6.828: Virtual Memory for User Programs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Distributed Programming I (Socket - Nov'09)
Distributed programming I (socket - nov'09) Warning for programmers network programming is dangerously close to O.S. Network programming: sockets kernel, and therefore: It can easily hang the O.S. verify the results of every operation, without assuming anything as granted Antonio Lioy < [email protected] > APIs can vary in details that are minimal but important consider every possible situation to create english version created and modified by “portable” programs Marco D. Aime < [email protected] > we will try to use Posix 1.g Politecnico di Torino Dip. Automatica e Informatica ISO/OSI, TCP/IP, network programming Exercise – copying data copy the content of file F1 (first parameter on the application command line) into file F2 (second parameter on the 7. application details application command line) user 6. presentation (l6: XDR/XML/... process l5: RPC/SOAP/...) 5. session network programming 4. transport TCP UDP SCTP interface 3. network IPv4, IPv6 kernel communication 2. data link device driver details 1. physical and hardware OSI model IP suite ref. UNP Intro copyfile.c Error messages Error functions must contain at least: best to define standard error reporting functions [ PROG ] program name which accept: [ LEVEL ] error level (info, warning, error, bug) a format string for the error [ TEXT ] error signalling, the most specific as possible a list of parameters to be printed (e.g. input file name and line where the problem has UNP, appendix D.4 (D.3 in 3rd edition) occurred) errno? termination? log level [ ERRNO ] system error number and/or name (if applicable) err_msg no no LOG_INFO err_quit no exit(1) LOG_ERR suggested format: err_ret yes no LOG_INFO err_sys yes exit(1) LOG_ERR ( PROG ) LEVEL - TEXT : ERRNO err_dump yes abort( ) LOG_ERR errlib.h errlib.c © A.Lioy - Politecnico di Torino (2009) B-1 Distributed programming I (socket - nov'09) stdarg.h stdarg.h usage example variable list of arguments (ANSI C) create a function named my_printf declared with an ellipsis (. -
Overcoming Traditional Problems with OS Huge Page Management
MEGA: Overcoming Traditional Problems with OS Huge Page Management Theodore Michailidis Alex Delis Mema Roussopoulos University of Athens University of Athens University of Athens Athens, Greece Athens, Greece Athens, Greece [email protected] [email protected] [email protected] ABSTRACT KEYWORDS Modern computer systems now feature memory banks whose Huge pages, Address Translation, Memory Compaction aggregate size ranges from tens to hundreds of GBs. In this context, contemporary workloads can and do often consume ACM Reference Format: Theodore Michailidis, Alex Delis, and Mema Roussopoulos. 2019. vast amounts of main memory. This upsurge in memory con- MEGA: Overcoming Traditional Problems with OS Huge Page Man- sumption routinely results in increased virtual-to-physical agement. In The 12th ACM International Systems and Storage Con- address translations, and consequently and more importantly, ference (SYSTOR ’19), June 3–5, 2019, Haifa, Israel. ACM, New York, more translation misses. Both of these aspects collectively NY, USA, 11 pages. https://doi.org/10.1145/3319647.3325839 do hamper the performance of workload execution. A solu- tion aimed at dramatically reducing the number of address translation misses has been to provide hardware support for 1 INTRODUCTION pages with bigger sizes, termed huge pages. In this paper, we Computer memory capacities have been increasing sig- empirically demonstrate the benefits and drawbacks of using nificantly over the past decades, leading to the development such huge pages. In particular, we show that it is essential of memory hungry workloads that consume vast amounts for modern OS to refine their software mechanisms to more of main memory. This upsurge in memory consumption rou- effectively manage huge pages. -
Beej's Guide to Unix IPC
Beej's Guide to Unix IPC Brian “Beej Jorgensen” Hall [email protected] Version 1.1.3 December 1, 2015 Copyright © 2015 Brian “Beej Jorgensen” Hall This guide is written in XML using the vim editor on a Slackware Linux box loaded with GNU tools. The cover “art” and diagrams are produced with Inkscape. The XML is converted into HTML and XSL-FO by custom Python scripts. The XSL-FO output is then munged by Apache FOP to produce PDF documents, using Liberation fonts. The toolchain is composed of 100% Free and Open Source Software. Unless otherwise mutually agreed by the parties in writing, the author offers the work as-is and makes no representations or warranties of any kind concerning the work, express, implied, statutory or otherwise, including, without limitation, warranties of title, merchantibility, fitness for a particular purpose, noninfringement, or the absence of latent or other defects, accuracy, or the presence of absence of errors, whether or not discoverable. Except to the extent required by applicable law, in no event will the author be liable to you on any legal theory for any special, incidental, consequential, punitive or exemplary damages arising out of the use of the work, even if the author has been advised of the possibility of such damages. This document is freely distributable under the terms of the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. See the Copyright and Distribution section for details. Copyright © 2015 Brian “Beej Jorgensen” Hall Contents 1. Intro................................................................................................................................................................1 1.1. Audience 1 1.2. Platform and Compiler 1 1.3. -
Mmap and Dma
CHAPTER THIRTEEN MMAP AND DMA This chapter delves into the area of Linux memory management, with an emphasis on techniques that are useful to the device driver writer. The material in this chap- ter is somewhat advanced, and not everybody will need a grasp of it. Nonetheless, many tasks can only be done through digging more deeply into the memory man- agement subsystem; it also provides an interesting look into how an important part of the kernel works. The material in this chapter is divided into three sections. The first covers the implementation of the mmap system call, which allows the mapping of device memory directly into a user process’s address space. We then cover the kernel kiobuf mechanism, which provides direct access to user memory from kernel space. The kiobuf system may be used to implement ‘‘raw I/O’’ for certain kinds of devices. The final section covers direct memory access (DMA) I/O operations, which essentially provide peripherals with direct access to system memory. Of course, all of these techniques requir e an understanding of how Linux memory management works, so we start with an overview of that subsystem. Memor y Management in Linux Rather than describing the theory of memory management in operating systems, this section tries to pinpoint the main features of the Linux implementation of the theory. Although you do not need to be a Linux virtual memory guru to imple- ment mmap, a basic overview of how things work is useful. What follows is a fairly lengthy description of the data structures used by the kernel to manage memory. -
An Introduction to Linux IPC
An introduction to Linux IPC Michael Kerrisk © 2013 linux.conf.au 2013 http://man7.org/ Canberra, Australia [email protected] 2013-01-30 http://lwn.net/ [email protected] man7 .org 1 Goal ● Limited time! ● Get a flavor of main IPC methods man7 .org 2 Me ● Programming on UNIX & Linux since 1987 ● Linux man-pages maintainer ● http://www.kernel.org/doc/man-pages/ ● Kernel + glibc API ● Author of: Further info: http://man7.org/tlpi/ man7 .org 3 You ● Can read a bit of C ● Have a passing familiarity with common syscalls ● fork(), open(), read(), write() man7 .org 4 There’s a lot of IPC ● Pipes ● Shared memory mappings ● FIFOs ● File vs Anonymous ● Cross-memory attach ● Pseudoterminals ● proc_vm_readv() / proc_vm_writev() ● Sockets ● Signals ● Stream vs Datagram (vs Seq. packet) ● Standard, Realtime ● UNIX vs Internet domain ● Eventfd ● POSIX message queues ● Futexes ● POSIX shared memory ● Record locks ● ● POSIX semaphores File locks ● ● Named, Unnamed Mutexes ● System V message queues ● Condition variables ● System V shared memory ● Barriers ● ● System V semaphores Read-write locks man7 .org 5 It helps to classify ● Pipes ● Shared memory mappings ● FIFOs ● File vs Anonymous ● Cross-memory attach ● Pseudoterminals ● proc_vm_readv() / proc_vm_writev() ● Sockets ● Signals ● Stream vs Datagram (vs Seq. packet) ● Standard, Realtime ● UNIX vs Internet domain ● Eventfd ● POSIX message queues ● Futexes ● POSIX shared memory ● Record locks ● ● POSIX semaphores File locks ● ● Named, Unnamed Mutexes ● System V message queues ● Condition variables ● System V shared memory ● Barriers ● ● System V semaphores Read-write locks man7 .org 6 It helps to classify ● Pipes ● Shared memory mappings ● FIFOs ● File vs Anonymous ● Cross-memoryn attach ● Pseudoterminals tio a ● proc_vm_readv() / proc_vm_writev() ● Sockets ic n ● Signals ● Stream vs Datagram (vs uSeq. -
Memory Safety Without Garbage Collection for Embedded Applications
Memory Safety Without Garbage Collection for Embedded Applications DINAKAR DHURJATI, SUMANT KOWSHIK, VIKRAM ADVE, and CHRIS LATTNER University of Illinois at Urbana-Champaign Traditional approaches to enforcing memory safety of programs rely heavily on run-time checks of memory accesses and on garbage collection, both of which are unattractive for embedded ap- plications. The goal of our work is to develop advanced compiler techniques for enforcing memory safety with minimal run-time overheads. In this paper, we describe a set of compiler techniques that, together with minor semantic restrictions on C programs and no new syntax, ensure memory safety and provide most of the error-detection capabilities of type-safe languages, without using garbage collection, and with no run-time software checks, (on systems with standard hardware support for memory management). The language permits arbitrary pointer-based data structures, explicit deallocation of dynamically allocated memory, and restricted array operations. One of the key results of this paper is a compiler technique that ensures that dereferencing dangling pointers to freed memory does not violate memory safety, without annotations, run-time checks, or garbage collection, and works for arbitrary type-safe C programs. Furthermore, we present a new inter- procedural analysis for static array bounds checking under certain assumptions. For a diverse set of embedded C programs, we show that we are able to ensure memory safety of pointer and dy- namic memory usage in all these programs with no run-time software checks (on systems with standard hardware memory protection), requiring only minor restructuring to conform to simple type restrictions. Static array bounds checking fails for roughly half the programs we study due to complex array references, and these are the only cases where explicit run-time software checks would be needed under our language and system assumptions. -
Memory Leak Or Dangling Pointer
Modern C++ for Computer Vision and Image Processing Igor Bogoslavskyi Outline Using pointers Pointers are polymorphic Pointer “this” Using const with pointers Stack and Heap Memory leaks and dangling pointers Memory leak Dangling pointer RAII 2 Using pointers in real world Using pointers for classes Pointers can point to objects of custom classes: 1 std::vector<int> vector_int; 2 std::vector<int >* vec_ptr = &vector_int; 3 MyClass obj; 4 MyClass* obj_ptr = &obj; Call object functions from pointer with -> 1 MyClass obj; 2 obj.MyFunc(); 3 MyClass* obj_ptr = &obj; 4 obj_ptr->MyFunc(); obj->Func() (*obj).Func() ↔ 4 Pointers are polymorphic Pointers are just like references, but have additional useful properties: Can be reassigned Can point to ‘‘nothing’’ (nullptr) Can be stored in a vector or an array Use pointers for polymorphism 1 Derived derived; 2 Base* ptr = &derived; Example: for implementing strategy store a pointer to the strategy interface and initialize it with nullptr and check if it is set before calling its methods 5 1 #include <iostream > 2 #include <vector > 3 using std::cout; 4 struct AbstractShape { 5 virtual void Print() const = 0; 6 }; 7 struct Square : public AbstractShape { 8 void Print() const override { cout << "Square\n";} 9 }; 10 struct Triangle : public AbstractShape { 11 void Print() const override { cout << "Triangle\n";} 12 }; 13 int main() { 14 std::vector<AbstractShape*> shapes; 15 Square square; 16 Triangle triangle; 17 shapes.push_back(&square); 18 shapes.push_back(&triangle); 19 for (const auto* shape : shapes) { shape->Print(); } 20 return 0; 21 } 6 this pointer Every object of a class or a struct holds a pointer to itself This pointer is called this Allows the objects to: Return a reference to themselves: return *this; Create copies of themselves within a function Explicitly show that a member belongs to the current object: this->x(); 7 Using const with pointers Pointers can point to a const variable: 1 // Cannot change value , can reassign pointer. -
Asynchronous Page Faults Aix Did It Red Hat Author Gleb Natapov August 10, 2010
Asynchronous page faults Aix did it Red Hat Author Gleb Natapov August 10, 2010 Abstract Host memory overcommit may cause guest memory to be swapped. When guest vcpu access memory swapped out by a host its execution is suspended until memory is swapped back. Asynchronous page fault is a way to try and use guest vcpu more efficiently by allowing it to execute other tasks while page is brought back into memory. Part I How KVM Handles Guest Memory and What Inefficiency it Has With Regards to Host Swapping Mapping guest memory into host memory But we do it on demand Page fault happens on first guest access What happens on a page fault? 1 VMEXIT 2 kvm mmu page fault() 3 gfn to pfn() 4 get user pages fast() no previously mapped page and no swap entry found empty page is allocated 5 page is added into shadow/nested page table What happens on a page fault? 1 VMEXIT 2 kvm mmu page fault() 3 gfn to pfn() 4 get user pages fast() no previously mapped page and no swap entry found empty page is allocated 5 page is added into shadow/nested page table What happens on a page fault? 1 VMEXIT 2 kvm mmu page fault() 3 gfn to pfn() 4 get user pages fast() no previously mapped page and no swap entry found empty page is allocated 5 page is added into shadow/nested page table What happens on a page fault? 1 VMEXIT 2 kvm mmu page fault() 3 gfn to pfn() 4 get user pages fast() no previously mapped page and no swap entry found empty page is allocated 5 page is added into shadow/nested page table What happens on a page fault? 1 VMEXIT 2 kvm mmu page fault() 3 gfn to pfn() -
POSIX Signals
CSE 410: Systems Programming POSIX Signals Ethan Blanton Department of Computer Science and Engineering University at Buffalo Introduction Signals Blocking Concurrency Sending Signals Summary References POSIX Signals POSIX signals are another form of interprocess communication. They are also a way to create concurrency in programs. For these two reasons, they are rather complicated and subtle! Signals provide a simple message passing mechanism. © 2018 Ethan Blanton / CSE 410: Systems Programming Introduction Signals Blocking Concurrency Sending Signals Summary References Signals as Messages POSIX signals are asynchronous messages. Asynchronous means that their reception can occur at any time.1 The message is the reception of the signal itself. Each signal has a number, which is a small integer. POSIX signals carry no other data. 1Almost. We’ll see how to control it later. © 2018 Ethan Blanton / CSE 410: Systems Programming Introduction Signals Blocking Concurrency Sending Signals Summary References Signal Types There are two basic types of POSIX signals: Reliable signals Real-time signals Real-time signals are much more complicated. In particular, they can carry data. We will discuss only reliable signals in this lecture. © 2018 Ethan Blanton / CSE 410: Systems Programming Introduction Signals Blocking Concurrency Sending Signals Summary References Asynchronous Reception From the point of view of the application: Signals can be blocked or ignored Enabled signals may be received between any two processor instructions A received signal can run a user-defined function called a signal handler This means that enabled signals and program code must very carefully manipulate shared or global data! © 2018 Ethan Blanton / CSE 410: Systems Programming Introduction Signals Blocking Concurrency Sending Signals Summary References Signals POSIX defines a number of signals by name and number. -
What Is an Operating System III 2.1 Compnents II an Operating System
Page 1 of 6 What is an Operating System III 2.1 Compnents II An operating system (OS) is software that manages computer hardware and software resources and provides common services for computer programs. The operating system is an essential component of the system software in a computer system. Application programs usually require an operating system to function. Memory management Among other things, a multiprogramming operating system kernel must be responsible for managing all system memory which is currently in use by programs. This ensures that a program does not interfere with memory already in use by another program. Since programs time share, each program must have independent access to memory. Cooperative memory management, used by many early operating systems, assumes that all programs make voluntary use of the kernel's memory manager, and do not exceed their allocated memory. This system of memory management is almost never seen any more, since programs often contain bugs which can cause them to exceed their allocated memory. If a program fails, it may cause memory used by one or more other programs to be affected or overwritten. Malicious programs or viruses may purposefully alter another program's memory, or may affect the operation of the operating system itself. With cooperative memory management, it takes only one misbehaved program to crash the system. Memory protection enables the kernel to limit a process' access to the computer's memory. Various methods of memory protection exist, including memory segmentation and paging. All methods require some level of hardware support (such as the 80286 MMU), which doesn't exist in all computers. -
Measuring Software Performance on Linux Technical Report
Measuring Software Performance on Linux Technical Report November 21, 2018 Martin Becker Samarjit Chakraborty Chair of Real-Time Computer Systems Chair of Real-Time Computer Systems Technical University of Munich Technical University of Munich Munich, Germany Munich, Germany [email protected] [email protected] OS program program CPU .text .bss + + .data +/- + instructions cache branch + coherency scheduler misprediction core + pollution + migrations data + + interrupt L1i$ miss access + + + + + + context mode + + (TLB flush) TLB + switch data switch miss L1d$ +/- + (KPTI TLB flush) miss prefetch +/- + + + higher-level readahead + page cache miss walk + + multicore + + (TLB shootdown) TLB coherency page DRAM + page fault + cache miss + + + disk + major minor I/O Figure 1. Event interaction map for a program running on an Intel Core processor on Linux. Each event itself may cause processor cycles, and inhibit (−), enable (+), or modulate (⊗) others. Abstract that our measurement setup has a large impact on the results. Measuring and analyzing the performance of software has More surprisingly, however, they also suggest that the setup reached a high complexity, caused by more advanced pro- can be negligible for certain analysis methods. Furthermore, cessor designs and the intricate interaction between user we found that our setup maintains significantly better per- formance under background load conditions, which means arXiv:1811.01412v2 [cs.PF] 20 Nov 2018 programs, the operating system, and the processor’s microar- chitecture. In this report, we summarize our experience on it can be used to improve high-performance applications. how performance characteristics of software should be mea- CCS Concepts • Software and its engineering → Soft- sured when running on a Linux operating system and a ware performance; modern processor. -
Table of Contents
TABLE OF CONTENTS Chapter 1 Introduction ............................................................................................. 3 Chapter 2 Examples for FPGA ................................................................................. 4 2.1 Factory Default Code ................................................................................................................................. 4 2.2 Nios II Control for Programmable PLL/ Temperature/ Power/ 9-axis ....................................................... 6 2.3 Nios DDR4 SDRAM Test ........................................................................................................................ 12 2.4 RTL DDR4 SDRAM Test ......................................................................................................................... 14 2.5 USB Type-C DisplayPort Alternate Mode ............................................................................................... 15 2.6 USB Type-C FX3 Loopback .................................................................................................................... 17 2.7 HDMI TX and RX in 4K Resolution ........................................................................................................ 21 2.8 HDMI TX in 4K Resolution ..................................................................................................................... 26 2.9 Low Latency Ethernet 10G MAC Demo .................................................................................................. 29 2.10 Socket