Diet of the Mohave Ground Squirrel (Xerospermophilus Mohavensis) in Relation to Season and Rainfall
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mammals of the California Desert
MAMMALS OF THE CALIFORNIA DESERT William F. Laudenslayer, Jr. Karen Boyer Buckingham Theodore A. Rado INTRODUCTION I ,+! The desert lands of southern California (Figure 1) support a rich variety of wildlife, of which mammals comprise an important element. Of the 19 living orders of mammals known in the world i- *- loday, nine are represented in the California desert15. Ninety-seven mammal species are known to t ':i he in this area. The southwestern United States has a larger number of mammal subspecies than my other continental area of comparable size (Hall 1981). This high degree of subspeciation, which f I;, ; leads to the development of new species, seems to be due to the great variation in topography, , , elevation, temperature, soils, and isolation caused by natural barriers. The order Rodentia may be k., 2:' , considered the most successful of the mammalian taxa in the desert; it is represented by 48 species Lc - occupying a wide variety of habitats. Bats comprise the second largest contingent of species. Of the 97 mammal species, 48 are found throughout the desert; the remaining 49 occur peripherally, with many restricted to the bordering mountain ranges or the Colorado River Valley. Four of the 97 I ?$ are non-native, having been introduced into the California desert. These are the Virginia opossum, ' >% Rocky Mountain mule deer, horse, and burro. Table 1 lists the desert mammals and their range 1 ;>?-axurrence as well as their current status of endangerment as determined by the U.S. fish and $' Wildlife Service (USWS 1989, 1990) and the California Department of Fish and Game (Calif. -
Revised and Recirculated) Biological Resources
Section 4..2 (Revised and Recirculated) Biological Resources Note to reader: The County of San Bernardino has previously circulated for public review and comment the March 25, 2010, Draft Environmental Impact Report on the proposed Deep Creek project. Since the close of the public comment period for that DEIR, the County has made changes to Section 4.2, Biological Resources, of the DEIR. This revised Section 4.2 supersedes and replaces Section 4.2, Biological Resources, which was included in the March 25, 2010, DEIR. The County has elected to recirculate the revised Section 4.2 for public review and comment. Pursuant to Section 15088.5(c) of the CEQA Guidelines (California Code of Regulations, Title 14, Chapter 3), only Section 4.2 of the DEIR is being recirculated. Pursuant to Section 15088.5(f)(2) of the CEQA Guidelines, the County (i) is requesting that reviewers limit their comments to the revised Section 4.2, (ii) will respond to previously submitted comments on all portions of the previously circulated DEIR, except those made with respect to the now-superseded Section 4.2, and (iii) will respond to comments made during the recirculation period to the revised Section 4.2. Additionally, certain issues have previously been adjudicated, such as the evaluation and mitigation of potential impacts to the California desert tortoise and Mohave ground squirrel, and ultimately may be determined by the courts not to be subject to additional judicial review. 4.2 BIOLOGICAL RESOURCES This section evaluates the potential impacts on biological resources resulting from the implementation of the project. -
Native Plants for Pollinators
Native Plants for a Pollinator Gardens Ginny Rosenkranz Extension Educator Commercial Horticulture [email protected] Why Native? • Consider that honeybees are NOT native! • Still…… Choose plants with pollen and nectar • Fragrant flowers • Composite flowers • Umbrella flowers Find the right color • Bees see Blue and Violet • Have a GREAT sense of smell • Like ‘landing pads’ • Tubular flowers Cover all the seasons • Spring flowers • Summer flowers • Fall flowers Include different shapes and sizes Plant in groups • Full sun • Protection from wind • Increases pollination Add water features Spring flowers • Phlox subulata - Moss Pink Spring flowers • Aquilegia – Columbine Spring flowers • Baptisia australis – False Indigo Spring flowers • Dicentra eximia – Fringed Bleeding Hearts Spring flowers • Geranium maculatum – Wild Geranium Spring flowers • Penstemon digitalis – Beard tongue Spring flowers • Salvia lyrata – Lyre leaf sage Spring flowers • Tradescantia virginiana - Spiderwort Viola sororia - Violet Summer annuals • Cleome hassleriana Annual summer flowers • Helianthus annuus - Sunflowers Annual summer flowers • Salvia Summer annuals • Tithonia rotundifolia – Mexican sunflower Summer annuals • Zinnia elegans Summer • Agastache anethiodora – Anise Hyssop Summer • Asclepias tuberosa – Butterfly weed Summer • Asclepias incarnate – swamp Milkweed Summer • Coreopsis lanceolata - Tickseed Summer • Coreopsis verticillata -Threadleaf Coreopsis Summer • Echinacea purpurea – Purple cone flower Summer • Eupatorium dubium- Joe Pye weed Summer • Filipendula -
State of New York City's Plants 2018
STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species. -
Mammal Species Native to the USA and Canada for Which the MIL Has an Image (296) 31 July 2021
Mammal species native to the USA and Canada for which the MIL has an image (296) 31 July 2021 ARTIODACTYLA (includes CETACEA) (38) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei - Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Eschrichtius robustus - Gray Whale 7. Megaptera novaeangliae - Humpback Whale BOVIDAE - cattle, sheep, goats, and antelopes 1. Bos bison - American Bison 2. Oreamnos americanus - Mountain Goat 3. Ovibos moschatus - Muskox 4. Ovis canadensis - Bighorn Sheep 5. Ovis dalli - Thinhorn Sheep CERVIDAE - deer 1. Alces alces - Moose 2. Cervus canadensis - Wapiti (Elk) 3. Odocoileus hemionus - Mule Deer 4. Odocoileus virginianus - White-tailed Deer 5. Rangifer tarandus -Caribou DELPHINIDAE - ocean dolphins 1. Delphinus delphis - Common Dolphin 2. Globicephala macrorhynchus - Short-finned Pilot Whale 3. Grampus griseus - Risso's Dolphin 4. Lagenorhynchus albirostris - White-beaked Dolphin 5. Lissodelphis borealis - Northern Right-whale Dolphin 6. Orcinus orca - Killer Whale 7. Peponocephala electra - Melon-headed Whale 8. Pseudorca crassidens - False Killer Whale 9. Sagmatias obliquidens - Pacific White-sided Dolphin 10. Stenella coeruleoalba - Striped Dolphin 11. Stenella frontalis – Atlantic Spotted Dolphin 12. Steno bredanensis - Rough-toothed Dolphin 13. Tursiops truncatus - Common Bottlenose Dolphin MONODONTIDAE - narwhals, belugas 1. Delphinapterus leucas - Beluga 2. Monodon monoceros - Narwhal PHOCOENIDAE - porpoises 1. Phocoena phocoena - Harbor Porpoise 2. Phocoenoides dalli - Dall’s Porpoise PHYSETERIDAE - sperm whales Physeter macrocephalus – Sperm Whale TAYASSUIDAE - peccaries Dicotyles tajacu - Collared Peccary CARNIVORA (48) CANIDAE - dogs 1. Canis latrans - Coyote 2. -
GOOSEBERRYLEAF GLOBEMALLOW Sphaeralcea Grossulariifolia (Hook
GOOSEBERRYLEAF GLOBEMALLOW Sphaeralcea grossulariifolia (Hook. & Arn.) Rydb. Malvaceae – Mallow family Corey L. Gucker & Nancy L. Shaw | 2018 ORGANIZATION NOMENCLATURE Sphaeralcea grossulariifolia (Hook. & Arn.) Names, subtaxa, chromosome number(s), hybridization. Rydb., hereafter referred to as gooseberryleaf globemallow, belongs to the Malveae tribe of the Malvaceae or mallow family (Kearney 1935; La Duke 2016). Range, habitat, plant associations, elevation, soils. NRCS Plant Code. SPGR2 (USDA NRCS 2017). Subtaxa. The Flora of North America (La Duke 2016) does not recognize any varieties or Life form, morphology, distinguishing characteristics, reproduction. subspecies. Synonyms. Malvastrum coccineum (Nuttall) A. Gray var. grossulariifolium (Hooker & Arnott) Growth rate, successional status, disturbance ecology, importance to animals/people. Torrey, M. grossulariifolium (Hooker & Arnott) A. Gray, Sida grossulariifolia Hooker & Arnott, Sphaeralcea grossulariifolia subsp. pedata Current or potential uses in restoration. (Torrey ex A. Gray) Kearney, S. grossulariifolia var. pedata (Torrey ex A. Gray) Kearney, S. pedata Torrey ex A. Gray (La Duke 2016). Seed sourcing, wildland seed collection, seed cleaning, storage, Common Names. Gooseberryleaf globemallow, testing and marketing standards. current-leaf globemallow (La Duke 2016). Chromosome Number. Chromosome number is stable, 2n = 20, and plants are diploid (La Duke Recommendations/guidelines for producing seed. 2016). Hybridization. Hybridization occurs within the Sphaeralcea genus. -
Germination and Seedling Establishment of Spiny Hopsage (Grayia Spinosa [Hook.] Moq.)
AN ABSTRACT OF THE THESIS OF Nancy L. Shaw for the degree of Doctor of Philosophy in Crop and Soil Sciences presented on March 19, 1992 Title: Germination and Seedling Establishment of Spiny Hopsage (Grayia Spinosa [Hook.] Moq.) Abstract approved:_Redactedfor Privacy von r. ULdUe Reestablishment of spiny hopsage(Grayia spinosa [Hook.] Moq.) where depleted or lost on shrub steppe sites can improve forage, plant cover, and soil stabilization. The objectives of this study were to: 1) determine direct-seeding requirements; 2) develop optimum germination pretreatments; and 3) examine dormancy mechanisms in spiny hopsage fruits and seeds. The effects of seed source, planting date,and site preparation method onseed germination and seedling establishment (SE) were examined at Birds of Prey and Reynolds Creek in southwestern Idaho. Three seed sources were planted on rough or compact seedbeds on 4 dates in 1986-87 and 3 dates in 1987-88. Exposure to cool-moist environments improved spring SE from early fall (EF) and late fall (LF) plantings. Few seedlings emerged from early (ESp) or late spring (LSp) plantings. SE was low at: 1 site in 1986-87 and atboth sites in 1987-88, probably due to lack of precipitation. For the successful 1986-87 planting, seedling density was greater on rough compared to compact seedbeds in April andMay, possiblydue to improved microclimate conditions. Growth rate varied among seed sources, but seedlings developed a deep taproot (mean length 266 mm) with few lateral roots the first season. Seeds were planted on 3 dates in 1986-87 and 1987-88, andnylon bags containing seeds were planted on 4 dates each year to study microenvironment effects on germination (G), germination rate (GR), and SE. -
A Reciprocal Transplant Experiment with Winterfat (Krascheninnikovia Lanata) Melanie Barnes
University of New Mexico UNM Digital Repository Biology ETDs Electronic Theses and Dissertations 12-1-2009 The effect of plant source location on restoration success: a reciprocal transplant experiment with winterfat (Krascheninnikovia lanata) Melanie Barnes Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds Recommended Citation Barnes, Melanie. "The effect of plant source location on restoration success: a reciprocal transplant experiment with winterfat (Krascheninnikovia lanata)." (2009). https://digitalrepository.unm.edu/biol_etds/4 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. The effect of plant source location on restoration success: a reciprocal transplant experiment with winterfat (Krascheninnikovia lanata) BY Melanie G. Barnes B.A., Biology, Reed College, 2001 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biology The University of New Mexico Albuquerque, New Mexico December, 2009 DEDICATION In memory of my mother, Georgene Grace Barnes. The completion of this dissertation is also dedicated to my friends and family who have supported me in this endeavor and who taught me many things about life that gave me the perspective I needed to complete this work. I would like to thank Heather Simpson, Jerusha Reynolds, Terri Koontz, Nathan Abrahamson, Jeremy Barlow, Brittany Barker, Laura Calabrese, Jennifer Hollis, Maureen Peters, Helen Barnes, and Tom Barnes. Finally, I want to thank Lisa for her love and emotional support; it means the world to me. -
Phylogeny and Biogeography of the Pleistocene Holarctic Steppe and Semi-Desert Goosefoot Plant Krascheninnikovia Ceratoides
Flora 262 (2020) 151504 Contents lists available at ScienceDirect Flora journal homepage: www.elsevier.com/locate/flora Phylogeny and biogeography of the Pleistocene Holarctic steppe and semi- desert goosefoot plant Krascheninnikovia ceratoides T Anna Seidla,*, Ernesto Pérez-Collazosb, Karin Tremetsbergera, Mark Carinec, Pilar Catalánb, Karl-Georg Bernhardta a Institute of Botany, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Vienna, Austria b Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Ctra. Cuarte Km 1, 22071 Huesca, Spain c Natural History Museum, Cromwell Rd, Kensington, London SW7 5BD, UK ARTICLE INFO ABSTRACT Edited by: Chennai Guest Editor Krascheninnikovia ceratoides (Chenopodiaceae) is a steppe and semi-desert plant with two subspecies, K. cer- Keywords: atoides subsp. ceratoides, which is widespread in Eurasia, and K. ceratoides subsp. lanata, which grows in western Altai Mountains and central North America. A few disjunct populations of K. ceratoides subsp. ceratoides are found in Anatolia, Irano-Turanian element Europe and North Africa to the west of its otherwise continuous Eurasian distribution. To understand the evo- rDNA and plastid data lutionary history of this characteristic steppe and semi-desert plant, we analysed its phylogeny and biogeo- phylogeography graphy. We sequenced several loci including ITS, ETS and the chloroplast intergenic spacer regions atpB-rbcL, molecular dating rpl32-trnL and trnL-trnF to establish a time-calibrated phylogeny and reconstruct intraspecific relationships. Pleistocene Furthermore, we identified the ploidy level of individuals. While diploid, tetraploid and hexaploid individuals have been reported in the literature, we were only able to find diploids and tetraploids. The diploids were found in the east of Mongolia, Kazakhstan, Kyrgyzstan, Russia and the USA. -
Heterodichogamy.Pdf
Research Update TRENDS in Ecology & Evolution Vol.16 No.11 November 2001 595 How common is heterodichogamy? Susanne S. Renner The sexual systems of plants usually Heterodichogamy differs from normal (Zingiberales). These figures probably depend on the exact spatial distribution of dichogamy, the temporal separation of underestimate the frequency of the gamete-producing structures. Less well male and female function in flowers, in heterodichogamy. First, the phenomenon known is how the exact timing of male and that it involves two genetic morphs that is discovered only if flower behavior is female function might influence plant occur at a 1:1 ratio. The phenomenon was studied in several individuals and in mating. New papers by Li et al. on a group discovered in walnuts and hazelnuts5,6 natural populations. Differential of tropical gingers describe differential (the latter ending a series of Letters to movements and maturation of petals, maturing of male and female structures, the Editor about hazel flowering that styles, stigmas and stamens become such that half the individuals of a began in Nature in 1870), but has gone invisible in dried herbarium material, population are in the female stage when almost unnoticed7. Indeed, its recent and planted populations deriving from the other half is in the male stage. This discovery in Alpinia was greeted as a vegetatively propagated material no new case of heterodichogamy is unique new mechanism, differing ‘from other longer reflect natural morph ratios. The in involving reciprocal movement of the passive outbreeding devices, such as discovery of heterodichogamy thus styles in the two temporal morphs. dichogamy…and heterostyly in that it depends on field observations. -
General Biological Resources Assessment
GENERAL BIOLOGICAL RESOURCES ASSESSMENT APN 0405-06-251 HESPERIA, SAN BERNARDINO COUNTY, CALIFORNIA (Township 4 North, Range 5 West, Section 14) Preparedfor: 55555 Amargosa Rod, LLC Prepared by: RCA Associates, Inc. 15555 Main Street, #D4-235 Hesperia, California 92345 (760) 596-0017 Principal Investigator: Randall Arnold, Senior Biologist RCA ):) <► <, ASSOCIATES.INC Project: #2019-18 January 30, 2020 TITLE PAGE Date Report Written: January 30, 2020 Date Field Work Completed: January 29, 2020 Report Title: General Biological Resources Assessment Assessor's Parcel Number: 0405-062-51 Prepared for: 55555 Amargosa Road, LLC Principal Investigators: Randall C. Arnold, Jr., Senior Biologist Contact Information: Randall C. Arnold, Jr. RCA Associates, Inc. 15555 Main Street, #D4-235 Hesperia, CA 92345 (760) 596-0017 [email protected] www .rcaassociatesllc.com Table of Contents Section Page 1.0 Introduction and Summary 2.0 Existing Conditions 2 3.0 Methodologies 4 4.0 Literature Search 6 5.0 Results 8 5.1 General Biological Resources 9 5.2 Federal and State Listed Species 9 5.3 Wildlife Species of Special Concern 9 5.4 Jurisdictional Waters and Riparian Habitat 12 5.5 Protected Plants 12 6.0 Impacts and Mitigation Measures 13 6.1 General Biological Resources 13 6.2 Federal and State Listed Species and Species of 13 Special Concern 7.0 Conclusions and Recommendations 14 8.0 Bibliography 15 Certification 17 Appendix A - Tables and Figures Appendix B - Regulatory Content 1.0 INTRODUCTION AND SUMMARY Biological surveys were conducted on a parcel which is 20.8-acres in size located north of Main Street and west of Amargosa Road in the City of Hesperia, California (Townsrup 4 North, Range 5 West, Section 14, USGS Hesperia, California Quadrangle, 1956) (Figures 1, 2, 3, and 4). -
31762100112265.Pdf (8.634Mb)
The genetics, nature and occurrence of self-and cross-incompatibility in four annual species of Coreopsis L. by Jagan Nath Sharma A thesis submitted to the Graduate Faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in GENETICS Montana State University © Copyright by Jagan Nath Sharma (1971) Abstract: Four annual species of Coreopsis L. (Compositae: Heliantheae: Coreop-sidinae), C. bigelovii. (A. Gray) H. M. Hall, C. calliopsidea (DC.) A. Gray, C. califomica (Nutt.) Sharsmith, and C. tinctoria Nutt., were studied to determine the genetics of their self-incompatibility mechanisms. Diallel -cross, backcross, and F2 studies revealed that these species have a sporo-phytic, multiple allelic, monogenic system of self-incompatibility. C. tinctoria had 7 multiple alleles, while C. bigelovii and C. califomica had 5 multiple alleles each. The number of multiple alleles could not be assigned to C. calliopsidea. Cytological studies' revealed a strong correlation between the sporophytic system of self-incompatibility and the stigma as the site of pollen inhibition. Meiotic chromosome numbers for all four species were determined as n=12. Secondary associations between different bivalents were found in all four species studied; these point toward some form of polyploidy associated with the genus. Significant heterosis for horticultural traits was detected and a method of producing F1 hybrid cultivars in Coreopsis tinctoria, using incompatibility as a technique, has been suggested. THE GENETICS, NATURE AND OCCURRENCE