Effects of Different Straw Biochar Combined with Microbial Inoculants on Soil Environment in Pot Experiment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Potato Dextrose Agar with Lecithin and Tween 80 (7575)
POTATO DEXTROSE AGAR w/ LECITHIN & TWEEN 80 (7575) Intended Use Potato Dextrose Agar w/ Lecithin & Tween 80 is used for the isolation of fungi from surfaces sanitized with quaternary ammonium compounds. Product Summary and Explanation Potato Dextrose Agar is a general purpose medium for yeasts and molds that can be supplemented with acid or antibiotics to inhibit bacterial growth. The nutritionally rich base (potato infusion) encourages mold sporulation and pigment production in some dermatophytes.1 Potato Dextrose Agar w/ Lecithin & Tween 80 is a modification of Potato Dextrose Agar. The addition of Lecithin and Tween 80 to Potato Dextrose Agar is used to neutralize antiseptics and disinfectants for environmental monitoring and other applications.2 Complete neutralization of disinfectants is important. Disinfectant carryover can cause a false no-growth test result. Principles of the Procedure Potato Infusion provides nitrogen and vitamin sources required for organism growth. Dextrose is included as a carbon source. Lecithin neutralizes quaternary ammonium compounds and ethanol, and Tween 80 neutralizes phenols, hexachlorophene, and formalin. Agar is the solidifying agent. Formula / Liter Potato Infusion (dehydrated) .................................................... 4 g Dextrose ................................................................................. 20 g Tween 80 .................................................................................. 5 g Lecithin.................................................................................. -
Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae -
Effects of Different Straw Biochar Combined with Microbial Inoculants on Soil Environment of Ginseng
Effects of Different Straw Biochar Combined With Microbial Inoculants on Soil Environment of Ginseng Yuqi Qi Jilin Agricultural University Haolang Liu Jilin Agricultural University Jihong Wang ( [email protected] ) Jilin Agricultural University Yingping Wang Jilin Agricultural University Research Article Keywords: Microbial agent, Ginseng, Biochar, Soil remediation, Microbiota Posted Date: February 13th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-189319/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Scientic Reports on July 19th, 2021. See the published version at https://doi.org/10.1038/s41598-021-94209-1. Page 1/23 Abstract Ginseng is an important cash crop. The long-term continuous cropping of ginseng causes the imbalance of soil environment and the exacerbation of soil-borne diseases, which affects the healthy development of ginseng industry. In this study, ginseng continuous cropping soil was treated with microbial inocula using broad-spectrum biocontrol microbial strain Frankia F1. Wheat straw, rice straw and corn straw were the best carrier materials for microbial inoculum. After treatment with microbial inoculum prepared with corn stalk biochar, the soil pH value, organic matter, total nitrogen, available nitrogen, available phosphorus, and available potassium were increased by 11.18%, 55.43%, 33.07%, 26.70%, 16.40%, and 9.10%, the activities of soil urease, catalase and sucrase increased by 52.73%, 16.80% and 43.80%, respectively. A Metagenomic showed that after the application of microbial inoculum prepared fromwith corn stalk biochar, soil microbial OTUs, Chao1 index, Shannon index, and Simpson index increased by 19.86%, 16.05%, 28.83%, and 3.16%, respectively. -
Structural Features of the Vesicle of Frankia Sp. Cpi1 in Culture
Structural features of the vesicle of Frankia sp. CpIl in culture JOHNG. TORREYAND DALECALLAHAM Cabot Foundation, Harvard University, Petersham, MA, U.S.A.01366 and Department of Botany, University of Massachusetts, Amherst, MA, U.S.A.01003 Accepted March 16, 1982 TORREY,J. G., and D. CALLAHAM.1982. Structural features of the vesicle of Frankia sp. CpII inculture. Can. J. Microbiol. 28: 749-757. The filamentous bacterium Frankia sp. CpIl of the Actinomycetales, responsible for symbiotic nitrogen fixation in the nodules of certain woody dicots, also fixes dinitrogen when grown independently of the host in a nitrogen-free synthetic nutrient medium under aerobic conditions. In structural studies of Frankla grown in culture it has been shown that the bacterial filaments form vesicles, enlarged terminal endings in which the enzyme nitrogenase is formed. Microscopic examination of cultures shows that the vesicles possess a specialized envelope consisting of a number of thin layers or laminae which In polarized light show birefringence and in freeze-etch electron microscopy are resolved as multiple (12-15) laminae approximately 35-40 A (1 A = 0.1 nm) in thickness. Comparisons are made between the structure of the veslcle envelope in cultured Frankia and the ; strikingly similar innermost laminated layer in the dinitrogen-fixing heterocysts of the cyanobacterium Anabaena. Comparable protective functions in limiting oxygen to the dinitrogen-fixing sites are suggested for these similar structures in two quite unrelated microorganisms. 1 TORREY,J. G., et D. CALLAHAM.1982. Structural features of the vesicle of Frankia sp. CpIl in culture. Can. J. Microbiol. 28: 749-757. I La bactkrie filamenteuse Frankia sp. -
Phylogeny and Assemblage Composition of Frankia in Alnus Tenuifolia Nodules Across a Primary Successional Sere in Interior Alaska
Molecular Ecology (2013) 22, 3864–3877 doi: 10.1111/mec.12339 Phylogeny and assemblage composition of Frankia in Alnus tenuifolia nodules across a primary successional sere in interior Alaska M. D. ANDERSON,*† D. L. TAYLOR† and R. W. RUESS† *Department of Biology, Macalester College, 1600 Grand Ave, Saint Paul, MN 55105, USA, †Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, USA Abstract In nitrogen (N) fixing symbioses, host-symbiont specificity, genetic variation in bacte- rial symbionts and environmental variation represent fundamental constraints on the ecology, evolution and practical uses of these interactions, but detailed information is lacking for many naturally occurring N-fixers. This study examined phylogenetic host specificity of Frankia in field-collected nodules of two Alnus species (A. tenuifolia and A. viridis) in interior Alaska and, for A. tenuifolia, distribution, diversity, spatial auto- correlation and correlation with specific soil factors of Frankia genotypes in nodules collected from replicated habitats representing endpoints of a primary sere. Frankia genotypes most commonly associated with each host belonged to different clades within the Alnus-infective Frankia clade, and for A. tenuifolia, were divergent from previously described Frankia. A. tenuifolia nodules from early and late succession hab- itats harboured distinct Frankia assemblages. In early succession, a single genotype inhabited 71% of nodules with no discernable autocorrelation at any scale, while late succession Frankia were more diverse, differed widely among plants within a site and were significantly autocorrelated within and among plants. Early succession Frankia genotype occurrence was strongly correlated with carbon/nitrogen ratio in the mineral soil fraction, while in late succession, the most common genotypes were correlated with different soil variables. -
The Editing of Eddic Poetry Judy Quinn
A HANDBOOK TO EDDIC POETRY This is the first comprehensive and accessible survey in English of Old Norse eddic poetry: a remarkable body of literature rooted in the Viking Age, which is a critical source for the study of early Scandinavian myths, poetics, culture, and society. Dramatically recreating the voices of the legendary past, eddic poems distil moments of high emotion as human heroes and supernatural beings alike grapple with betrayal, loyalty, mortality, and love. These poems relate the most famous deeds of gods such as Óðinn and Þórr with their adversaries the giants; they bring to life the often fraught interactions between kings, queens, and heroes as well as their encounters with valkyries, elves, dragons, and dwarfs. Written by leading international scholars, the chapters in this volume showcase the poetic riches of the eddic corpus and reveal its relevance to the history of poetics, gender studies, pre-Christian religions, art history, and archaeology. carolyne larrington is Official Fellow and Tutor at St John’s College, University of Oxford. judy quinn is Reader in Old Norse Literature in the Department of Anglo-Saxon, Norse and Celtic at the University of Cambridge. brittany schorn is a Research Associate in the Department of Anglo-Saxon, Norse and Celtic at the University of Cambridge. A HANDBOOK TO EDDIC POETRY Myths and Legends of Early Scandinavia CAROLYNE LARRINGTON University of Oxford JUDY QUINN University of Cambridge BRITTANY SCHORN University of Cambridge University Printing House, Cambridge cb2 8bs, United Kingdom Cambridge University Press is part of the University of Cambridge. It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence. -
Food Microbiology
Food Microbiology Food Water Dairy Beverage Online Ordering Available Food, Water, Dairy, & Beverage Microbiology Table of Contents 1 Environmental Monitoring Contact Plates 3 Petri Plates 3 Culture Media for Air Sampling 4 Environmental Sampling Boot Swabs 6 Environmental Testing Swabs 8 Surface Sanitizers 8 Hand Sanitation 9 Sample Preparation - Dilution Vials 10 Compact Dry™ 12 HardyCHROM™ Chromogenic Culture Media 15 Prepared Media 24 Agar Plates for Membrane Filtration 26 CRITERION™ Dehydrated Culture Media 28 Pathogen Detection Environmental With Monitoring Contact Plates Baird Parker Agar Friction Lid For the selective isolation and enumeration of coagulase-positive staphylococci (Staphylococcus aureus) on environmental surfaces. HardyCHROM™ ECC 15x60mm contact plate, A chromogenic medium for the detection, 10/pk ................................................................................ 89407-364 differentiation, and enumeration of Escherichia coli and other coliforms from environmental surfaces (E. coli D/E Neutralizing Agar turns blue, coliforms turn red). For the enumeration of environmental organisms. 15x60mm plate contact plate, The media is able to neutralize most antiseptics 10/pk ................................................................................ 89407-354 and disinfectants that may inhibit the growth of environmental organisms. Malt Extract 15x60mm contact plate, Malt Extract is recommended for the cultivation and 10/pk ................................................................................89407-482 -
Phylogeny of Nitrogenase Structural and Assembly Components Reveals New Insights Into the Origin and Distribution of Nitrogen Fixation Across Bacteria and Archaea
microorganisms Article Phylogeny of Nitrogenase Structural and Assembly Components Reveals New Insights into the Origin and Distribution of Nitrogen Fixation across Bacteria and Archaea Amrit Koirala 1 and Volker S. Brözel 1,2,* 1 Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA; [email protected] 2 Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa * Correspondence: [email protected]; Tel.: +1-605-688-6144 Abstract: The phylogeny of nitrogenase has only been analyzed using the structural proteins NifHDK. As nifHDKENB has been established as the minimum number of genes necessary for in silico predic- tion of diazotrophy, we present an updated phylogeny of diazotrophs using both structural (NifHDK) and cofactor assembly proteins (NifENB). Annotated Nif sequences were obtained from InterPro from 963 culture-derived genomes. Nif sequences were aligned individually and concatenated to form one NifHDKENB sequence. Phylogenies obtained using PhyML, FastTree, RapidNJ, and ASTRAL from individuals and concatenated protein sequences were compared and analyzed. All six genes were found across the Actinobacteria, Aquificae, Bacteroidetes, Chlorobi, Chloroflexi, Cyanobacteria, Deferribacteres, Firmicutes, Fusobacteria, Nitrospira, Proteobacteria, PVC group, and Spirochaetes, as well as the Euryarchaeota. The phylogenies of individual Nif proteins were very similar to the overall NifHDKENB phylogeny, indicating the assembly proteins have evolved together. Our higher resolution database upheld the three cluster phylogeny, but revealed undocu- Citation: Koirala, A.; Brözel, V.S. mented horizontal gene transfers across phyla. Only 48% of the 325 genera containing all six nif genes Phylogeny of Nitrogenase Structural and Assembly Components Reveals are currently supported by biochemical evidence of diazotrophy. -
A Genomic Journey Through a Genus of Large DNA Viruses
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Virology Papers Virology, Nebraska Center for 2013 Towards defining the chloroviruses: a genomic journey through a genus of large DNA viruses Adrien Jeanniard Aix-Marseille Université David D. Dunigan University of Nebraska-Lincoln, [email protected] James Gurnon University of Nebraska-Lincoln, [email protected] Irina V. Agarkova University of Nebraska-Lincoln, [email protected] Ming Kang University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/virologypub Part of the Biological Phenomena, Cell Phenomena, and Immunity Commons, Cell and Developmental Biology Commons, Genetics and Genomics Commons, Infectious Disease Commons, Medical Immunology Commons, Medical Pathology Commons, and the Virology Commons Jeanniard, Adrien; Dunigan, David D.; Gurnon, James; Agarkova, Irina V.; Kang, Ming; Vitek, Jason; Duncan, Garry; McClung, O William; Larsen, Megan; Claverie, Jean-Michel; Van Etten, James L.; and Blanc, Guillaume, "Towards defining the chloroviruses: a genomic journey through a genus of large DNA viruses" (2013). Virology Papers. 245. https://digitalcommons.unl.edu/virologypub/245 This Article is brought to you for free and open access by the Virology, Nebraska Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Virology Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Adrien Jeanniard, David D. Dunigan, James Gurnon, Irina V. Agarkova, Ming Kang, Jason Vitek, Garry Duncan, O William McClung, Megan Larsen, Jean-Michel Claverie, James L. Van Etten, and Guillaume Blanc This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ virologypub/245 Jeanniard, Dunigan, Gurnon, Agarkova, Kang, Vitek, Duncan, McClung, Larsen, Claverie, Van Etten & Blanc in BMC Genomics (2013) 14. -
Effects of Growth Media on the Diversity of Culturable Fungi from Lichens
molecules Article Effects of Growth Media on the Diversity of Culturable Fungi from Lichens Lucia Muggia 1,*,†, Theodora Kopun 2,† and Martin Grube 2 1 Department of Life Sciences, University of Trieste, via Giorgieri 10, 34127 Trieste, Italy 2 Institute of Plant Science, Karl-Franzens University of Graz, Holteigasse 6, 8010 Graz, Austria; [email protected] (T.K.); [email protected] (M.G.) * Correspondence: [email protected] or [email protected]; Tel.: +39-04-0558-8825 † These authors contributed equally to the work. Academic Editor: Joel Boustie Received: 1 March 2017; Accepted: 11 May 2017; Published: 17 May 2017 Abstract: Microscopic and molecular studies suggest that lichen symbioses contain a plethora of associated fungi. These are potential producers of novel bioactive compounds, but strains isolated on standard media usually represent only a minor subset of these fungi. By using various in vitro growth conditions we are able to modulate and extend the fraction of culturable lichen-associated fungi. We observed that the presence of iron, glucose, magnesium and potassium in growth media is essential for the successful isolation of members from different taxonomic groups. According to sequence data, most isolates besides the lichen mycobionts belong to the classes Dothideomycetes and Eurotiomycetes. With our approach we can further explore the hidden fungal diversity in lichens to assist in the search of novel compounds. Keywords: Dothideomycetes; Eurotiomycetes; Leotiomycetes; nuclear ribosomal subunits DNA; nutrients; Sordariomycetes 1. Introduction Lichens are self-sustaining symbiotic associations of specialized fungi (the mycobionts), and green algae or cyanobacteria (the photobionts), which are located extracellularly within a matrix of fungal hyphae and from which the fungi derive carbon nutrition [1]. -
Transition from Unclassified Ktedonobacterales to Actinobacteria During Amorphous Silica Precipitation in a Quartzite Cave Envir
www.nature.com/scientificreports OPEN Transition from unclassifed Ktedonobacterales to Actinobacteria during amorphous silica precipitation in a quartzite cave environment D. Ghezzi1,2, F. Sauro3,4,5, A. Columbu3, C. Carbone6, P.‑Y. Hong7, F. Vergara4,5, J. De Waele3 & M. Cappelletti1* The orthoquartzite Imawarì Yeuta cave hosts exceptional silica speleothems and represents a unique model system to study the geomicrobiology associated to silica amorphization processes under aphotic and stable physical–chemical conditions. In this study, three consecutive evolution steps in the formation of a peculiar blackish coralloid silica speleothem were studied using a combination of morphological, mineralogical/elemental and microbiological analyses. Microbial communities were characterized using Illumina sequencing of 16S rRNA gene and clone library analysis of carbon monoxide dehydrogenase (coxL) and hydrogenase (hypD) genes involved in atmospheric trace gases utilization. The frst stage of the silica amorphization process was dominated by members of a still undescribed microbial lineage belonging to the Ktedonobacterales order, probably involved in the pioneering colonization of quartzitic environments. Actinobacteria of the Pseudonocardiaceae and Acidothermaceae families dominated the intermediate amorphous silica speleothem and the fnal coralloid silica speleothem, respectively. The atmospheric trace gases oxidizers mostly corresponded to the main bacterial taxa present in each speleothem stage. These results provide novel understanding of the microbial community structure accompanying amorphization processes and of coxL and hypD gene expression possibly driving atmospheric trace gases metabolism in dark oligotrophic caves. Silicon is one of the most abundant elements in the Earth’s crust and can be broadly found in the form of silicates, aluminosilicates and silicon dioxide (e.g., quartz, amorphous silica). -
Isolation and Identification of Shoot-Tip Associated Endophytic Bacteria from Banana Cv
American Journal of Plant Sciences, 2015, 6, 943-954 Published Online April 2015 in SciRes. http://www.scirp.org/journal/ajps http://dx.doi.org/10.4236/ajps.2015.67101 Isolation and Identification of Shoot-Tip Associated Endophytic Bacteria from Banana cv. Grand Naine and Testing for Antagonistic Activity against Fusarium oxysporum f. sp. cubense Aparna Chandra Sekhar, Pious Thomas* Endophytic and Molecular Microbiology Laboratory, Division of Biotechnology, ICAR-Indian Institute of Horticultural Research (IIHR), Bangalore, India Email: *[email protected], *[email protected] Received 4 March 2015; accepted 10 April 2015; published 14 April 2015 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Endophytic bacteria colonizing the shoot-tips of banana cv. Grand Naine were isolated and tested for the antagonistic activity against the Panama wilt pathogen Fusarium oxysporum f. sp. cubense (Foc). Pre-isolation, the suckers were given extensive disinfection treatments and the homogenate from the excised shoot-tip portion was plated on nutrient agar (NA) and trypticase soy agar (TSA). This yielded altogether 47 isolates: 26 on NA and 21 on TSA, respectively, from the 10 suckers col- lected during August to February. The number of bacterial isolates obtained per sucker varied from one to 15 based on colony characteristics registering up to 10 distinct species per shoot-tip based on 16S rRNA sequence analysis. The 47 isolates belonged to 19 genera and 25 species under the phylogenetic classes of Actinobacteria, α- and γ-Proteobacteria and Firmicutes.