler warnings are compilation flags that you can (should) add to your Makefiles. Enabling warnings makes the compiler check for several issues in your source file, such as: • Forgetting to initialize a variable • Not using a declared variable • Using a function before declaring it • Having screen/file output with incorrect format (for example, treating doubles as integers) Generally, you should add warnings and try to fix all of them, before proceeding with further debugging your code. Note that different compilers may produce different warnings. The most common compiler warning flags are listed below: -Wall : enables several construction/declaration warnings -Wextra : more warnings than Wall including warnings for unused variables -Werror: will treat all warnings as errors -Wpedantic: warnings related to the use of non standard C++ extensions Using a debugger What is a debugger? A debugger is a program.
    [Show full text]
  • Memory Vulnerability Diagnosis for Binary Program
    ITM Web of Conferences 7 03004 , (2016) DOI: 10.1051/itmconf/20160703004 ITA 2016 Memory Vulnerability Diagnosis for Binary Program Feng-Yi TANG, Chao FENG and Chao-Jing TANG College of Electronic Science and Engineering National University of Defense Technology Changsha, China Abstract. Vulnerability diagnosis is important for program security analysis. It is a further step to understand the vulnerability after it is detected, as well as a preparatory step for vulnerability repair or exploitation. This paper mainly analyses the inner theories of major memory vulnerabilities and the threats of them. And then suggests some methods to diagnose several types of memory vulnerabilities for the binary programs, which is a difficult task due to the lack of source code. The diagnosis methods target at buffer overflow, use after free (UAF) and format string vulnerabilities. We carried out some tests on the Linux platform to validate the effectiveness of the diagnosis methods. It is proved that the methods can judge the type of the vulnerability given a binary program. 1 Introduction (or both) the memory area. These headers can contain some information like size, used or not, and etc. Memory vulnerabilities are difficult to detect and diagnose Therefore, we can monitor the allocator so as to especially for those do not crash the program. Due to its determine the base address and the size of the allocation importance, vulnerability diagnosis problem has been areas. Then, check all STORE and LOAD accesses in intensively studied. Researchers have proposed different memory to see which one is outside the allocated area. techniques to diagnose memory vulnerabilities.
    [Show full text]
  • Using Cyclic Memory Allocation to Eliminate Memory Leaks
    Using Cyclic Memory Allocation to Eliminate Memory Leaks Huu Hai NGUYEN1 and Martin RINARD2 1Singapore-MIT Alliance, National University of Singapore 2CSAIL, Massachusetts Institute of Technology Abstract— We present and evaluate a new memory man- I. INTRODUCTION agement technique for eliminating memory leaks in programs with dynamic memory allocation. This technique observes the A program that uses explicit allocation and deallocation has execution of the program on a sequence of training inputs to a memory leak when it fails to free objects that it will no longer find m-bounded allocation sites, which have the property that at access in the future. A program that uses garbage collection any time during the execution of the program, the program only has a memory leak when it retains references to objects that accesses the last m objects allocated at that site. The technique it will no longer access in the future. Memory leaks are an then transforms the program to use cyclic memory allocation at that site: it preallocates a buffer containing m objects of the issue since they can cause the program to consume increasing type allocated at that site, with each allocation returning the amounts of memory as it runs. Eventually the program may next object in the buffer. At the end of the buffer the allocations exhaust the available memory and fail. Memory leaks may wrap back around to the first object. Cyclic allocation eliminates therefore be especially problematic for server programs that any memory leak at the allocation site — the total amount of must execute for long (and in principle unbounded) periods of memory required to hold all of the objects ever allocated at the site is simply m times the object size.
    [Show full text]
  • Jamaicavm 8.1 — User Manual
    JamaicaVM 8.1 — User Manual Java Technology for Critical Embedded Systems aicas GmbH 2 JamaicaVM 8.1 — User Manual: Java Technology for Critical Embedded Systems JamaicaVM 8.1, Release 1. Published May 31, 2017. c 2001–2017 aicas GmbH, Karlsruhe. All rights reserved. No licenses, expressed or implied, are granted with respect to any of the technology described in this publication. aicas GmbH retains all intellectual property rights associated with the technology described in this publication. This publication is intended to assist application developers to develop applications only for the Jamaica Virtual Machine. Every effort has been made to ensure that the information in this publication is accurate. aicas GmbH is not responsible for printing or clerical errors. Although the information herein is provided with good faith, the supplier gives neither warranty nor guarantee that the information is correct or that the results described are obtainable under end-user conditions. aicas GmbH phone +49 721 663 968-0 Emmy-Noether-Straße 9 fax +49 721 663 968-99 76131 Karlsruhe email [email protected] Germany web http://www.aicas.com aicas incorporated phone +1 203 359 5705 6 Landmark Square, Suite 400 Stamford CT 06901 email [email protected] USA web http://www.aicas.com aicas GmbH phone +33 1 4997 1762 9 Allee de l’Arche fax +33 1 4997 1700 92671 Paris La Defense email [email protected] France web http://www.aicas.com This product includes software developed by IAIK of Graz University of Technology. This software is based in part on the work of the Independent JPEG Group.
    [Show full text]
  • Efficient High Frequency Checkpointing for Recovery and Debugging Vogt, D
    VU Research Portal Efficient High Frequency Checkpointing for Recovery and Debugging Vogt, D. 2019 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Vogt, D. (2019). Efficient High Frequency Checkpointing for Recovery and Debugging. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 30. Sep. 2021 Efficient High Frequency Checkpointing for Recovery and Debugging Ph.D. Thesis Dirk Vogt Vrije Universiteit Amsterdam, 2019 This research was funded by the European Research Council under the ERC Advanced Grant 227874. Copyright © 2019 by Dirk Vogt ISBN 978-94-028-1388-3 Printed by Ipskamp Printing BV VRIJE UNIVERSITEIT Efficient High Frequency Checkpointing for Recovery and Debugging ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, op gezag van de rector magnificus prof.dr.
    [Show full text]
  • Xilinx XAPP1137 Linux Operating System Software Debugging
    Application Note: Embedded Processing Linux Operating System Software R Debugging Techniques with Xilinx Embedded Development Platforms XAPP1137 (v1.0) June 9, 2009 Author: Brian Hill Abstract This application note discusses Linux Operating System debugging techniques. Debugging boot issues, kernel panics, software and hardware debuggers, driver <-> application interaction, and various other tools are discussed. Included Included with this application note is one reference system built for the Xilinx ML507 Rev A Systems board. The reference system is available in the following ZIP file available at: https://secure.xilinx.com/webreg/clickthrough.do?cid=125262 Introduction This application note discusses Linux Operating System debugging techniques. Software applications and drivers are included to present debugging material. General Topics The application note discusses debugging Linux boot issues, and the use of various Linux debugging facilities such as strace. Included Software buggy_core The buggy_core application is used to demonstrate techniques for debugging application crashes. The use of gdb, gdbserver, and coredump analysis are discussed. buggy_memleak The buggy_memleak application allocates memory with malloc() and never frees it. This application is used to discuss memory leak detection and debugging techniques with the mtrace facility and the Linux /proc filesystem. buggy_drv A kernel driver ‘buggy_drv’ is provided as an example of debugging kernel bugs. buggy_allstrings The buggy_allstrings application operates with the buggy_drv driver. buggy_choosestring The buggy_choosestring application operates with the buggy_drv driver. Intended This application note is best suited to users who are comfortable configuring, building, and Audience booting Linux on a Xilinx embedded platform. © 2009 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc.
    [Show full text]
  • Cork: Dynamic Memory Leak Detection for Garbage-Collected Languages £
    Cork: Dynamic Memory Leak Detection for Garbage-Collected Languages £ Maria Jump and Kathryn S. McKinley Department of Computer Sciences, The University of Texas at Austin, Austin, Texas 78712, USA g fmjump,mckinley @cs.utexas.edu Abstract agement. For example, C and C++ memory-related errors include A memory leak in a garbage-collected program occurs when the (1) dangling pointers – dereferencing pointers to objects that the program inadvertently maintains references to objects that it no program previously freed, (2) lost pointers – losing all pointers to longer needs. Memory leaks cause systematic heap growth, de- objects that the program neglects to free, and (3) unnecessary ref- grading performance and resulting in program crashes after per- erences – keeping pointers to objects the program never uses again. haps days or weeks of execution. Prior approaches for detecting Garbage collection corrects the first two errors, but not the last. memory leaks rely on heap differencing or detailed object statis- Since garbage collection is conservative, it cannot detect or reclaim tics which store state proportional to the number of objects in the objects referred to by unnecessary references. Thus, a memory leak heap. These overheads preclude their use on the same processor for in a garbage-collected language occurs when a program maintains deployed long-running applications. references to objects that it no longer needs, preventing the garbage This paper introduces a dynamic heap-summarization technique collector from reclaiming space. In the best case, unnecessary ref- based on type that accurately identifies leaks, is space efficient erences degrade program performance by increasing memory re- (adding less than 1% to the heap), and is time efficient (adding 2.3% quirements and consequently collector workload.
    [Show full text]
  • Purify: Fast Detection of Memory Leaks and Access Errors
    Purify: Fast Detectionof Memory Leaksand AccessErrors ReedHastings and Bob Joyce Pure Sofware Inc. Abstract This paper describesPurifyru, a software testing and quality assuranceOol that detects memory leaks and accesserors. Purify inserts additional checking instructions directly into the object code produced by existing compilers. These instructions check every memory read and write performedby the program-under-testand detect severaltypes of accesserrors, such as reading uninitialized memory or witing to freed memory.Purify inserts checkinglogic into all of the code in a program,including third-party and vendor object-codelibraries, and verifiessystem call interfaces.In addition,Purify tracksmemory usage and identifies individual memory leals using a novel adaptation of garbage collectiontechniques. Purify producesstandard executable files compatiblewith existing debuggers,and currentlyruns on Sun Microsystems'SPARC family of workstations. Purify's neafly-comprehensivememory accesschecking slows the target program down typically by less than a facor of three and has resulted in significantly more reliable softwarefor severaldevelopment goups. L. Introduction A single memory accesserror, suchas readingfrom uninitialized memoryor writing to freed memory can causea progam to act unpredicAbly or evencrash. Yet, it is nearly impossibleto eliminateall sucherrors from a non-trivial progam For one thing, theseerors may produce observableeffects infrequently and intermittently. Even when p-gru.r are testedintensively for extendedperiods, errors can and do escapedetection. The uniquecombination of litco*stanos required for an error to occur andfor its symptomslo becomcvisible may be virtually impossibleto createin the developmentor test environment.As a result, proglammersspend much time looking for theseerrors, but end-usersmay experiencetlem first. [Miller90] empiricallyshows the continuingprevalence of accesserrors in manywidely-used Unix Programs.
    [Show full text]
  • Precise Memory Leak Detection for Java Software Using Container Profiling
    Precise Memory Leak Detection for Java Software Using Container Profiling 17 GUOQING XU, University of California, Irvine ATANAS ROUNTEV, Ohio State University A memory leak in a Java program occurs when object references that are no longer needed are unnecessarily maintained. Such leaks are difficult to detect because static analysis typically cannot precisely identify these redundant references, and existing dynamic leak detection tools track and report fine-grained information about individual objects, producing results that are usually hard to interpret and lack precision. In this article we introduce a novel container-based heap-tracking technique, based on the fact that many memory leaks in Java programs occur due to incorrect uses of containers, leading to containers that keep references to unused data entries. The novelty of the described work is twofold: (1) instead of tracking arbitrary objects and finding leaks by analyzing references to unused objects, the technique tracks only containers and directly identifies the source of the leak, and (2) the technique computes a confidence value for each container based on a combination of its memory consumption and its elements’ staleness (time since last retrieval), while previous approaches do not consider such combined metrics. Our experimental results show that the reports generated by the proposed technique can be very precise: for two bugs reported by Sun, a known bug in SPECjbb 2000, and an example bug from IBM developerWorks, the top containers in the reports include the containers that leak memory. Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification— Reliability; D.2.5 [Software Engineering]: Testing and Debugging—Debugging aids; F.3.2 [Logics and Meaning of Programs]: Semantics of Programming Languages—Program Analysis General Terms: Design, Algorithms, Performance Additional Key Words and Phrases: Memory leaks, container profiling, leaking confidence ACM Reference Format: Xu, G.
    [Show full text]