Ashley National Forest Assessment: Terrestrial Ecosystems, System

Total Page:16

File Type:pdf, Size:1020Kb

Ashley National Forest Assessment: Terrestrial Ecosystems, System Ashley National Forest Assessment Terrestrial Ecosystems, System Drivers, and Stressors Report Prepared by: Allen Huber, ecologist Colette Webb, silviculturist Chris Plunkett, soil, water, air program manager Brad Gillespie, fuels management specialist (WO Enterprise) Chris Gamble, fuels specialist Joe Flores, fire management officer Dustin Bambrough, ecosystems staff officer for: Ashley National Forest September 2017 In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident. Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA’s TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may be made available in languages other than English. To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online at http://www.ascr.usda.gov/complaint_filing_cust.html and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form. To request a copy of the complaint form, call (866) 632-9992. Submit your completed form or letter to USDA by: (1) mail: U.S. Department of Agriculture, Office of the Assistant Secretary for Civil Rights, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410; (2) fax: (202) 690-7442; or (3) email: [email protected]. USDA is an equal opportunity provider, employer, and lender. We make every effort to create documents that are accessible to individuals of all abilities; however, limitations with our word processing programs may prevent some parts of this document from being readable by computer-assisted reading devices. If you need assistance with this document, please contact the Ashley National Forest at 435- 781-5118. Resource Report Name Ashley National Forest Assessment Contents Introduction ..................................................................................................................................... 1 Spatial Scale .................................................................................................................................... 1 Ecosystem Characteristics ............................................................................................................... 7 Rare and Unique Habitat Types .................................................................................................. 7 Calcareous or Rich Fens .......................................................................................................... 8 Peatlands or Fens (Glacial Canyons) ..................................................................................... 10 Peatlands or Fens (Limestone) .............................................................................................. 11 Composition and Distribution of Vegetation ............................................................................ 13 Alpine .................................................................................................................................... 13 Coniferous Forest .................................................................................................................. 21 Aspen ..................................................................................................................................... 31 Sagebrush .............................................................................................................................. 43 Pinyon and Juniper Woodlands ............................................................................................. 65 Desert Shrub .......................................................................................................................... 69 Structural Stages of Vegetation ................................................................................................. 78 Alpine .................................................................................................................................... 78 Aspen ..................................................................................................................................... 82 Coniferous Forest .................................................................................................................. 89 Pinyon Juniper Woodlands .................................................................................................. 111 Desert Shrub ........................................................................................................................ 113 Landscape Disturbances .......................................................................................................... 119 Geomorphic ......................................................................................................................... 119 Insects and Disease .............................................................................................................. 121 Fire....................................................................................................................................... 139 Literature Cited ............................................................................................................................ 154 Appendices .................................................................................................................................. 175 Appendix A. Description of Lodgepole Pine Structure .......................................................... 175 Appendix B. Description of Douglas-fir Structure ................................................................. 176 Appendix C. Description of Mixed Conifer Structure ............................................................ 176 Tables Table 1. National Hierarchical Framework of Ecological Units (domain, division, province, and section) on the Ashley National Forest.................................................................................... 2 Table 2. National Hierarchical Framework of Ecological Units, subsection level, on the Ashley National Forest ........................................................................................................................ 3 Table 3. Landtype associations on the Ashley National Forest ....................................................... 3 Table 4. Vegetation types on the Ashley National Forest ............................................................... 5 Table 5. Vegetation types evaluated in this assessment .................................................................. 5 Table 6. Vegetation types and acres in the alpine communities on the Ashley National Forest .. 13 Table 7. Alpine plant communities in the Alpine Moraine and Uinta Bollie landtype associations ............................................................................................................................................... 13 Table 8. Coniferous forest and associated seral aspen and coniferous. Woodland forest and persistent aspen are not displayed. ........................................................................................ 21 Table 9. Comparison of the mixed conifer and Engelmann spruce subalpine habitat types on the Ashley National Forest .......................................................................................................... 27 Table 10. Vegetation type and acres in aspen communities on the Ashley National Forest ........ 31 Table 11. Landtype associations that support aspen communities on the Ashley National Forest 31 i Resource Report Name Ashley National Forest Assessment Table 12. Vegetation type and acres in sagebrush communities on the Ashley National Forest . 44 Table 13. Landtype associations that support mountain big sagebrush (Artemisia tridentata var. vaseyana) on the Ashley National Forest .............................................................................. 44 Table 14. Landtype associations that support Wyoming big sagebrush (Artemisia tridentata var. wyomingensis) on the Ashley National Forest ...................................................................... 45 Table 15. Landtype associations that support black sagebrush (Artemisia nova) on the Ashley National Forest ...................................................................................................................... 46 Table 16. Vegetation type and acres for desert shrub communities on the Ashley National Forest ............................................................................................................................................... 69 Table 17. Landtype associations with known natural geomorphic disturbances ......................... 120 Table 18. Landtype associations
Recommended publications
  • Landscape Assessment for the Buckskin Mountain Area, Wildlife Habitat Improvement
    Utah State University DigitalCommons@USU All U.S. Government Documents (Utah Regional U.S. Government Documents (Utah Regional Depository) Depository) 11-19-2004 Landscape Assessment for the Buckskin Mountain Area, Wildlife Habitat Improvement Bureau of Land Management Follow this and additional works at: https://digitalcommons.usu.edu/govdocs Part of the Ecology and Evolutionary Biology Commons Recommended Citation Bureau of Land Management, "Landscape Assessment for the Buckskin Mountain Area, Wildlife Habitat Improvement" (2004). All U.S. Government Documents (Utah Regional Depository). Paper 77. https://digitalcommons.usu.edu/govdocs/77 This Other is brought to you for free and open access by the U.S. Government Documents (Utah Regional Depository) at DigitalCommons@USU. It has been accepted for inclusion in All U.S. Government Documents (Utah Regional Depository) by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Bureau of Land Management Phone 435.644.4300 Grand Staircase-Escalante NM 190 E. Center Street Fax 435.644.4350 Kanab, UT 84741 Landscape Assessment for the Buckskin Mountain Area Wildlife Habitat Improvement Version: 19 November 2004 Table of Contents Chapter 1. Introduction..................................................................................................................... 3 A. Background and Need for Management Activity ................................................................... 3 B. Purpose .....................................................................................................................................
    [Show full text]
  • GOOSEBERRYLEAF GLOBEMALLOW Sphaeralcea Grossulariifolia (Hook
    GOOSEBERRYLEAF GLOBEMALLOW Sphaeralcea grossulariifolia (Hook. & Arn.) Rydb. Malvaceae – Mallow family Corey L. Gucker & Nancy L. Shaw | 2018 ORGANIZATION NOMENCLATURE Sphaeralcea grossulariifolia (Hook. & Arn.) Names, subtaxa, chromosome number(s), hybridization. Rydb., hereafter referred to as gooseberryleaf globemallow, belongs to the Malveae tribe of the Malvaceae or mallow family (Kearney 1935; La Duke 2016). Range, habitat, plant associations, elevation, soils. NRCS Plant Code. SPGR2 (USDA NRCS 2017). Subtaxa. The Flora of North America (La Duke 2016) does not recognize any varieties or Life form, morphology, distinguishing characteristics, reproduction. subspecies. Synonyms. Malvastrum coccineum (Nuttall) A. Gray var. grossulariifolium (Hooker & Arnott) Growth rate, successional status, disturbance ecology, importance to animals/people. Torrey, M. grossulariifolium (Hooker & Arnott) A. Gray, Sida grossulariifolia Hooker & Arnott, Sphaeralcea grossulariifolia subsp. pedata Current or potential uses in restoration. (Torrey ex A. Gray) Kearney, S. grossulariifolia var. pedata (Torrey ex A. Gray) Kearney, S. pedata Torrey ex A. Gray (La Duke 2016). Seed sourcing, wildland seed collection, seed cleaning, storage, Common Names. Gooseberryleaf globemallow, testing and marketing standards. current-leaf globemallow (La Duke 2016). Chromosome Number. Chromosome number is stable, 2n = 20, and plants are diploid (La Duke Recommendations/guidelines for producing seed. 2016). Hybridization. Hybridization occurs within the Sphaeralcea genus.
    [Show full text]
  • Germination and Seedling Establishment of Spiny Hopsage (Grayia Spinosa [Hook.] Moq.)
    AN ABSTRACT OF THE THESIS OF Nancy L. Shaw for the degree of Doctor of Philosophy in Crop and Soil Sciences presented on March 19, 1992 Title: Germination and Seedling Establishment of Spiny Hopsage (Grayia Spinosa [Hook.] Moq.) Abstract approved:_Redactedfor Privacy von r. ULdUe Reestablishment of spiny hopsage(Grayia spinosa [Hook.] Moq.) where depleted or lost on shrub steppe sites can improve forage, plant cover, and soil stabilization. The objectives of this study were to: 1) determine direct-seeding requirements; 2) develop optimum germination pretreatments; and 3) examine dormancy mechanisms in spiny hopsage fruits and seeds. The effects of seed source, planting date,and site preparation method onseed germination and seedling establishment (SE) were examined at Birds of Prey and Reynolds Creek in southwestern Idaho. Three seed sources were planted on rough or compact seedbeds on 4 dates in 1986-87 and 3 dates in 1987-88. Exposure to cool-moist environments improved spring SE from early fall (EF) and late fall (LF) plantings. Few seedlings emerged from early (ESp) or late spring (LSp) plantings. SE was low at: 1 site in 1986-87 and atboth sites in 1987-88, probably due to lack of precipitation. For the successful 1986-87 planting, seedling density was greater on rough compared to compact seedbeds in April andMay, possiblydue to improved microclimate conditions. Growth rate varied among seed sources, but seedlings developed a deep taproot (mean length 266 mm) with few lateral roots the first season. Seeds were planted on 3 dates in 1986-87 and 1987-88, andnylon bags containing seeds were planted on 4 dates each year to study microenvironment effects on germination (G), germination rate (GR), and SE.
    [Show full text]
  • Climate Change Vulnerability and Adaptation in the Intermountain Region Part 1
    United States Department of Agriculture Climate Change Vulnerability and Adaptation in the Intermountain Region Part 1 Forest Rocky Mountain General Technical Report Service Research Station RMRS-GTR-375 April 2018 Halofsky, Jessica E.; Peterson, David L.; Ho, Joanne J.; Little, Natalie, J.; Joyce, Linda A., eds. 2018. Climate change vulnerability and adaptation in the Intermountain Region. Gen. Tech. Rep. RMRS-GTR-375. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Part 1. pp. 1–197. Abstract The Intermountain Adaptation Partnership (IAP) identified climate change issues relevant to resource management on Federal lands in Nevada, Utah, southern Idaho, eastern California, and western Wyoming, and developed solutions intended to minimize negative effects of climate change and facilitate transition of diverse ecosystems to a warmer climate. U.S. Department of Agriculture Forest Service scientists, Federal resource managers, and stakeholders collaborated over a 2-year period to conduct a state-of-science climate change vulnerability assessment and develop adaptation options for Federal lands. The vulnerability assessment emphasized key resource areas— water, fisheries, vegetation and disturbance, wildlife, recreation, infrastructure, cultural heritage, and ecosystem services—regarded as the most important for ecosystems and human communities. The earliest and most profound effects of climate change are expected for water resources, the result of declining snowpacks causing higher peak winter
    [Show full text]
  • Responses of Plant Communities to Grazing in the Southwestern United States Department of Agriculture United States Forest Service
    Responses of Plant Communities to Grazing in the Southwestern United States Department of Agriculture United States Forest Service Rocky Mountain Research Station Daniel G. Milchunas General Technical Report RMRS-GTR-169 April 2006 Milchunas, Daniel G. 2006. Responses of plant communities to grazing in the southwestern United States. Gen. Tech. Rep. RMRS-GTR-169. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 126 p. Abstract Grazing by wild and domestic mammals can have small to large effects on plant communities, depend- ing on characteristics of the particular community and of the type and intensity of grazing. The broad objective of this report was to extensively review literature on the effects of grazing on 25 plant commu- nities of the southwestern U.S. in terms of plant species composition, aboveground primary productiv- ity, and root and soil attributes. Livestock grazing management and grazing systems are assessed, as are effects of small and large native mammals and feral species, when data are available. Emphasis is placed on the evolutionary history of grazing and productivity of the particular communities as deter- minants of response. After reviewing available studies for each community type, we compare changes in species composition with grazing among community types. Comparisons are also made between southwestern communities with a relatively short history of grazing and communities of the adjacent Great Plains with a long evolutionary history of grazing. Evidence for grazing as a factor in shifts from grasslands to shrublands is considered. An appendix outlines a new community classification system, which is followed in describing grazing impacts in prior sections.
    [Show full text]
  • Heterodichogamy.Pdf
    Research Update TRENDS in Ecology & Evolution Vol.16 No.11 November 2001 595 How common is heterodichogamy? Susanne S. Renner The sexual systems of plants usually Heterodichogamy differs from normal (Zingiberales). These figures probably depend on the exact spatial distribution of dichogamy, the temporal separation of underestimate the frequency of the gamete-producing structures. Less well male and female function in flowers, in heterodichogamy. First, the phenomenon known is how the exact timing of male and that it involves two genetic morphs that is discovered only if flower behavior is female function might influence plant occur at a 1:1 ratio. The phenomenon was studied in several individuals and in mating. New papers by Li et al. on a group discovered in walnuts and hazelnuts5,6 natural populations. Differential of tropical gingers describe differential (the latter ending a series of Letters to movements and maturation of petals, maturing of male and female structures, the Editor about hazel flowering that styles, stigmas and stamens become such that half the individuals of a began in Nature in 1870), but has gone invisible in dried herbarium material, population are in the female stage when almost unnoticed7. Indeed, its recent and planted populations deriving from the other half is in the male stage. This discovery in Alpinia was greeted as a vegetatively propagated material no new case of heterodichogamy is unique new mechanism, differing ‘from other longer reflect natural morph ratios. The in involving reciprocal movement of the passive outbreeding devices, such as discovery of heterodichogamy thus styles in the two temporal morphs. dichogamy…and heterostyly in that it depends on field observations.
    [Show full text]
  • Inflorescence Dimorphism, Heterodichogamy and Thrips
    Annals of Botany 113: 467–476, 2014 doi:10.1093/aob/mct278, available online at www.aob.oxfordjournals.org Inflorescence dimorphism, heterodichogamy and thrips pollination in Platycarya strobilacea (Juglandaceae) Tatsundo Fukuhara* and Shin-ichiro Tokumaru Faculty of Education, Fukuoka University of Education, 1-1 Akama-Bunkyo-machi, Munakata, Fukuoka, Japan * For correspondence. E-mail [email protected] Received: 22 July 2013 Returned for revision: 11 September 2013 Accepted: 14 October 2013 Published electronically: 3 December 2013 † Background and Aims Unlike other taxa in Juglandaceae or in closely related families, which are anemophilous, Platycarya strobilacea has been suggested to be entomophilous. In Juglandaceae, Juglans and Carya show hetero- dichogamy, a reproductive strategy in which two morphs coexist in a population and undergo synchronous reciprocal sex changes. However, there has been no study focusing on heterodichogamy in the other six or seven genera, includ- ing Platycarya. † Methods Inflorescence architecture, sexual expression and pollination biology were examined in a P. strobilacea population in Japan. Flowering phenology was monitored daily for 24 trees in 2008 and 27 in 2009. Flower visitors and inhabitants were recorded or collected from different sexes and stages. † Key results The population of P. strobilacea showed heterodichogamous phenology with protogynous and duodi- chogamous–protandrous morphs. This dimorphism in dichogamy was associated with distinct inflorescence morph- ologies.Thrips pollination was suggested bythe frequent presence of thrips withattached pollen grains,the scarcityof other insect visitors, the synchronicity of thrips number in male spikes with the maturation of female flowers, and morphological characters shared with previously reported thrips-pollinated plants. Male spikes went through two consecutive stages: bright yellow and strong-scented M1 stage, and brownish and little-scented M2 stage.
    [Show full text]
  • Thunder River Trail and Deer Creek
    National Park Service U.S. Department of the Interior Grand Canyon Grand Canyon National Park Arizona Thunder River Trail and Deer Creek The huge outpourings of water at Thunder River, Tapeats Spring, and Deer Spring have attracted people since prehistoric times and today this little corner of Grand Canyon is exceedingly popular among seekers of the remarkable. Like a gift, booming streams of crystalline water emerge from mysterious caves to transform the harsh desert of the inner canyon into absurdly beautiful green oasis replete with the music of falling water and cool pools. Trailhead access can be difficult, sometimes impossible, and the approach march is long, hot and dry, but for those making the journey these destinations represent something close to canyon perfection. Locations/Elevations Mileages Indian Hollow (6250 ft / 1906 m) to Bill Hall Trail Junction (5400 ft / 1647 m): 5.0 mi (8.0 km) Monument Point (7200 ft / 2196 m) to Bill Hall Junction: 2.6 mi (4.2 km) Bill Hall Junction, AY9 (5400 ft / 1647 m) to Surprise Valley Junction, AM9 (3600 ft / 1098 m): 4.5 mi ( 7.2 km) Upper Tapeats Camp, AW7 (2400 ft / 732 m): 6.6 mi ( 10.6 km) Lower Tapeats, AW8 at Colorado River (1950 ft / 595 m): 8.8 mi ( 14.2 km) Deer Creek Campsite, AX7 (2200 ft / 671 m): 6.9 mi ( 11.1 km) Deer Creek Falls and Colorado River (1950 ft / 595 m): 7.6 mi ( 12.2 km) Maps 7.5 Minute Tapeats Amphitheater and Fishtail Mesa Quads (USGS) Trails Illustrated Map, Grand Canyon National Park (National Geographic) North Kaibab Map, Kaibab National Forest (good for roads) Water Sources Thunder River, Tapeats Creek, Deer Creek, and the Colorado River are permanent water sources.
    [Show full text]
  • Caryophyllales: a Key Group for Understanding Wood
    Botanical Journal of the Linnean Society, 2010, 164, 342–393. With 21 figures Caryophyllales: a key group for understanding wood anatomy character states and their evolutionboj_1095 342..393 SHERWIN CARLQUIST FLS* Santa Barbara Botanic Garden, 1212 Mission Canyon Road, Santa Barbara, CA 93110, USA Received 13 May 2010; accepted for publication 28 September 2010 Definitions of character states in woods are softer than generally assumed, and more complex for workers to interpret. Only by a constant effort to transcend the limitations of glossaries can a more than partial understanding of wood anatomy and its evolution be achieved. The need for such an effort is most evident in a major group with sufficient wood diversity to demonstrate numerous problems in wood anatomical features. Caryophyllales s.l., with approximately 12 000 species, are such a group. Paradoxically, Caryophyllales offer many more interpretive problems than other ‘typically woody’ eudicot clades of comparable size: a wider range of wood structural patterns is represented in the order. An account of character expression diversity is presented for major wood characters of Caryophyllales. These characters include successive cambia (more extensively represented in Caryophyllales than elsewhere in angiosperms); vessel element perforation plates (non-bordered and bordered, with and without constrictions); lateral wall pitting of vessels (notably pseudoscalariform patterns); vesturing and sculpturing on vessel walls; grouping of vessels; nature of tracheids and fibre-tracheids, storying in libriform fibres, types of axial parenchyma, ray anatomy and shifts in ray ontogeny; juvenilism in rays; raylessness; occurrence of idioblasts; occurrence of a new cell type (ancistrocladan cells); correlations of raylessness with scattered bundle occurrence and other anatomical discoveries newly described and/or understood through the use of scanning electron microscopy and light microscopy.
    [Show full text]
  • Chenopodioideae, Chenopodiaceae/ Amaranthaceae): Implications for Evolution and Taxonomy
    Fruit and Seed Anatomy of Chenopodium and Related Genera (Chenopodioideae, Chenopodiaceae/ Amaranthaceae): Implications for Evolution and Taxonomy Alexander P. Sukhorukov1,2*, Mingli Zhang1,3 1 Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China, 2 Department of Higher Plants, Biological Faculty, Moscow Lomonosov State University, Moscow, Russia, 3 Institute of Botany, Chinese Academy of Sciences, Beijing, China Abstract A comparative carpological study of 96 species of all clades formerly considered as the tribe Chenopodieae has been conducted for the first time. The results show important differences in the anatomical structure of the pericarp and seed coat between representatives of terminal clades including Chenopodium s.str.+Chenopodiastrum and the recently recognized genera Blitum, Oxybasis and Dysphania. Within Chenopodium the most significant changes in fruit and seed structure are found in members of C. sect. Skottsbergia. The genera Rhagodia and Einadia differ insignificantly from Chenopodium. The evolution of heterospermy in Chenopodium is discussed. Almost all representatives of the tribe Dysphanieae are clearly separated from other Chenopodioideae on the basis of a diverse set of characteristics, including the small dimensions of the fruits (especially in Australian taxa), their subglobose shape (excl. Teloxys and Suckleya), and peculiarities of the pericarp indumentum. The set of fruit and seed characters evolved within the subfamily Chenopodioideae is described. A recent phylogenetic hypothesis is employed to examine the evolution of three (out of a total of 21) characters, namely seed color, testa-cell protoplast characteristics and embryo orientation. Citation: Sukhorukov AP, Zhang M (2013) Fruit and Seed Anatomy of Chenopodium and Related Genera (Chenopodioideae, Chenopodiaceae/Amaranthaceae): Implications for Evolution and Taxonomy.
    [Show full text]
  • WOOD ANATOMY of CHENOPODIACEAE (AMARANTHACEAE S
    IAWA Journal, Vol. 33 (2), 2012: 205–232 WOOD ANATOMY OF CHENOPODIACEAE (AMARANTHACEAE s. l.) Heike Heklau1, Peter Gasson2, Fritz Schweingruber3 and Pieter Baas4 SUMMARY The wood anatomy of the Chenopodiaceae is distinctive and fairly uni- form. The secondary xylem is characterised by relatively narrow vessels (<100 µm) with mostly minute pits (<4 µm), and extremely narrow ves- sels (<10 µm intergrading with vascular tracheids in addition to “normal” vessels), short vessel elements (<270 µm), successive cambia, included phloem, thick-walled or very thick-walled fibres, which are short (<470 µm), and abundant calcium oxalate crystals. Rays are mainly observed in the tribes Atripliceae, Beteae, Camphorosmeae, Chenopodieae, Hab- litzieae and Salsoleae, while many Chenopodiaceae are rayless. The Chenopodiaceae differ from the more tropical and subtropical Amaran- thaceae s.str. especially in their shorter libriform fibres and narrower vessels. Contrary to the accepted view that the subfamily Polycnemoideae lacks anomalous thickening, we found irregular successive cambia and included phloem. They are limited to long-lived roots and stem borne roots of perennials (Nitrophila mohavensis) and to a hemicryptophyte (Polycnemum fontanesii). The Chenopodiaceae often grow in extreme habitats, and this is reflected by their wood anatomy. Among the annual species, halophytes have narrower vessels than xeric species of steppes and prairies, and than species of nitrophile ruderal sites. Key words: Chenopodiaceae, Amaranthaceae s.l., included phloem, suc- cessive cambia, anomalous secondary thickening, vessel diameter, vessel element length, ecological adaptations, xerophytes, halophytes. INTRODUCTION The Chenopodiaceae in the order Caryophyllales include annual or perennial herbs, sub- shrubs, shrubs, small trees (Haloxylon ammodendron, Suaeda monoica) and climbers (Hablitzia, Holmbergia).
    [Show full text]
  • Diet of the Mohave Ground Squirrel (Xerospermophilus Mohavensis) in Relation to Season and Rainfall
    Western North American Naturalist 77(1), © 2017, pp. 1–13 DIET OF THE MOHAVE GROUND SQUIRREL (XEROSPERMOPHILUS MOHAVENSIS) IN RELATION TO SEASON AND RAINFALL Barbara M. Leitner1 and Philip Leitner2 ABSTRACT.—The Mohave ground squirrel (Xerospermophilus mohavensis) is endemic to the western Mojave Desert of California. It is listed as threatened under the California Endangered Species Act, yet there is little published information on its habitat requirements. We studied the diet of Mohave ground squirrels at 4 sites in desert scrub habitat in Inyo County, California, primarily by microhistological analysis of 754 samples of fecal pellets collected from live-trapped animals. Over all sites and seasons, shrub foliage was the largest component of the diet (39.8% relative density) and mainly derived from several taxa of Chenopodiaceae: winterfat (Krascheninnikovia lanata), spiny hopsage (Grayia spinosa), and saltbushes (Atriplex spp.). Forb leaves were next in importance (34.1% relative density), especially from Fabaceae (Astragalus and Lupinus), Polemoniaceae (Gilia and Linanthus), and Asteraceae. Flowers, pollen, and seeds were also major components (20.3% relative density). Leaves composed nearly all of the diet in spring, whereas pollen, flowers, and seeds made up about a third of the diet in summer. Following dry winters when annual forbs were limited, Mohave ground squirrels depended primarily on foliage from perennial shrubs and forbs. Following wet winters when spring annuals were abundant and most plant species flowered and set seed prolifically, squirrels consumed a high proportion of leaves plus flowers, pollen, and seeds of annual forbs. Mohave ground squirrels reproduced only after winter rainfall >80 mm that resulted in a standing crop of herbaceous annuals ≥100 kg ⋅ ha−1.
    [Show full text]