Antioxidant Activity of Roasted and Unroasted Peanut Skin Extracts

Total Page:16

File Type:pdf, Size:1020Kb

Antioxidant Activity of Roasted and Unroasted Peanut Skin Extracts International Food Research Journal 25(1): 43 - 50 (February 2018) Journal homepage: http://www.ifrj.upm.edu.my Antioxidant activity of roasted and unroasted peanut skin extracts *Elsorady, M. E. I. and Ali, S. E. Food Technology Research Institute, Agricultural Research Center, Giza, Egypt Article history Abstract Received: 22 October 2016 Roasted and unroasted Peanut skins were extracted by solvents of increasing polarity (EE80%, Received in revised form: EE, EA80% and EA). The yields and total phenols content of each extract were ordered as 15 December 2016 follows: EE80%> EE > EA80% > EA. There were significant differences between roasted Accepted:16 December 2016 and unroasted peanut skins and also between solvents. Total phenols content and scavenging activity were higher in roasted peanut skin than unroasted peanut skin. The main phenol and Keywords flavonoid compounds in roasted peanut skin were caffeic acid and hisperidin, respectively. Peanut skins are rich in phenol antioxidants. Ethanol 80% extract was the highest content of Peanut skins, total phenols and the highest free radical-scavenging activity. Peanut skin extracts may thus Antioxidant activity, be a potential source of natural antioxidants and retarding oxidation process in sunflower oil Free radical scavenging, during storage at 60ºC for 20 days. Synthetic antioxidants © All Rights Reserved Introduction Edible parts of the peanut consist of the kernel and the protective skin. This coating is removed from Antioxidants are often added to foods to prevent the kernels prior to application in snack products the formation of free radicals, to slow down the (Van Ha et al., 2007). Peanuts skins or testa have oxidation process and help to maintain nutritional long been regarded as being a low economic waste quality and shelf-life of foods. Several synthetic byproduct of the peanut industry. Skins are used as antioxidants, namely butylated hydroxyl toluene animal feed and are sold inexpensively. Based on (BHT), butylated hydroxyl anisole (BHA), propyl world in shell peanut production, 29 million tons of gallate (PG), and ethyl protocatechuate (EP) have peanuts are produced with an average skin content been used in foods to prevent oxidation. However, the of 2.6% (Sobolev and Cole, 2004). Dry blanching use of synthetic antioxidants in foods are restricted is the most commonly used practice to separate by legislation and discouraged due to their perceived skins from peanut kernels (Sobolev and Cole, 2004; toxicity and carcinogenicity. Therefore, extracts of Didzbalis et al., 2004). Blanching temperatures herbs, vegetables, fruits, cereals, nuts and other plant can range from 94°C (Didzbalis et al., 2004) to products rich in phenol, are of increasing interest for 175°C (Yu et al., 2005). During heat treatment, the the food industry as natural antioxidant ingredients brown peanut color that is formed increases due to (Win et al., 2011). sugar amino acid reactions, Millard browning, with Peanuts (Arachis hypogaea L.) are one of the subsequent production of melanoidins (Sobolev most widely used legumes in the world. Several and Cole, 2004). The products that are formed, phyto chemicals including resveratrol, flavan-3- “Millard reaction productions” (MRPS) especially ols and pro anthocyanidins have been identified melanoidins, possess antioxidant activity through in peanuts and evaluated for their potential health scavenging oxygen radicals or chelating metals benefits. Byproducts of the peanut industry which (Yilmaz and Toledo, 2005). Therefore, heat increases include peanut plant leaves, roots, hulls, shells and the antioxidant capacity of peanut skins. The raw skins have also been identified as rich sources of peanut skin color can be attributed to tannins and phytochemicals although currently these plant parts catechol-type compounds (Sobolev and Cole, 2004). have little economic value. These materials, peanut Peanut skin removal as well as roasting can skins are most commonly used as low cost fillers in affect the phenolic composition. Roasting decreases animal feed but are known to have an astringent taste the proanthocyanidin content of monomers, trimers and anti nutrient properties. The antioxidant activity and tetramers by 29-54% in peanut skins (Bolling of peanut skins has been reported (Nepote et al., et al., 2010; Tatsuno et al., 2012). Yu et al. (2006) 2002, 2005; Van Ha et al., 2007; Ballard et al., 2009; confirmed that roasting, a common practice in the Lewis et al., 2013). peanut industry used to remove peanut skins, yields *Corresponding author. Email:[email protected] 44 Elsorady, M. E. I. and Ali, S. E../IFRJ 25(1) : 43 - 50 comparable total phenolic concentration and potency Total phenols in skins that are produced in the direct peeling skin Total phenols (TP) content of peanut skins method. Roasting was reported to have had the least extracts were calorimetrically determined using the effect on total phenolics and procyanidin composition Folin-Ciocalteu method (Gamez-Meza et al., 1999). (Hwang et al., 2001; Yu et al., 2006). Peanut skins have been reported as being efficient free radical Radical scavenging activity (RSA) of extracts scavengers and metal chelators making them The electron donation ability of the obtained candidates for the stabilization of foods containing extracts was measured by bleaching of the purple water and transient metal ions (Van Ha et al., 2007). colored solution of DPPH according to the method of Peanut skins are a waste from blanched Hanato et al. (1988). processing of peanut kernels. Peanut skins are sometimes used to feed cattle however; their value Determination of phenol compounds could be increased if other more valuable uses could Phenol compounds of roasted peanut skin were be found. The objective of this work was to extract determined by HPLC according to the method antioxidant components from roasted and unroasted described by Goupy et al. (1999) as follow: 5 g of peanut skin using different solvents {ethanol (EE), sample were mixed with methanol and centrifuged aqueous ethanol (EE80%), ethyl acetate (EA) and at 1000 rpm for 10 min and the supernatant was aqueous ethyl acetate (EA80%)}, and to determine filtered through a 0.2 µm Millipore membrane filter the antioxidant activity of these extracts. then 1-3 ml was collected in a vial for injection into HPLC (Agilant series 1200) equipped with auto Materials and Methods sampling, injector, solvent degasser, UV detector set at 280 nm and quaternary HP pump (series 1100). Chemicals and sample collection The column temperature was maintained at 85ºC. Peanut (Arachis hypogaea L.) skins, as byproduct Gradient separation was carried out with methanol and sunflower oil were obtained from local market, and acetonitrile as a mobile phase at flow rate of Giza, Egypt. All solvents and chemicals used were of 1mL/min. phenolic acid standard from sigma Co. analytical grade. were dissolved in a mobile phase and injected into HPLC. Retention time and peak area were used for Peanut roasting calculation of phenol compounds concentration by Peanuts were roasted in an oven at 166ºC for 7 the data analysis of Agilant Software. min. Upon removal from the oven, roasted peanuts were cooled using forced ambient air, and skins were Determination of flavonoid compounds manually removed using gloved hands, collected and Flavonoid compounds of roasted peanut skins stored in sealed commercial bags (Davis et al., 2010). were determined by HPLC according to the method described by Mattila et al. (2000). Preparation of peanut skins extracts (PSE) Roasted and unroasted peanut skins (10g) were Model system samples for measurement oxidative extracted separately using organic solvents (100mL) stability. ethanol (EE), aqueous ethanol (EE80%), ethyl The roasted aqueous ethanol (EE80%) extract acetate (EA) and aqueous ethyl acetate (EA80%) of Peanut skins was applied to sunflower oil at 200, overnight in a shaker at room temperature (22±1ºC) 400, 600 and 800 ppm, in 250mL beakers each, to followed by filtration through Whatman No.1 filter examine their antioxidant activity. BHT (200 ppm) paper. The residues were re-extracted under the same was also applied for comparison among control and conditions. All vessels were wrapped with aluminum sunflower oil with extracts. The antioxidant-enriched foil to prevent light degradation during extraction oil samples were subjected to accelerated oxidation (Yu et al., 2005). in the dark in an oven at 60°C for 20 days. Aliquot 20 g sample were withdrawn periodically every 5 days Extraction yield (%) for determination of oxidative stability in triplicate. The combined filtrates were evaporated in a rotary evaporator below 40ºC. The extracts obtained Measurements of oxidative stability in sunflower oil after evaporation of organic solvents were weighted Peroxide value (PV) and Conjugated dienes to determine the extract yield and stored at -20°C (CD) of the oil samples were determined according until further use. to (AOAC, 2005). TBA value was determined according to Allen and Hamilton (1989). Antioxidant Elsorady, M. E. I. and Ali, S. E../IFRJ 25(1) : 43 - 50 45 Effectiveness (AE%) was calculated from the by molecular diffusion. Generally, monomers have equation reported by Adegoke and Gopala Krishna lower antioxidant activities than dimers and others. (1998): Data also indicated that, the yield of antioxidant extracts of roasted peanut skin was higher than those AE % = (PV of control – PV of test sample / PV of unroasted peanut skin. A two-way ANOVA was
Recommended publications
  • Ethanolysis Products from Douglas Fir
    AN ABSTRACT OF THE THESIS OF Mi p Fj}j,i., for the M S irLCheJni Name) (Degree) (Major) Date thesis is presented August 196rß Title: E a o s Products fr D u las Fir Abstract approved: Redacted for Privacy Majá Professors Douglas fir bark fines which contained 71+.8 percent of Klason lignin and 70.2 percent of one percent sodium hydroxide solubility and decayed Douglas fir wood which contained 53.9 percent of Klason lignin were subjected to ethanolysis. A slight modification of the Hibbert's ethanolysis procedure was used. The monomeric compounds present in the reaction products were then examined. Two fractions of ethyl ether soluble oil were obtained from both bark and wood samples, which were mixtures of monomeric compounds produced by the ethanolysis reaction. One, which was designated "PE" fraction, was obtained by an ether extraction of a tar -like water insoluble substance of the ethanolysis products, and the other one designated "LE" fraction was obtained by the ether extraction of a water solution of the water soluble ethanolysis product. Two dimensional paper partition chromatography of these ether soluble oils demonstrated the presence of 12 compounds in the bark "PE" fraction, four compounds in the bark "LE" fraction and nine compounds in the wood "LE" fraction. The wood "PE" fraction gave the same chromatogram as the wood "LE ". In the wood "LE ", the typical Hibbert's monomers, 1- ethoxy- l- guaiacyl- 2- propanone, 2- ethoxy -l- guaiacyl -l- propanone, guaiacyl- acetone, vanilloyl- acetyle, vanillin, and vanillic acid were identified. Ethyl ferulate was iso- lated from the bark "PE", which was the only C6 -C3, phenyl propane type compound obtained from the ethanolysis of the bark fines sample.
    [Show full text]
  • Molecular Progress in Research on Fruit Astringency
    Molecules 2015, 20, 1434-1451; doi:10.3390/molecules20011434 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Molecular Progress in Research on Fruit Astringency Min He, Henglu Tian, Xiaowen Luo, Xiaohua Qi and Xuehao Chen * School of Horticulture and Plant Protection, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, Jiangsu, China; E-Mails: [email protected] (M.H.); [email protected] (H.T.); [email protected] (X.L.); [email protected] (X.Q.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-514-8797-1894; Fax: +86-514-8734-7537. Academic Editor: Derek J. McPhee Received: 3 November 2014 / Accepted: 8 January 2015 / Published: 15 January 2015 Abstract: Astringency is one of the most important components of fruit oral sensory quality. Astringency mainly comes from tannins and other polyphenolic compounds and causes the drying, roughening and puckering of the mouth epithelia attributed to the interaction between tannins and salivary proteins. There is growing interest in the study of fruit astringency because of the healthy properties of astringent substances found in fruit, including antibacterial, antiviral, anti-inflammatory, antioxidant, anticarcinogenic, antiallergenic, hepatoprotective, vasodilating and antithrombotic activities. This review will focus mainly on the relationship between tannin structure and the astringency sensation as well as the biosynthetic pathways of astringent substances in fruit and their regulatory mechanisms. Keywords: fruit astringency; tannin; biosynthesis pathway; regulation 1. Introduction Recently, the quality of fruits and vegetables has become increasingly important in people’s daily lives. Fruit quality can generally be divided into the following three components: the first is commercial quality, which includes the fruit’s outer appearance, fruit length and diameter; the second is fruit structural quality, for example, in terms of flesh thickness and cavity size; and the third is fruit sensory quality.
    [Show full text]
  • Optimizing the Extraction of Phenolic Antioxidant Compounds from Peanut Skins
    Optimizing the Extraction of Phenolic Antioxidant Compounds from Peanut Skins Tameshia S. Ballard Dissertation submitted to the Faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for degree of Doctor of Philosophy in Biological Systems Engineering Parameswarakumar Mallikarjunan, Co-Chair Sean O’Keefe, Co-Chair Mike Zhang Craig Thatcher July 8, 2008 Blacksburg, VA Key Words: polyphenols, antioxidants, resveratrol, peanut skins, solid-liquid extraction, microwave-assisted extraction, response surface methodology, peanut butter, human brain microvascular endothelial cells © 2008 Tameshia S. Ballard Optimizing the Extraction of Phenolic Antioxidant Compounds from Peanut Skins Tameshia S. Ballard ABSTRACT Peanut skins are a low-value byproduct of peanut blanching and roasting operations. They have been shown to contain significant levels of phenolic compounds with demonstrated antioxidant properties. In this study, the effects of two types of extraction methods: solid-liquid extraction (SLE) and microwave-assisted extraction (MAE) on the recovery of phenolic compounds from peanut skins were investigated. Response surface methodology was used to optimize the extraction conditions based on total phenolic content (TPC), ORAC (oxygen radical absorbance capacity) activity and trans-resveratrol concentration. The protective effect of peanut skin extracts (PSE) against hydrogen peroxide (H2O2)-induced oxidative stress in human brain microvascular endothelial cells (HBMEC) and the effect of PSE on lipid oxidation in commercial peanut butter were evaluated. In the SLE method, the extraction parameters solvent type, solvent concentration, temperature and time were investigated. EtOH was found to be the most efficient solvent for the extraction of phenolics followed by MeOH, water and EA. Despite EtOH extracts having a higher TPC, samples extracted with MeOH demonstrated slightly higher ORAC activity.
    [Show full text]
  • Recent Advances in Nanomaterials for Dermal and Transdermal Applications
    colloids and interfaces Review Recent Advances in Nanomaterials for Dermal and Transdermal Applications Amani Zoabi, Elka Touitou * and Katherine Margulis * The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112192, Israel; [email protected] * Correspondence: to: [email protected] (E.T.); [email protected] (K.M.) Abstract: The stratum corneum, the most superficial layer of the skin, protects the body against environmental hazards and presents a highly selective barrier for the passage of drugs and cosmetic products deeper into the skin and across the skin. Nanomaterials can effectively increase the permeation of active molecules across the stratum corneum and enable their penetration into deeper skin layers, often by interacting with the skin and creating the distinct sites with elevated local concentration, acting as reservoirs. The flux of the molecules from these reservoirs can be either limited to the underlying skin layers (for topical drug and cosmeceutical delivery) or extended across all the sublayers of the epidermis to the blood vessels of the dermis (for transdermal delivery). The type of the nanocarrier and the physicochemical nature of the active substance are among the factors that determine the final skin permeation pattern and the stability of the penetrant in the cutaneous environment. The most widely employed types of nanomaterials for dermal and transdermal applications include solid lipid nanoparticles, nanovesicular carriers, microemulsions, nanoemulsions, and polymeric nanoparticles. The recent advances in the area of nanomaterial- assisted dermal and transdermal delivery are highlighted in this review. Citation: Zoabi, A.; Touitou, E.; Keywords: dermal delivery; transdermal delivery; permeation; cosmeceuticals; skin care; lipid Margulis, K.
    [Show full text]
  • ABSTRACT SIMPSON, JOY ANNA. Antioxidant Properties of Peanut
    ABSTRACT SIMPSON, JOY ANNA. Antioxidant Properties of Peanut Plant Leaves and Roots and Contribution of Specific Phenolic Compounds to Antioxidant Capacity. (Under the direction of Dr. T. H. Sanders). The peanut seeds represent less than 40 % of the total biomass of the peanut plant. Currently, peanut plants are left in the field after harvest or baled for animal feed. The research presented here was the second step in identifying bioactive compounds from peanut plants that may be the source for value added products for the peanut industry. The objective of this work was to determine the antioxidant capacity and total phenolic content for peanut leaves and roots, and to identify and quantify specific phenolic compounds contributing to the total antioxidant activity. Peanut leaves and roots were collected from a North Carolina (NC) research farm. Additional roots were collected from a Texas (TX) farm. Plant parts were freeze dried and extracted with methanol and aqueous methanol. Antioxidant activity of the extracts was tested using ORAC and DPPH assays. Total phenolics were measured using the Folin-Ciocalteau method. Chlorophyll was tested with the ORAC assay to dispel concern for potential chlorophyll antioxidant activity. Thin Layer Chromatography (TLC) and High Performance Liquid Chromatography (HPLC) were used for separation and preliminary identification of compounds contributing to the total antioxidant capacity of the peanut leaves and roots. HPLC coupled with Mass Spectrometry (MS) was utilized for identification and quantification of individual phenolic compounds in the peanut plant parts. The identified phenolic compounds were assayed individually and as a quantitative mixture with both antioxidant assays to determine the contribution of the individual compounds to the total antioxidant activity previously determined for peanut plant extracts.
    [Show full text]
  • Streptococcus Gallolyticus Natalia Jiménez, Inés Reverón, María Esteban-Torres, Félix López De Felipe, Blanca De Las Rivas and Rosario Muñoz*
    Jiménez et al. Microbial Cell Factories 2014, 13:154 http://www.microbialcellfactories.com/content/13/1/154 RESEARCH Open Access Genetic and biochemical approaches towards unravelling the degradation of gallotannins by Streptococcus gallolyticus Natalia Jiménez, Inés Reverón, María Esteban-Torres, Félix López de Felipe, Blanca de las Rivas and Rosario Muñoz* Abstract Background: Herbivores have developed mechanisms to overcome adverse effects of dietary tannins through the presence of tannin-resistant bacteria. Tannin degradation is an unusual characteristic among bacteria. Streptococcus gallolyticus is a common tannin-degrader inhabitant of the gut of herbivores where plant tannins are abundant. The biochemical pathway for tannin degradation followed by S. gallolyticus implies the action of tannase and gallate decarboxylase enzymes to produce pyrogallol, as final product. From these proteins, only a tannase (TanBSg) has been characterized so far, remaining still unknown relevant proteins involved in the degradation of tannins. Results: In addition to TanBSg, genome analysis of S. gallolyticus subsp. gallolyticus strains revealed the presence of an additional protein similar to tannases, TanASg (GALLO_0933). Interestingly, this analysis also indicated that only S. gallolyticus strains belonging to the subspecies “gallolyticus” possessed tannase copies. This observation was confirmed by PCR on representative strains from different subspecies. In S. gallolyticus subsp. gallolyticus the genes encoding gallate decarboxylase are clustered together and close to TanBSg, however, TanASg is not located in the vicinity of other genes involved in tannin metabolism. The expression of the genes enconding gallate decarboxylase and the two tannases was induced upon methyl gallate exposure. As TanBSg has been previously characterized, in this work the tannase activity of TanASg was demonstrated in presence of phenolic acid esters.
    [Show full text]
  • Brosimum Alicastrum) Hatice Kubra Tokpunar Clemson University, [email protected]
    Clemson University TigerPrints All Theses Theses 12-2010 Chemical Composition and Antioxidant Properties of Maya nut (Brosimum alicastrum) Hatice kubra Tokpunar Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Food Science Commons Recommended Citation Tokpunar, Hatice kubra, "Chemical Composition and Antioxidant Properties of Maya nut (Brosimum alicastrum)" (2010). All Theses. 991. https://tigerprints.clemson.edu/all_theses/991 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. CHEMICAL COMPOSITION AND ANTIOXIDANT PROPERTIES OF MAYA NUT (Brosimum alicastrum) A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Food, Nutrition and Culinary Science by Hatice Kubra Tokpunar December 2010 Accepted by: Dr. Feng Chen, Committee Chair Dr. Haibo Liu Dr. Xi Wang ABSTRACT Maya nut was investigated in term of its moisture, ash content, antioxidant activities, phenolic components by high pressure liquid chromatography-ultraviolet detector (HPLC-UV) and fatty acid composition by gas chromatography-flame ionization detector (GC-FID). The results showed that Maya nut was mainly composed of 55.06% linoleic acid (C18:2 n6), 27.2% palmitic acid (C16:0), 6.26% stearic acid (C18:0), 9.9% linolenic acid (C18:3 n3), and 3.36% Cis-11-Eicosenoic (C20:1). Maya nut possesses a higher content of polyunsaturated fatty acids (PUFAs) (linoleic and linolenic acid), but lower content of monounsaturated fatty acids (MUFAs) than canola oil and olive oil.
    [Show full text]
  • Antioxidant and Antimicrobial Attributes and Phenolics of Different Solvent Extracts from Leaves, Flowers and Bark of Gold Mohar
    Molecules 2011, 16, 7302-7319; doi:10.3390/molecules16097302 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Antioxidant and Antimicrobial Attributes and Phenolics of Different Solvent Extracts from Leaves, Flowers and Bark of Gold Mohar [Delonix regia (Bojer ex Hook.) Raf.] Ghulam Shabir 1,2, Farooq Anwar 1,*, Bushra Sultana 1, Zafar M. Khalid 2, Muhammad Afzal 2, Qaiser M. Khan 2 and M. Ashrafuzzaman 3,* 1 Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan 2 Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O.Box 577, Jhang Road, Faisalabad, Pakistan 3 Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Malaysia * Authors to whom correspondence should be addressed; E-Mails: [email protected] (F.A.); [email protected] (M.A.); Tel.:+92-41-9200161-69 ext. 3309 (F.A.); +603-8947-1176 (M.A.); Fax: +92-41-9200764 (F.A.); +603-8946-8968 (M.A.). Received: 29 June 2011; in revised form: 31 July 2011 / Accepted: 4 August 2011 / Published: 25 August 2011 Abstract: This paper describes the antioxidant and antimicrobial activities and phenolic components of different solvent (absolute methanol, absolute ethanol, absolute acetone, 80% methanol, 80% ethanol, 80% acetone and deionized water) extracts of leaves, flowers and bark of Gold Mohar [Delonix regia (Bojer ex Hook.) Raf.]. The extract yields from leaves, flowers and bark ranged from 10.19 to 36.24, 12.97 to 48.47 and 4.22 to 8.48 g/100 g dry weight (DW), respectively. Overall, 80% methanol extract produced from the leaves exhibited significantly (P < 0.05) higher antioxidant activity, with high phenolic contents (3.63 g GAE/100 g DW), total flavonoid contents (1.19 g CE/100 g DW), inhibition of peroxidation (85.54%), DPPH scavenging capacity (IC50 value 8.89 μg/mL) and reducing power (1.87).
    [Show full text]
  • Review 0103 - 5053 $6.00+0.00
    doi number J. Braz. Chem. Soc., Vol. 00, No. 00, 1-24, 2016. Printed in Brazil - ©2016 Sociedade Brasileira de Química Review 0103 - 5053 $6.00+0.00 The Genus Psychotria: Phytochemistry, Chemotaxonomy, Ethnopharmacology and Biological Properties Nivea O. Calixto,a Meri Emili F. Pinto,b Suelem D. Ramalho,b Marcela C. M. Burger,b Antonio F. Bobey,b Maria Claudia Marx Young,c Vanderlan S. Bolzani*,b and Angelo C. Pinto†,a aInstituto de Química, Universidade Federal do Rio de Janeiro, UFRJ, 21940-910 Rio de Janeiro-RJ, Brazil bInstituto de Química, Universidade Estadual Paulista, UNESP, 14800-060 Araraquara-SP, Brazil cNúcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, 04301-902 São Paulo-SP, Brazil Psychotria genus (Rubiaceae) is featured into the angiosperm, being the most speciose genus comprising approximately 1600 species. The available references demonstrate that Psychotria has several uses on traditional medicine including spiritual and cultural purposes, and presents great potential on pharmacological properties, especially the one related to neurodegenerative diseases. Despite its wide biological properties, this genus has shown complex phylogenetic analysis due to lack of chemotaxonomic information. In recent years, the interest in these plants has increased considerably and many active compounds have been isolated. Phytochemical investigations described in the literature confirmed the indole alkaloids as the major compounds and besides that, another particular chemical constituent are cyclic peptides, known as cyclotides. This present review will cover the relevant literature from 1962 until 2015, and outlines the current data on taxonomy, chemotaxonomy, traditional uses, pharmacological properties, chemical composition and ecological approach from Psychotria genus.
    [Show full text]
  • Method for the Formation of an Improved Photomode Image
    Europaisches Patentamt (19) European Patent Office Office europeen des brevets (11) EP 0 720 058 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) IntCI.6: G03F7/28 03.07.1996 Bulletin 1996/27 (21) Application number: 94203763.1 (22) Date of filing: 27.12.1994 (84) Designated Contracting States: (72) Inventors: BE DE FRGBNL • Leenders, Luc, c/o Agfa-Gevaert N.V. (71) Applicant: AGFA-GEVAERT B-2640 Mortsel (BE) naamloze vennootschap • Daems, Eddie, B-2640 Mortsel (BE) c/o Agfa-Gevaert N.V. B-2640 Mortsel (BE) (54) Method for the formation of an improved photomode image (57) A method is disclosed for the the formation of a photo mode image based on a the introduction on expo- sure of a difference of tackiness in a photosensitive layer which contains a reducible silver salt such as silver behenate. After exposure the still tacky parts selectively take up a reactive toner containing a reducing agent. By means of a heat post-treatment density is built up by reduction of the organic silver salt. This density can be increased by the presence in the toner of a pigment, pref- erable carbon black. In this way high maximal densities can be obtained. In a preferred embodiment the differ- ence in tackiness is introduced by image-wise photopol- ymerisation of a monomer also present in the photosensitive layer. < CO LO o o CM o Q_ LU Printed by Rank Xerox (UK) Business Services 2.12.4/3.4 EP 0 720 058 A1 Description 1 . Field of the invention. 5 The present invention relates to a method for the formation of an image based on an image-wise introduced differ- entiation in tackiness and using only dry processing steps.
    [Show full text]
  • CMAUP: a Database of Collective Molecular Activities of Useful Plants
    Supplementary Material CMAUP: A Database of Collective Molecular Activities of Useful Plants Xian Zeng1,2, Peng Zhang2, Yali Wang2, Chu Qin2, Shangying Chen2, Weidong He2, Lin Tao2,5, Ying Tan1, Dan Gao1, Bohua Wang3,4, Zhe Chen5, Weiping Chen4*, Yu Yang Jiang1*, Yu Zong Chen2* 1The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua University Shenzhen Graduate School, Shenzhen Technology and Engineering Laboratory for Personalized Cancer Diagnostics and Therapeutics, Shenzhen Kivita Innovative Drug Discovery Institute, Guangdong, P. R. China. 2Bioinformatics and Drug Design group, Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore. 3Key Lab of Agricultural Products Processing and Quality Control of Nanchang City, Jiangxi Agricultural University, Nanchang, 330045, P. R. China. 4College of Life and Environmental Sciences, Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan University of Arts and Science, Changde, Hunan, 415000, P. R. China. 5Zhejiang Key Laboratory of Gastro-intestinal Pathophysiology, Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, School of Medicine, Hangzhou Normal University, Hangzhou 310006, R. P. China. * To whom correspondence should be addressed. Y.Z. Chen Tel: +65 6516 6877; Fax: +65 6774 6756; Email: [email protected]. Correspondence may also be addressed to Y.Y. Jiang Tel: +86 755 2603 6430; Fax: +86 755 2603 6430; Email: [email protected] and W.P. Chen Tel.:+86 791 8381 3420. Fax: +86 791 8381 3655. E-mail: [email protected]. Supplementary Table S1. List of databases and research articles used in this work to collect medicinal, food, human edible, agricultural, and garden plants as well as chemical ingredients of all plants.
    [Show full text]
  • Identification of Phenolic Compounds from Peanut Skin Using HPLC-Msn
    Identification of Phenolic Compounds from Peanut Skin using HPLC-MSn By Kyle A. Reed Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Food Science and Technology Committee: Sean O’Keefe (Committee Chair) Rebecca O’Malley (Committee Co-Chair) Susan Duncan Kumar Mallikarjunan Joseph Marcy December 7, 2009 Blacksburg, Virginia Keywords: peanut skin, oligomeric proanthocyanidins, polyphenol, HPLC-MSn Identification of Phenolic Compounds from Peanut Skin using HPLC-MSn By Kyle A. Reed ABSTRACT Consumers view natural antioxidants as a safe means to reduce spoilage in foods. In addition, these compounds have been reported to be responsible for human health benefits. Identification of these compounds in peanut skins may enhance consumer interest, improve sales, and increase the value of peanuts. This study evaluated analytical methods which have not been previously incorporated for the analysis of peanut skins. Toyopearl size-exclusion chromatography (SEC) was used for separating phenolic size-classes in raw methanolic extract from skins of Gregory peanuts. This allowed for an enhanced analysis of phenolic content and antioxidant activity based on compound classes, and provided a viable preparatory separation technique for further identification. Toyopearl SEC of raw methanolic peanut skin extract produced nine fractions based on molecular size. Analysis of total phenolics in these fractions indicated Gregory peanut skins contain high concentrations of phenolic compounds. Further studies revealed the fractions contained compounds which exhibited antioxidant activities that were significantly higher than that of butylated hydroxyanisole (BHA), a common synthetic antioxidant used in the food industry.
    [Show full text]