Periglacial Debris-Flow Initiation And
Seeing the True ShapeGeosphere, of Earth’s publishedSurface: onlineApplications on 6 March of 2012Airborne as doi:10.1130/GES00713.1 and Terrestrial Lidar in the Geosciences themed issue Periglacial debris-fl ow initiation and susceptibility and glacier recession from imagery, airborne LiDAR, and ground-based mapping Stephen T. Lancaster1,*, Anne W. Nolin1, Elizabeth A. Copeland1, and Gordon E. Grant2 1College of Earth, Ocean, and Atmospheric Sciences and Institute for Water and Watersheds, Oregon State University, Corvallis, Oregon 97331, USA 2U.S. Department of Agriculture Forest Service, Pacifi c Northwest Research Station, 333 SW First Avenue, Corvallis, Oregon 97331, USA ABSTRACT sion by overland fl ow of water. Using gully- et al., 1996; O’Connor et al., 2001; Osterkamp head initiation sites for debris fl ows that et al., 1986; Sobieszczyk et al., 2009; Walder Climate changes in the Pacifi c Northwest, occurred during 2001–2006, a data model and Driedger, 1994). USA, may cause both retreat of alpine gla- was developed to explore the viability of the There is concern among managers and ciers and increases in the frequency and method for characterization of debris-fl ow policymakers that glacier retreat, rising snow- magnitude of storms delivering rainfall at initiation susceptibilities on Mount Rainier. line elevations, and more frequent and more high elevations absent signifi cant snowpack, The initiation sites were found to occupy a intense storms are leading to greater debris- and both of these changes may affect the restricted part of the four-dimensional space fl ow hazards. On Washington’s Mount Rainier frequency and severity of destructive debris defi ned by mean and standard deviation of in August 2001, rapid melting of Kautz Glacier fl ows initiating on the region’s composite simulated glacial meltwater fl ow, slope angle, directed meltwater into the adjacent watershed volcanoes.
[Show full text]