PI Material for CSE 30

Total Page:16

File Type:pdf, Size:1020Kb

PI Material for CSE 30 CSE 30: Computer Organization and Systems Programming Lecture 10: Dynamic memory allocation: A cautionary tale C struct Diba Mirza University of California, San Diego 1 Dynamic memory allocation void* realloc (void * p, size_t s); • Resize an existing block of memory pointed to by ‘p’ to a total size of ‘s’ bytes. • On failure: returns NULL on failure • Are the contents copied over to the new block? 2 Dynamic memory allocation void free(void * ptr); • Frees the heap block pointed to by p • What happens in the following code? int *p=malloc(8); free(p); free(p); 3 Dangling pointers and memory leaks – Dangling pointer: Pointer points to a memory location that no longer exists – Memory leaks (tardy free): Memory allocated by program is not freed. • The problem is particularly acute if memory allocated in heap can no longer be accessed Q: Which of the following functions returns a dangling pointer? int * f1(int num){ int *mem1 =(int *)malloc(num*sizeof(int)); return(mem1); } int * f2(int num){ int mem2[num]; return(mem2); } A. f1 B. f2 C. Both Which of the following is an example of a dangling pointer? A. void foo(int bytes) { B. int * foo(int bytes) { char *ch =(char *) malloc(bytes); int i=14; ch[0]=‘a’; . free (ch); return (&i); . } } main () { int *p = foo(10); C. char* foo(int bytes) { } char *ch =(char *) malloc(bytes); return (ch); D. A combination of the } above Memory Leak? int * createArray (int n) { int *ptr = malloc(n*sizeof(int)); return ptr; } We have a memory leak! Why? void main() { int *arr=createArray(5); } Memory Leak? int * createArray (int n) { int *ptr = malloc(size*sizeof(int)); //line 1 return ptr; } int * resizeArray (int *ptr, int n) Which of the following is true about the { given code? ptr = realloc(ptr, n*sizeof(int)); //line 2 A. There is a definite memory leak return ptr; B. There is a possible memory leak } C. There is no memory leak void main() { int *arr=createArray(5); //line 3 arr= resizeArray(arr, 10); //line 4 free(arr); } C structures : Overview • A struct is a data structure composed of simpler data types. –Like a class in Java/C++ but without methods or inheritance. struct point { int x; int y; } void PrintPoint(struct point p) { printf(“(%d,%d)”, p.x, p.y); } Pointers to structures • The C arrow operator (->) dereferences and extracts a structure field with a single operator. • The following are equivalent: struct point *p; printf(“x is %d\n”, (*p).x); printf(“x is %d\n”, p->x); Representation in memory struct p { int y; char x; }; struct p sp; sp y (4 bytes) x (1byte) 0x100 0x104 0x105.
Recommended publications
  • Ben Livshits 1 Basic Instrumentation
    Runtime monitoring CO444H Ben Livshits 1 Basic Instrumentation • Insert additional code into the program • This code is designed to record important events as they occur at runtime • Some examples • A particular function is being hit or a statement is being hit • This leads to function-level or line-level coverage • Each allocation to measure overall memory allocation 2 Levels of Instrumentation • Native code • Instrument machine code • Tools like LLVM are often used for rewriting • Bytecode • Common for languages such as Java and C# • A variety of tools are available for each bytecode format • JoeQ is in this category as well, although it’s a lot more general • Source code • Common for languages like JavaScript • Often the easiest option – parse the code and add more statements 3 Runtime Code Monitoring •Three major examples of monitoring • Purify/Valgrind • Detecting data races • Detecting memory leaks 4 5 Memory Error Detection Purify • C and C++ are not type-safe • The type system and the runtime fail to enforce type safety • What are some of the examples? • Possible to read and write outside of your intended data structures • Write beyond loop bounds • Or object bounds • Or overwrite the code pointer, etc. 6 Track Each Byte of Memory • Three states for every byte of tracker memory • Unallocated: cannot be read or written • Allocated but not initialized: cannot be read • Allocated and initialized: all operations are allowed 7 Instrumentation for Purify • Check the state of each byte at every access • Binary instrumentation: • Add
    [Show full text]
  • Memory Safety Without Garbage Collection for Embedded Applications
    Memory Safety Without Garbage Collection for Embedded Applications DINAKAR DHURJATI, SUMANT KOWSHIK, VIKRAM ADVE, and CHRIS LATTNER University of Illinois at Urbana-Champaign Traditional approaches to enforcing memory safety of programs rely heavily on run-time checks of memory accesses and on garbage collection, both of which are unattractive for embedded ap- plications. The goal of our work is to develop advanced compiler techniques for enforcing memory safety with minimal run-time overheads. In this paper, we describe a set of compiler techniques that, together with minor semantic restrictions on C programs and no new syntax, ensure memory safety and provide most of the error-detection capabilities of type-safe languages, without using garbage collection, and with no run-time software checks, (on systems with standard hardware support for memory management). The language permits arbitrary pointer-based data structures, explicit deallocation of dynamically allocated memory, and restricted array operations. One of the key results of this paper is a compiler technique that ensures that dereferencing dangling pointers to freed memory does not violate memory safety, without annotations, run-time checks, or garbage collection, and works for arbitrary type-safe C programs. Furthermore, we present a new inter- procedural analysis for static array bounds checking under certain assumptions. For a diverse set of embedded C programs, we show that we are able to ensure memory safety of pointer and dy- namic memory usage in all these programs with no run-time software checks (on systems with standard hardware memory protection), requiring only minor restructuring to conform to simple type restrictions. Static array bounds checking fails for roughly half the programs we study due to complex array references, and these are the only cases where explicit run-time software checks would be needed under our language and system assumptions.
    [Show full text]
  • Memory Leak Or Dangling Pointer
    Modern C++ for Computer Vision and Image Processing Igor Bogoslavskyi Outline Using pointers Pointers are polymorphic Pointer “this” Using const with pointers Stack and Heap Memory leaks and dangling pointers Memory leak Dangling pointer RAII 2 Using pointers in real world Using pointers for classes Pointers can point to objects of custom classes: 1 std::vector<int> vector_int; 2 std::vector<int >* vec_ptr = &vector_int; 3 MyClass obj; 4 MyClass* obj_ptr = &obj; Call object functions from pointer with -> 1 MyClass obj; 2 obj.MyFunc(); 3 MyClass* obj_ptr = &obj; 4 obj_ptr->MyFunc(); obj->Func() (*obj).Func() ↔ 4 Pointers are polymorphic Pointers are just like references, but have additional useful properties: Can be reassigned Can point to ‘‘nothing’’ (nullptr) Can be stored in a vector or an array Use pointers for polymorphism 1 Derived derived; 2 Base* ptr = &derived; Example: for implementing strategy store a pointer to the strategy interface and initialize it with nullptr and check if it is set before calling its methods 5 1 #include <iostream > 2 #include <vector > 3 using std::cout; 4 struct AbstractShape { 5 virtual void Print() const = 0; 6 }; 7 struct Square : public AbstractShape { 8 void Print() const override { cout << "Square\n";} 9 }; 10 struct Triangle : public AbstractShape { 11 void Print() const override { cout << "Triangle\n";} 12 }; 13 int main() { 14 std::vector<AbstractShape*> shapes; 15 Square square; 16 Triangle triangle; 17 shapes.push_back(&square); 18 shapes.push_back(&triangle); 19 for (const auto* shape : shapes) { shape->Print(); } 20 return 0; 21 } 6 this pointer Every object of a class or a struct holds a pointer to itself This pointer is called this Allows the objects to: Return a reference to themselves: return *this; Create copies of themselves within a function Explicitly show that a member belongs to the current object: this->x(); 7 Using const with pointers Pointers can point to a const variable: 1 // Cannot change value , can reassign pointer.
    [Show full text]
  • Effective and Efficient Memory Protection Using Dynamic Tainting
    1 Effective and Efficient Memory Protection Using Dynamic Tainting Ioannis Doudalis, Student Member, IEEE, James Clause, Member, IEEE, Guru Venkataramani, Member, IEEE, Milos Prvulovic, Senior Member, IEEE, and Alessandro Orso, Member, IEEE, ! Abstract—Programs written in languages allowing direct access to pointer p or a pointer derived from p and 2) if the access memory through pointers often contain memory-related faults, which occurs during the interval when p is valid, (i.e. between the cause non-deterministic failures and security vulnerabilities. We present allocation and deallocation of m). All other accesses to m are a new dynamic tainting technique to detect illegal memory accesses. illegal memory accesses (IMAs), where a pointer is used to When memory is allocated, at runtime, we taint both the memory and the corresponding pointer using the same taint mark. Taint marks access memory outside the bounds of the memory area with are then propagated and checked every time a memory address m which it was originally associated, or outside the time period is accessed through a pointer p; if the associated taint marks differ, during which the pointer is valid. an illegal access is reported. To allow always-on checking using a IMAs are especially relevant for several reasons. First, they low-overhead, hardware-assisted implementation, we make several key are caused by typical programming errors, such as array-out- technical decisions. We use a configurable, low number of reusable taint of-bounds accesses and stale pointer dereferences, and are thus marks instead of a unique mark for each allocated area of memory, reducing the performance overhead without losing the ability to target widespread and common.
    [Show full text]
  • Tutorial on Debugging, Memory Leaks and Profiling
    High Performance Computing for Science and Engineering I Tutorial on debugging, memory leaks and profiling Michalis Chatzimanolakis Computational Science & Engineering Laboratory OUTLINE - Approaches to debug your code •Using assertions •Using a debugger •Memory sanitation •Using a profiler Assertions in C++ An assertion is a logical statement that will cause your code to abort execution, if it is false. Example: Assertions can affect performance, Assertions perform checks that make sure that as they are essentially ‘if’ statements. some conditions are met. However, it is good practice to add assertions in a code. A simple compilation flag can ignore all assertions, so it is generally a good idea to use them. It is useful to combine assertions with the std functions isinf and isnan They can also be used with screen output. Compiler warnings Compiler warnings are compilation flags that you can (should) add to your Makefiles. Enabling warnings makes the compiler check for several issues in your source file, such as: • Forgetting to initialize a variable • Not using a declared variable • Using a function before declaring it • Having screen/file output with incorrect format (for example, treating doubles as integers) Generally, you should add warnings and try to fix all of them, before proceeding with further debugging your code. Note that different compilers may produce different warnings. The most common compiler warning flags are listed below: -Wall : enables several construction/declaration warnings -Wextra : more warnings than Wall including warnings for unused variables -Werror: will treat all warnings as errors -Wpedantic: warnings related to the use of non standard C++ extensions Using a debugger What is a debugger? A debugger is a program.
    [Show full text]
  • Memory Vulnerability Diagnosis for Binary Program
    ITM Web of Conferences 7 03004 , (2016) DOI: 10.1051/itmconf/20160703004 ITA 2016 Memory Vulnerability Diagnosis for Binary Program Feng-Yi TANG, Chao FENG and Chao-Jing TANG College of Electronic Science and Engineering National University of Defense Technology Changsha, China Abstract. Vulnerability diagnosis is important for program security analysis. It is a further step to understand the vulnerability after it is detected, as well as a preparatory step for vulnerability repair or exploitation. This paper mainly analyses the inner theories of major memory vulnerabilities and the threats of them. And then suggests some methods to diagnose several types of memory vulnerabilities for the binary programs, which is a difficult task due to the lack of source code. The diagnosis methods target at buffer overflow, use after free (UAF) and format string vulnerabilities. We carried out some tests on the Linux platform to validate the effectiveness of the diagnosis methods. It is proved that the methods can judge the type of the vulnerability given a binary program. 1 Introduction (or both) the memory area. These headers can contain some information like size, used or not, and etc. Memory vulnerabilities are difficult to detect and diagnose Therefore, we can monitor the allocator so as to especially for those do not crash the program. Due to its determine the base address and the size of the allocation importance, vulnerability diagnosis problem has been areas. Then, check all STORE and LOAD accesses in intensively studied. Researchers have proposed different memory to see which one is outside the allocated area. techniques to diagnose memory vulnerabilities.
    [Show full text]
  • A Statistical Approach for Identifying Memory Leaks in Cloud Applications
    A STATISTICAL APPROACH FOR IDENTIFYING MEMORY LEAKS IN CLOUD APPLICATIONS Vladimir Sorˇ and Satish Narayana Srirama Institute of Computer Science, University of Tartu, J. Liivi 2, Tartu, Estonia Keywords: Troubleshooting, JavaTM Virtual Machine, Byte code instrumentation, Cloud computing, Tools. Abstract: This position paper describes the attempt to automate the statistical approach for memory leak detection in JavaTM applications. Proposed system extends the basic statistical memory leak detection method with further intelligence to pinpoint the source of the memory leak in the source code. As the method adds only small overhead in runtime it is designed to be used in production systems and will help detecting memory leaks in production environments without constraint to the source of the leak. Architecture of the proposed approach is intended to use in cloud applications. 1 INTRODUCTION in production under very specific circumstances (of- ten hardly specifiable) can be very hard to find and fix Memory leaks can be a major problem in distributed in development and test environments. applications, depleting their performance, even if they This is the area we think we can improve by de- run on platforms with automatic memory manage- veloping the solution that uses efficient statistical al- ment like Java Virtual Machine. Finding memory gorithm to detect memory leaks in advance, imposes leaks is coveredby many researches and there are sev- low overhead in production system and would help eral tools and methodologies to find memory leaks. tracking down the source of the leak. The rest of the However, these tools are incorporated in profilers and paper is organized as follows.
    [Show full text]
  • An Evolutionary Study of Linux Memory Management for Fun and Profit Jian Huang, Moinuddin K
    An Evolutionary Study of Linux Memory Management for Fun and Profit Jian Huang, Moinuddin K. Qureshi, and Karsten Schwan, Georgia Institute of Technology https://www.usenix.org/conference/atc16/technical-sessions/presentation/huang This paper is included in the Proceedings of the 2016 USENIX Annual Technical Conference (USENIX ATC ’16). June 22–24, 2016 • Denver, CO, USA 978-1-931971-30-0 Open access to the Proceedings of the 2016 USENIX Annual Technical Conference (USENIX ATC ’16) is sponsored by USENIX. An Evolutionary Study of inu emory anagement for Fun and rofit Jian Huang, Moinuddin K. ureshi, Karsten Schwan Georgia Institute of Technology Astract the patches committed over the last five years from 2009 to 2015. The study covers 4587 patches across Linux We present a comprehensive and uantitative study on versions from 2.6.32.1 to 4.0-rc4. We manually label the development of the Linux memory manager. The each patch after carefully checking the patch, its descrip- study examines 4587 committed patches over the last tions, and follow-up discussions posted by developers. five years (2009-2015) since Linux version 2.6.32. In- To further understand patch distribution over memory se- sights derived from this study concern the development mantics, we build a tool called MChecker to identify the process of the virtual memory system, including its patch changes to the key functions in mm. MChecker matches distribution and patterns, and techniues for memory op- the patches with the source code to track the hot func- timizations and semantics. Specifically, we find that tions that have been updated intensively.
    [Show full text]
  • Using Cyclic Memory Allocation to Eliminate Memory Leaks
    Using Cyclic Memory Allocation to Eliminate Memory Leaks Huu Hai NGUYEN1 and Martin RINARD2 1Singapore-MIT Alliance, National University of Singapore 2CSAIL, Massachusetts Institute of Technology Abstract— We present and evaluate a new memory man- I. INTRODUCTION agement technique for eliminating memory leaks in programs with dynamic memory allocation. This technique observes the A program that uses explicit allocation and deallocation has execution of the program on a sequence of training inputs to a memory leak when it fails to free objects that it will no longer find m-bounded allocation sites, which have the property that at access in the future. A program that uses garbage collection any time during the execution of the program, the program only has a memory leak when it retains references to objects that accesses the last m objects allocated at that site. The technique it will no longer access in the future. Memory leaks are an then transforms the program to use cyclic memory allocation at that site: it preallocates a buffer containing m objects of the issue since they can cause the program to consume increasing type allocated at that site, with each allocation returning the amounts of memory as it runs. Eventually the program may next object in the buffer. At the end of the buffer the allocations exhaust the available memory and fail. Memory leaks may wrap back around to the first object. Cyclic allocation eliminates therefore be especially problematic for server programs that any memory leak at the allocation site — the total amount of must execute for long (and in principle unbounded) periods of memory required to hold all of the objects ever allocated at the site is simply m times the object size.
    [Show full text]
  • Diehard: Probabilistic Memory Safety for Unsafe Languages
    DieHard: Probabilistic Memory Safety for Unsafe Languages Emery D. Berger Benjamin G. Zorn Dept. of Computer Science Microsoft Research University of Massachusetts Amherst One Microsoft Way Amherst, MA 01003 Redmond, WA 98052 [email protected] [email protected] Abstract Invalid frees: Passing illegal addresses to free can corrupt the Applications written in unsafe languages like C and C++ are vul- heap or lead to undefined behavior. nerable to memory errors such as buffer overflows, dangling point- Double frees: Repeated calls to free of objects that have already ers, and reads of uninitialized data. Such errors can lead to program been freed undermine the integrity of freelist-based allocators. crashes, security vulnerabilities, and unpredictable behavior. We present DieHard, a runtime system that tolerates these errors while Tools like Purify [17] and Valgrind [28, 34] allow programmers to probabilistically maintaining soundness. DieHard uses randomiza- pinpoint the exact location of these memory errors (at the cost of a tion and replication to achieve probabilistic memory safety through 2-25X performance penalty), but only reveal those bugs found dur- the illusion of an infinite-sized heap. DieHard’s memory manager ing testing. Deployed programs thus remain vulnerable to crashes randomizes the location of objects in a heap that is at least twice or attack. Conservative garbage collectors can, at the cost of in- as large as required. This algorithm not only prevents heap corrup- creased runtime and additional memory [10, 20], disable calls to tion but also provides a probabilistic guarantee of avoiding memory free and so eliminate three of the above errors (invalid frees, dou- errors.
    [Show full text]
  • Simple, Fast and Safe Manual Memory Management
    Simple, Fast and Safe Manual Memory Management Piyus Kedia Manuel Costa Matthew Aaron Blankstein ∗ Microsoft Research, India Parkinson Kapil Vaswani Princeton University, USA [email protected] Dimitrios Vytiniotis [email protected] Microsoft Research, UK manuelc,mattpark,kapilv,[email protected] Abstract cause the latter are more efficient. As a consequence, many Safe programming languages are readily available, but many applications continue to have exploitable memory safety applications continue to be written in unsafe languages be- bugs. One of the main reasons behind the higher efficiency cause of efficiency. As a consequence, many applications of unsafe languages is that they typically use manual mem- continue to have exploitable memory safety bugs. Since ory management, which has been shown to be more efficient garbage collection is a major source of inefficiency in the than garbage collection [19, 21, 24, 33, 34, 45]. Thus, replac- implementation of safe languages, replacing it with safe ing garbage collection with manual memory management in manual memory management would be an important step safe languages would be an important step towards solv- towards solving this problem. ing this problem. The challenge is how to implement man- Previous approaches to safe manual memory manage- ual memory management efficiently, without compromising ment use programming models based on regions, unique safety. pointers, borrowing of references, and ownership types. We Previous approaches to safe manual memory manage- propose a much simpler programming model that does not ment use programming models based on regions [20, 40], require any of these concepts. Starting from the design of an unique pointers [22, 38], borrowing of references [11, 12, imperative type safe language (like Java or C#), we just add 42], and ownership types [10, 12, 13].
    [Show full text]
  • Jamaicavm 8.1 — User Manual
    JamaicaVM 8.1 — User Manual Java Technology for Critical Embedded Systems aicas GmbH 2 JamaicaVM 8.1 — User Manual: Java Technology for Critical Embedded Systems JamaicaVM 8.1, Release 1. Published May 31, 2017. c 2001–2017 aicas GmbH, Karlsruhe. All rights reserved. No licenses, expressed or implied, are granted with respect to any of the technology described in this publication. aicas GmbH retains all intellectual property rights associated with the technology described in this publication. This publication is intended to assist application developers to develop applications only for the Jamaica Virtual Machine. Every effort has been made to ensure that the information in this publication is accurate. aicas GmbH is not responsible for printing or clerical errors. Although the information herein is provided with good faith, the supplier gives neither warranty nor guarantee that the information is correct or that the results described are obtainable under end-user conditions. aicas GmbH phone +49 721 663 968-0 Emmy-Noether-Straße 9 fax +49 721 663 968-99 76131 Karlsruhe email [email protected] Germany web http://www.aicas.com aicas incorporated phone +1 203 359 5705 6 Landmark Square, Suite 400 Stamford CT 06901 email [email protected] USA web http://www.aicas.com aicas GmbH phone +33 1 4997 1762 9 Allee de l’Arche fax +33 1 4997 1700 92671 Paris La Defense email [email protected] France web http://www.aicas.com This product includes software developed by IAIK of Graz University of Technology. This software is based in part on the work of the Independent JPEG Group.
    [Show full text]