(12) Patent Application Publication (10) Pub. No.: US 2015/0048053 A1 Cordonier Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2015/0048053 A1 Cordonier Et Al US 20150.048053A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0048053 A1 Cordonier et al. (43) Pub. Date: Feb. 19, 2015 (54) SELECTIVEETCHING METHOD Publication Classification (51) Int. C. (75) Inventors: Christopher Cordonier, Kanagawa C09K I3/02 (2006.01) (JP); Mitsuhiro Nabeshima, Kanagawa C23F L/40 (2006.01) (JP); Shingo Kumagai, Kanagawa (JP); C23F I/44 (2006.01) Naoki Takahashi, Kanagawa (JP) C23F I/38 (2006.01) (52) U.S. C. CPC. C09K 13/02 (2013.01); C23H 1/38 (2013.01); (73) Assignee: JCUCORPORATION, Tokyo (JP) C23F I/40 (2013.01); C23H I/44 (2013.01) USPC ............... 216/97: 216/99: 216/105: 216/100; (21) Appl. No.: 14/385,007 252/79.5; 562/476; 562/584; 562/477; 562/585 (22) PCT Fled: Sep. 3, 2012 (57) ABSTRACT A layer of a metal selected from titanium, niobium, tungsten, (86) PCT NO.: PCT/UP2012/072301 molybdenum, ruthenium, rhodium, arsenic, aluminum and S371 (c)(1), gallium, an oxide of the metal, a nitride of the metal, silicon (2), (4) Date: Sep. 12, 2014 nitride, hafnium nitride, tantalum nitride, or an alloy of these metals, the layer being provided on an underlying base mate (30) Foreign Application Priority Data rial selected from glass, silicon, copper and nickel, is selec tively etched with an alkaline etching solution containing a Mar. 12, 2012 (JP) ..................... PCT/JP2012/056315 predefined complexing agent. Patent Application Publication Feb. 19, 2015 Sheet 1 of 2 US 2015/0048053 A1 Patent Application Publication Feb. 19, 2015 Sheet 2 of 2 US 2015/0048053 A1 383 &sage 8: Si w88: US 2015/0048053 A1 Feb. 19, 2015 SELECTIVE ETCHING METHOD glass, silicon, copper and nickel, and the present inventors completed the present invention. TECHNICAL FIELD 0009 Specifically, the present invention relates to an etch 0001. The present invention relates to a method for selec ing method, including: bringing a layer of a metal selected tively etching a layer of a metal selected from titanium, nio from titanium, niobium, tungsten, molybdenum, ruthenium, bium, tungsten, molybdenum, ruthenium, rhodium, arsenic, rhodium, arsenic, aluminum and gallium, an oxide of the aluminum and gallium, an oxide of the metal, a nitride of the metal, a nitride of the metal, silicon nitride, hafnium nitride, metal, silicon nitride, hafnium nitride, tantalum nitride, oran tantalum nitride, or an alloy of these metals, the layer being alloy of these metals, the layer being provided on an under provided on an underlying base material selected from glass, lying base material selected from glass, silicon, copper and silicon, copper and nickel, into contact with an etching solu nickel, in preference to the underlying base material. tion which consists essentially of at least one complexing agent selected from compounds shown by Formulas (I) and BACKGROUND ART (II) and which is alkaline, thereby selectively etching the 0002. In general, when etching of titanium is carried out, a metal selected from titanium, niobium, tungsten, molybde hydrofluoric acid-based etching solution is used. However, num, ruthenium, rhodium, arsenic, aluminum and gallium, when Such a hydrofluoric acid-based etching solution is used, the oxide of the metal, the nitride of the metal, silicon nitride, the underlying base material will also be etched in cases hafnium nitride, tantalum nitride, or the alloy of these metals, where the underlying base material is nickel or glass. 0003. Furthermore, when etching of titanium is carried out, a sodium hydroxide solution may be used. However, Chemical Formula 1 titanium will hardly be etched with such an etching solution (I) alone, and the etching rate is very slow even when hydrogen peroxide is combined with the etching solution to improve the etching rate. Therefore, this etching solution is impracticable. R2 OH 0004. In recent years, as for etching solutions for titanium, a method in which EDTA is used as a complexing agent has been known, and, specifically, a method in which an alkaline etching solution containing EDTA and hydrogen peroxide is used has been known (Patent Document 1). wherein R' to R may be identical to or different from one 0005. However, while titanium deposited on lithium nio another, and are -R, OR, OOR, COOR, bate (LiNbO) can be selectively etched by this method, there COOOR, CHCOOR, CHCOOOR3, CRO or is a problem of slow etching rate. Furthermore, in this —CHCHCH, where R to R' may be identical to or different method, Some Substances (metals) cannot be etched, and the from one another, and are hydrogen, a C1 to C10 Saturated underlying base material may be adversely affected depend aliphatic group, a C1 to C10 unsaturated aliphatic group, oran ing on the type of the underlying base material. For example, aryl group, and since the etching rate of titanium is slower than the etching rate of nickel, the underlying base material is dissolved prior Chemical Formula 2) to dissolution of titanium. (II) PRIOR ART DOCUMENT Patent Document 0006 Patent Document 1: U.S. Pat. No. 4,554,050 SUMMARY OF THE INVENTION Problems that the Invention is to Solve 0007 An objective of the present invention is to provide a wherein R* to R' may be identical to or different from one method for selectively etching not only titanium but also another, and are - R, OR, OOR, COOR', other metals at practical speed in preference to the underlying COOOR", CHCOOR", CHCOOOR, CRPO, base material. —CH2CHCH. —CN, NC, NO. —F. —Cl, —Br. —I, or -SOR where R to R may be identical to or different Means for Solving the Problems from one another, and are hydrogen, a C1 to C10 Saturated 0008. The present inventors conducted intensive studies to aliphatic group, a C1 to C10 unsaturated aliphatic group, oran solve the above-described problem. Consequently, the aryl group, and X is -OH,-COOH or -COOOH. present inventors found that an alkaline etching Solution con 0010 Furthermore, the present invention relates to an taining a specific complexing agent can selectively etch a etching Solution for a metal selected from titanium, niobium, metal selected from titanium, niobium, tungsten, molybde tungsten, molybdenum, ruthenium, rhodium, arsenic, alumi num, ruthenium, rhodium, arsenic, aluminum and gallium, an num and gallium, an oxide of the metal, a nitride of the metal, oxide of the metal, a nitride of the metal, silicon nitride, silicon nitride, hafnium nitride, tantalum nitride, or an alloy hafnium nitride, tantalum nitride, or an alloy of these metals, of these metals, provided on an underlying base material in preference to the underlying base material selected from selected from glass, silicon, copper and nickel, the etching US 2015/0048053 A1 Feb. 19, 2015 Solution consisting essentially of at least one complexing 0014 FIG. 2 shows SPM photos and Ra values of samples agent selected from compounds shown by Formulas (I) and which were etched under etching conditions of 80° C. and 5 (II) minutes by using the etching Solution of Example 6 in Test Example 4. (In this figure. (A) refers to the surface of Sample A: (B) refers to the surface of Sample B: (C) refers to the Chemical Formula 3 surface of Sample B which was subjected to etching; and (D) refers to the surface of Sample A which was subjected to (I) etching.) (0015 FIG.3 shows SEM photos (upside) and SPM photos (downside) of samples which were etched under etching con R2 OH ditions of 80° C. and 40 minutes by using the etching solution of Example 6 in Test Example 5. (In this figure, (A) refers to the surface of Sample A; (B) refers to the surface of Sample B: and (C) refers to the surface of Sample B which was subjected wherein R' to R may be identical to or different from one to etching.) another, and are -R, OR, —OOR, COOR, (0016 FIG. 4 shows SEM photos (upside) and SPM photos COOOR, CHCOOR, CHCOOOR3, CRO or (downside) of samples which were etched under etching con —CHCHCH, where R to R' may be identical to ordifferent ditions of 80° C. and 25 seconds by using the etching solution from one another, and are hydrogen, a C1 to C10 Saturated of Example 6 in Test Example 6. (In this figure, (A) refers to aliphatic group, a C1 to C10 unsaturated aliphatic group, oran the surface of Sample A; (B) refers to the surface of Sample B: aryl group, and and (C) refers to the surface of Sample B which was subjected to etching.) Chemical Formula 4 MODE FOR CARRYING OUT THE INVENTION (II) 0017. The method for selectively etching a metal selected from titanium, niobium, tungsten, molybdenum, ruthenium, rhodium, arsenic, aluminum and gallium, an oxide of the metal, a nitride of the metal, silicon nitride, hafnium nitride, tantalum nitride, or an alloy of these metals according to the present invention (hereinafter, simply referred to as “the method of the present invention') is carried out by bringing a layer of a metal selected from titanium, niobium, tungsten, molybdenum, ruthenium, rhodium, arsenic, aluminum and wherein R* to R' may be identical to or different from one gallium, an oxide of the metal, a nitride of the metal, silicon another, and are - R', -OR, —OOR', -COOR', nitride, hafnium nitride, tantalum nitride, or an alloy of these COOOR", CHCOOR", CHCOOOR, CRPO, metals, the layer being provided on an underlying base mate —CH2CHCH. —CN, NC, NO. —F. —Cl, —Br. —I, rial selected from glass, silicon, copper and nickel, into con or - SOR where R to R may be identical to or different tact with an etching solution which consists essentially of at from one another, and are hydrogen, a C1 to C10 Saturated least one complexing agent selected from compounds shown aliphatic group, a C1 to C10 unsaturated aliphatic group, oran by Formulas (I) and (II) and which is alkaline.
Recommended publications
  • Synthesis and Photoelectrochemical Characterization of Tantalum Oxide Nanoparticles and Their Nitrogen Derivatives
    University of Nevada, Reno Synthesis and Photoelectrochemical Characterization of Tantalum Oxide Nanoparticles and their Nitrogen Derivatives A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical engineering by Vijay Khanal Dr. Vaidyanathan (Ravi) Subramanian – Advisor August 2019 The Graduate School We recommend that the dissertation prepared under our supervision by VIJAY KHANAL Entitled Synthesis and Photoelectrochemical Characterization of Tantalum Oxide Nanoparticles and their nitrogen Derivatives Be accepted in partial fulfillment of the Requirements for the degree of DOCTOR OF PHILOSOPHY Vaidyanathan (Ravi) Subramanian, Ph.D., Advisor Dhanesh Chandra, Ph.D., Committee Member Alan Fuchs, Ph.D., Committee Member Victor Vasquez, Ph.D., Committee Member Mario A. Alpuche, Ph.D. Graduate School Representative David W. Zeh, Ph.D., Dean, Graduate School August 2019 i ABSTRACT This work presents a surfactant-mediated approach for the synthesis of Ta2O5 nanopar- 2 1 2 1 ticles with a very high surface area (41 m g− vs. 1.6 m g− for commercial equivalent), and their subsequent nitridation to yield two distinct nitrogen derivatives: TaON and Ta3N5. Excellent photocatalytic efficiency of Ta2O5 toward photodegradation of methy- lene blue and NOx removal is reported. Ta3N5 shows significant photoconversion of methylene blue attributable to its lowered bandgap and high adsorption capability of MB molecules on its surface. A new method for simplifying the existing synthesis protocols of single phase Tantalum oxynitride (TaON) was devised. Series of photoelectrochemical characterization shows that the newly synthesized TaON can significantly enhance the photoassisted charge generation, separation, and transportation compared to the parent oxide (Ta2O5).
    [Show full text]
  • Ethanolysis Products from Douglas Fir
    AN ABSTRACT OF THE THESIS OF Mi p Fj}j,i., for the M S irLCheJni Name) (Degree) (Major) Date thesis is presented August 196rß Title: E a o s Products fr D u las Fir Abstract approved: Redacted for Privacy Majá Professors Douglas fir bark fines which contained 71+.8 percent of Klason lignin and 70.2 percent of one percent sodium hydroxide solubility and decayed Douglas fir wood which contained 53.9 percent of Klason lignin were subjected to ethanolysis. A slight modification of the Hibbert's ethanolysis procedure was used. The monomeric compounds present in the reaction products were then examined. Two fractions of ethyl ether soluble oil were obtained from both bark and wood samples, which were mixtures of monomeric compounds produced by the ethanolysis reaction. One, which was designated "PE" fraction, was obtained by an ether extraction of a tar -like water insoluble substance of the ethanolysis products, and the other one designated "LE" fraction was obtained by the ether extraction of a water solution of the water soluble ethanolysis product. Two dimensional paper partition chromatography of these ether soluble oils demonstrated the presence of 12 compounds in the bark "PE" fraction, four compounds in the bark "LE" fraction and nine compounds in the wood "LE" fraction. The wood "PE" fraction gave the same chromatogram as the wood "LE ". In the wood "LE ", the typical Hibbert's monomers, 1- ethoxy- l- guaiacyl- 2- propanone, 2- ethoxy -l- guaiacyl -l- propanone, guaiacyl- acetone, vanilloyl- acetyle, vanillin, and vanillic acid were identified. Ethyl ferulate was iso- lated from the bark "PE", which was the only C6 -C3, phenyl propane type compound obtained from the ethanolysis of the bark fines sample.
    [Show full text]
  • This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Development of a High Temperature Sensor Suitable for Post-Processed Integration with Electronics Aleksandr Tabasnikov A thesis submitted for the degree of Doctor of Philosophy The University of Edinburgh 2016 Declaration of originality I declare that this thesis has been composed by me, the work is my own, and it has not been submitted for any other degree or professional qualification. Research recorded was carried out by me except as specified below: X-ray diffraction measurement results obtained using X-ray diffractometer Siemens D5000 were collected by Richard Yongqing Fu and his students Jimmy Zhou and Chao Zhao at the University of West of Scotland. Measurement results are analysed in section 4.4.6 of Chapter 4 and have been jointly published in 2014 (DOIs: 10.1109/ICMTS.2014.6841491).
    [Show full text]
  • Surface Modification of G-C3N4 by Hydrazine: Simple Way for Noble-Metal Free Hydrogen Evolution Catalysts
    Surface modification of g-C3N4 by hydrazine: Simple way for noble-metal free hydrogen evolution catalysts Item Type Article Authors Chen, Yin; Lin, Bin; Wang, Hong; Yang, Yong; Zhu, Haibo; Yu, Weili; Basset, Jean-Marie Citation Surface modification of g-C3N4 by hydrazine: Simple way for noble-metal free hydrogen evolution catalysts 2015 Chemical Engineering Journal Eprint version Post-print DOI 10.1016/j.cej.2015.10.080 Publisher Elsevier BV Journal Chemical Engineering Journal Rights NOTICE: this is the author’s version of a work that was accepted for publication in Chemical Engineering Journal. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Chemical Engineering Journal, 2 November 2015. DOI: 10.1016/ j.cej.2015.10.080 Download date 03/10/2021 23:51:44 Link to Item http://hdl.handle.net/10754/581797 Accepted Manuscript Surface modification of g-C3N4 by hydrazine: Simple way for noble-metal free hydrogen evolution catalysts Yin Chen, Bin Lin, Hong Wang, Yong Yang, Haibo Zhu, Weili Yu, Jean-marie Basset PII: S1385-8947(15)01491-6 DOI: http://dx.doi.org/10.1016/j.cej.2015.10.080 Reference: CEJ 14356 To appear in: Chemical Engineering Journal Received Date: 18 June 2015 Revised Date: 9 October 2015 Accepted Date: 26 October 2015 Please cite this article as: Y. Chen, B. Lin, H. Wang, Y.
    [Show full text]
  • Tantalum Nitride Nanotube Photoanodes: Establishing a Beneficial Back-Contact by Lift-Off and Transfer to Titanium Nitride Layer
    Tantalum nitride nanotube photoanodes: establishing a beneficial back-contact by lift-off and transfer to titanium nitride layer Lei Wang, a Anca Mazare, a Imgon Hwang, a and Patrik Schmuki a,b,* a Department of Materials Science and Engineering, WW4-LKO, University of Erlangen- Nuremburg, Martensstrasse 7, D-91058 Erlangen, Germany. b Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia * E-mail: [email protected] Abstract In this work we introduce the use of TiN/Ti2 N layers as a back contact for lifted-off membranes of anodic Ta3N5 nanotube layers. In photoelectrochemical H2 generation experiments under simulated AM 1.5G light, shift of the onset potential for anodic photocurrents to lower potentials is observed, as well as a higher magnitude of the photocurrents compared to conventional Ta3N5 nanotubes (~0.5 V RHE ). We ascribe this beneficial effect to the improved conductive properties of the TiNx -based back contact layer that enables a facilitated electron-transport for tantalum-nitride based materials to the conductive substrate. Key words: tantalum nitride; nanotube membranes; titanium nitride; water splitting Link to the published article: http://dx.doi.org/10.1016/j.elecom.2016.08.012 1. Introduction Ta3N5 is considered to be one of the most important semiconductor materials for photoelectrochemical (PEC) water splitting. It has a visible-light active band gap of ~2.1 eV that embraces the H2O H2/O2 reduction-oxidation potentials, and thus may yield a 15.9% theoretical maximum solar-to-hydrogen (STH) conversion efficiency [1-9]. Extensive research has focused on nanostructuring the Ta3N5 photoelectrodes, in the form of nanoparticles, nanorods, or nanotubes [10-15].
    [Show full text]
  • Tanねlum Penねchlorid』E with Ammo血血the Vapor Pkase An《量properties of the Tan.Tal㎜ N’Itride Forme通
    676 DENKI KAGAKU Fomation Process of Tanね1㎜Nitri-e by the Reaction of Tanねlum Penねchlorid』e with Ammo血血the VaPor Pkase an《量Properties of the Tan.tal㎜ N’itride Forme通 Akimasa YAJIMA*,Ryoko MATsuzAKI*and Yuzo SAEKI* The reaction products of gaseous TaC15with ammonia were TaCl5・5NH3at2QO。CラTaC15・5 NH3,Ta3N5,NH4Cl at250~600℃,Ta3N5and NH4Cl at650~950。C,Ta3N5,Ta4N5・and NH4Cl at 10000C,and Ta4N5シTa2N,θ一TaN,ε一TaN,NH4Cl,and HCl at1100~1400。C.In the vapor、phase reaction of gaseous TaCl5with ammonia,the reaction of gaseous TaC15with ammonia to form TaCI5・5NH3㏄curs丘rst.Above6α.235。C,the TaC15・5NH3reacts with ammonia to form Ta3N5. Above侃.1000。C,the Ta3N5decomposes to Ta4N5.Above侃。1100。C,in addition to these reactiolls, the nitriding of tantalum,formed by the reduction of gaseous TaCI5with hydrogen resulting from the thermal dissociation of ammonia,also o㏄urs to form Ta2Nシθ一TaN,andε一TaN.On heating the Ta3N5,formed by the vapor-phase reaction,in an argon atmosphere,it changed to Ta4N5at6α・ 9000C,to Ta5N6,θ一TaN,andε一TaN at6α.1100。C,and then toθ一TaN andε一TaN at1300~1400。C. The tantalum nitrides formed above1200。C were uniform,ultra丘ne powders with the particle diametersoftheorderof1/100粋m. 11ntroduction 2 Experimental The vapor-phase reaction of transition metal 2.1Materials chlorides with ammonia has recently become The TaCl,used was prepared by the reaction important for the preparation of6ne powders of tantalum powder(Ta99.8形,Hermann C. or thin丘lms of transition metal nitrides,which Starck Berlin)with chlorine at350℃and puri一 are aquiring importance
    [Show full text]
  • Molecular Progress in Research on Fruit Astringency
    Molecules 2015, 20, 1434-1451; doi:10.3390/molecules20011434 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Molecular Progress in Research on Fruit Astringency Min He, Henglu Tian, Xiaowen Luo, Xiaohua Qi and Xuehao Chen * School of Horticulture and Plant Protection, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, Jiangsu, China; E-Mails: [email protected] (M.H.); [email protected] (H.T.); [email protected] (X.L.); [email protected] (X.Q.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-514-8797-1894; Fax: +86-514-8734-7537. Academic Editor: Derek J. McPhee Received: 3 November 2014 / Accepted: 8 January 2015 / Published: 15 January 2015 Abstract: Astringency is one of the most important components of fruit oral sensory quality. Astringency mainly comes from tannins and other polyphenolic compounds and causes the drying, roughening and puckering of the mouth epithelia attributed to the interaction between tannins and salivary proteins. There is growing interest in the study of fruit astringency because of the healthy properties of astringent substances found in fruit, including antibacterial, antiviral, anti-inflammatory, antioxidant, anticarcinogenic, antiallergenic, hepatoprotective, vasodilating and antithrombotic activities. This review will focus mainly on the relationship between tannin structure and the astringency sensation as well as the biosynthetic pathways of astringent substances in fruit and their regulatory mechanisms. Keywords: fruit astringency; tannin; biosynthesis pathway; regulation 1. Introduction Recently, the quality of fruits and vegetables has become increasingly important in people’s daily lives. Fruit quality can generally be divided into the following three components: the first is commercial quality, which includes the fruit’s outer appearance, fruit length and diameter; the second is fruit structural quality, for example, in terms of flesh thickness and cavity size; and the third is fruit sensory quality.
    [Show full text]
  • Nonaqueous Syntheses of Metal Oxide and Metal Nitride Nanoparticles
    Max-Planck Institut für Kolloid and Grenzflächenforschung Nonaqueous Syntheses of Metal Oxide and Metal Nitride Nanoparticles Dissertation zur Erlangung des akademischen Grades “doctor rerum naturalium” (Dr. rer. nat.) in der Wissenschaftsdisziplin “Kolloidchemie” eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät Universität Potsdam von Jelena Buha Potsdam, im Januar 2008 Dieses Werk ist unter einem Creative Commons Lizenzvertrag lizenziert: Namensnennung - Keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 2.0 Deutschland Um die Lizenz anzusehen, gehen Sie bitte zu: http://creativecommons.org/licenses/by-nc-sa/2.0/de/ Elektronisch veröffentlicht auf dem Publikationsserver der Universität Potsdam: http://opus.kobv.de/ubp/volltexte/2008/1836/ urn:nbn:de:kobv:517-opus-18368 [http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18368] С’ вером у Богa Abstract Nanostructured materials are materials consisting of nanoparticulate building blocks on the scale of nanometers (i.e. 10-9 m). Composition, crystallinity and morphology can enhance or even induce new properties of the materials, which are desirable for todays and future technological applications. In this work, we have shown new strategies to synthesise metal oxide and metal nitride nanomaterials. The first part of the work deals with the study of nonaqueous synthesis of metal oxide nanoparticles. We succeeded in the synthesis of In2O3 nanopartcles where we could clearly influence the morphology by varying the type of the precursors and the solvents; of ZnO mesocrystals by using acetonitrile as a solvent; of transition metal oxides (Nb2O5, Ta2O5 and HfO2) that are particularly hard to obtain on the nanoscale and other technologically important materials. Solvothermal synthesis however is not restricted to formation of oxide materials only.
    [Show full text]
  • Optimizing the Extraction of Phenolic Antioxidant Compounds from Peanut Skins
    Optimizing the Extraction of Phenolic Antioxidant Compounds from Peanut Skins Tameshia S. Ballard Dissertation submitted to the Faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for degree of Doctor of Philosophy in Biological Systems Engineering Parameswarakumar Mallikarjunan, Co-Chair Sean O’Keefe, Co-Chair Mike Zhang Craig Thatcher July 8, 2008 Blacksburg, VA Key Words: polyphenols, antioxidants, resveratrol, peanut skins, solid-liquid extraction, microwave-assisted extraction, response surface methodology, peanut butter, human brain microvascular endothelial cells © 2008 Tameshia S. Ballard Optimizing the Extraction of Phenolic Antioxidant Compounds from Peanut Skins Tameshia S. Ballard ABSTRACT Peanut skins are a low-value byproduct of peanut blanching and roasting operations. They have been shown to contain significant levels of phenolic compounds with demonstrated antioxidant properties. In this study, the effects of two types of extraction methods: solid-liquid extraction (SLE) and microwave-assisted extraction (MAE) on the recovery of phenolic compounds from peanut skins were investigated. Response surface methodology was used to optimize the extraction conditions based on total phenolic content (TPC), ORAC (oxygen radical absorbance capacity) activity and trans-resveratrol concentration. The protective effect of peanut skin extracts (PSE) against hydrogen peroxide (H2O2)-induced oxidative stress in human brain microvascular endothelial cells (HBMEC) and the effect of PSE on lipid oxidation in commercial peanut butter were evaluated. In the SLE method, the extraction parameters solvent type, solvent concentration, temperature and time were investigated. EtOH was found to be the most efficient solvent for the extraction of phenolics followed by MeOH, water and EA. Despite EtOH extracts having a higher TPC, samples extracted with MeOH demonstrated slightly higher ORAC activity.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,436,268 B1 Melody Et Al
    USOO6436268B1 (12) United States Patent (10) Patent No.: US 6,436,268 B1 Melody et al. (45) Date of Patent: Aug. 20, 2002 (54) NON-AQUEOUSELECTROLYTES FOR 5,587,871. A 12/1996 Ue et al. ANODIZING 5,605,561 A 2/1997 Iwabuchi et al. 5,670,741. A * 9/1997 Stromcuist et al. ...... 149/109.6 (75) Inventors: Brian John Melody; John Tony 5,687,057. A 11/1997 Dapo Kinard, both of Greer; David 5,716,511 A 2/1998 Melody et al. Alexander Wheeler, Williamston; 6,051,044. A 4/2000 Fife Philip Michael Lessner, Simpsonville, FOREIGN PATENT DOCUMENTS all of SC (US) EP O569 121 11/1993 GB 537474 6/1941 (73) Assignee: Kemet Electronics Corporation, GB 2168383 6/1986 Greenville, SC (US) WO WO98/19811 5/1998 Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS patent is extended or adjusted under 35 Jackson N.F. et al., Institute of Electrical Engineers Steve U.S.C. 154(b) by 77 days. nage, GB, “The use of niobium as an anode material in liquid filled electrolytic capacitors', Database accession No. (21) Appl. No.: 09/630,605 733083 XP002144913 Abstract & Electrocomponent Sci (22) Filed: Aug. 2, 2000 ence and Technology, Sep. 1974, UK vol. 1, No. 1, pp. 27 37. (51) Int. Cl................................................. C25D 11/02 Patent Abstracts of Japan, vol. 10, No. 373, Abs Grp No.: (52) U.S. Cl. ........................ 205/234; 205/322; 205/332 C391, Abstracting Applin. No. 60–8438, Dec. 1986. (58) Field of Search ................................. 205/234, 322, Melody et al., An Improved Series of Electrolytes For Use 205/332 In The Anodization of Tantalum Capacitor Anodes, Pre Sented at the Capacitor and Resistor Technology Symposium (56) References Cited (C.A.R.TX.
    [Show full text]
  • Deposition and Characterization of Magnetron Sputtered Bcc Tantalum
    Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation Printing note: If you do not wish to print this page, then select “Pages from: first page # to: last page #” on the print dialog screen The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty. ABSTRACT DEPOSITION AND CHARACTERIZATION OF MAGNETRON SPUTTERED BCC TANTALUM by Anamika Patel The goal of this thesis was to provide scientific and technical research results for developing and characterizing tantalum (Ta) coatings on steel substrates deposited by DC magnetron sputtering. Deposition of tantalum on steel is of special interest for the protection it offers to surfaces, e.g.
    [Show full text]
  • Recent Advances in Nanomaterials for Dermal and Transdermal Applications
    colloids and interfaces Review Recent Advances in Nanomaterials for Dermal and Transdermal Applications Amani Zoabi, Elka Touitou * and Katherine Margulis * The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112192, Israel; [email protected] * Correspondence: to: [email protected] (E.T.); [email protected] (K.M.) Abstract: The stratum corneum, the most superficial layer of the skin, protects the body against environmental hazards and presents a highly selective barrier for the passage of drugs and cosmetic products deeper into the skin and across the skin. Nanomaterials can effectively increase the permeation of active molecules across the stratum corneum and enable their penetration into deeper skin layers, often by interacting with the skin and creating the distinct sites with elevated local concentration, acting as reservoirs. The flux of the molecules from these reservoirs can be either limited to the underlying skin layers (for topical drug and cosmeceutical delivery) or extended across all the sublayers of the epidermis to the blood vessels of the dermis (for transdermal delivery). The type of the nanocarrier and the physicochemical nature of the active substance are among the factors that determine the final skin permeation pattern and the stability of the penetrant in the cutaneous environment. The most widely employed types of nanomaterials for dermal and transdermal applications include solid lipid nanoparticles, nanovesicular carriers, microemulsions, nanoemulsions, and polymeric nanoparticles. The recent advances in the area of nanomaterial- assisted dermal and transdermal delivery are highlighted in this review. Citation: Zoabi, A.; Touitou, E.; Keywords: dermal delivery; transdermal delivery; permeation; cosmeceuticals; skin care; lipid Margulis, K.
    [Show full text]