Guanine Quadruplexes and Disease: Insight Into Mechanisms and Therapeutic Potential

Total Page:16

File Type:pdf, Size:1020Kb

Guanine Quadruplexes and Disease: Insight Into Mechanisms and Therapeutic Potential Guanine quadruplexes and disease: Insight into mechanisms and therapeutic potential Katie Manas and Celena Hoeve Abstract Understanding Guanine Quadruplexes (G4s) provides valuable insight into a wide array of diseases at a genetic level and their potential therapy. These unusual architectures can form in DNA and RNA, composed of planar, stacked tetrads of four hydrogen bonded guanines. G4s are widely implicated in a range of disease categories, including parasites, viral infections, cancer, and neurodegenerative diseases, with varied roles within each. Of current relevance, a connection to the coronavirus family may be an intriguing avenue of investigation for recent outbreaks. The planar surface of the G4 tetrad also provides an attractive target for small molecule binders that can provide therapeutic value. Overall, this review aims to address the exciting relevance of G4s in these felds, a few major mechanisms of action, and their potential as therapeutic targets. 1. Introduction arise from the orientation of the four guanine segments with Though most are familiar with DNA as a double stranded respect to the 3’ and 5’ ends. Parallel G4s have all strands helical structure composed of four nucleobases (ACTG), it oriented in the same direction, while antiparallel G4s have also has the ability to form other higher-order architectures, the four strands in alternating directions. Hybrid G4s have such as the well-known guanine quadruplex (G4). G4s were three strands oriented in one direction and the fourth strand frst proposed in 1962 (Gellert et al. 1962), as three-dimen- in the other direction. G4s can also be described based on sional architectures that form in guanine-rich environments. the loops, which create a unique environment surrounding Four guanine nucleobases self-assemble via hydrogen bond- the stacked guanine tetrads of the G4. The structural features ing into a planar guanine tetrad; these tetrads then stack on of G4s have previously been reviewed (Keniry 2001). These one another to form the three-dimensional G4 architecture structures are often determined by techniques such as solu- in the presence of stabilizing monovalent cations (Figure 1) tion-state NMR, which has been used with the c-Myc G4, (Pinnavaia et al. 1978). found in the promoter region preceding the gene (Figure 2) (Ambrus et al. 2005). A B Figure 1. A) Chemical structure of a guanine tetrad, showing the hydrogen bonding interactions of four guanine nucleobas- es and stabilized by a central cation (M+). Figure 2. Solution-state NMR structure of the c-Myc pro- B) G4 formed by stacked tetrads (stabilizing cations are omit- moter G4 with stabilizing cations (PDB ID: 1XAV) (Ambrus ted). et al. 2005). G4s can adopt parallel, anti-parallel, and hybrid topologies, G4s can assemble when guanine-rich regions of nucleic acid which can be useful for classifcation purposes. The topologies are in single-stranded forms. This can occur during activi- 40 40 ties such as replication and transcription, where the typically helicase, which is suggested to have the ability to unwind double stranded DNA is temporarily separated into single G4s. Therefore, P. falciparum can use the RecQ helicase to turn strands to allow for processing. It can also occur in RNA on transcription by unwinding the G4 structures upstream of molecules, which are intrinsically more diverse in shape, and the var genes (Smargiasso et al. 2009). often exist as single strands (Ji et al. 2011). G4 structures play important roles in nucleic acid processing in both humans and other organisms, which has made G4s an active area of research in recent years. We aim to provide a review that demonstrates the relevance of G4s by describing their im- portance in parasitic infection, viral infection, cancer, and neurodegeneration. We will cover G4 mechanisms of action in these areas, as well as the potential of G4s as targets for therapeutic treatments. 2. Parasites 2.1. History of G4s in parasites Although G4s are now better known for their roles in can- cer and viral activity, they were originally characterized in protozoa such as Oxytricha and Tetrahymena (Williamson et al. 1989). Early crystal structures were also determined in Oxytri- cha (Kang et al. 1992). Despite this early interest in protozoan G4s, research in this area decreased when the focus shifted Figure 3. Trypanosoma parasites to G4s in cancer and infectious disease. In recent years, new A) Transcription-on state in mediated by the formation of research into the roles of G4s in parasites has started to re- RNA G4s. B) Replication-on state mediated by the formation surface. The new research has provided further insight into of DNA/RNA hybrid G4s. the action mechanisms of G4s in protozoa, and the potential to exploit these structures in treatments of parasitic protozoa. There is also evidence suggesting that G4s play a role in recombination events in P. falciparum. A strong relationship 2.2. G4 mechanisms of action in parasites has been established between breakpoints and PQSs. A possi- One interesting aspect of protozoan genomes is that some ble mechanism could be that breaks occur when the replica- of them contain a high proportion of A and T nucleotides tion fork is stalled by a G4, and recombination occurs when compared to C and G nucleotides. For example, Plasmodium repair is carried out (Stanton et al. 2016). Parasites of the falciparum, the most severe of the malaria-causing parasites, Trypanosoma genus, implicated in conditions such as sleeping has a genome with an A+T composition of 80.6% (Gardner et sickness (T. brucei) and Chagas disease (T. cruzi), also use G4s al. 2002). However, despite such AT-rich genomes, G4-form- in their genome. Here, G4s are used as a switch to mediate ing sequences have been preserved in P. falciparum as well as transcription and replication. As RNA polymerase synthesiz- several other species (Smargiasso et al. 2009), suggesting that es pre-mRNA, there are two options for G4 formation. The they play an important role in the genome. frst is G4 formation using exclusively the pre-mRNA. This In P. falciparum, 16 putative G-quadruplex sequences (PQSs) leads to RNA editing and continued transcription. The sec- have been identifed upstream of the group B var genes ond is the formation of a DNA/RNA hybrid G4. This blocks (Smargiasso et al. 2009). The var genes encode P. falciparum transcription, allowing replication to occur instead. Making erythrocyte membrane protein 1 (PfEMP1), which is a sur- transcription and replication mutually exclusive allows these face antigen. At any given time, only a single var gene is two processes to be carried out on the circular DNA without being expressed, and switching this expression is a method interfering with each other (Figure 3) (Leeder et al. 2016). used by P. falciparum to evade immunity (Kyes et al. 2007). The Another species in which G4 activity has been investigated presence of PQSs upstream of the group B var genes suggests is Leishmania tarentolae, a parasite that causes leishmaniasis. In that these structures may play a role in regulating the var L. tarentolae, as well as in several other kinetoplastid protists, genes by blocking transcription. P. falciparum encodes a RecQ some T nucleobases in the genome are altered through glu- cosylation and hydroxylation to give base J. The role of base 41 41 J is as a transcription terminator; it has been suggested that CoV) (Kusov et al. 2015). The link with SARS-CoV could be of the absence of base J would cause transcription to continue particular interest because of the recent outbreak of corona- beyond the points where it should be stopped, killing L. taren- virus disease (COVID-19), which is caused by viral infection tolae (van Luenen et al. 2012). The presence of G4s has been with SARS-CoV-2. Considering that both diseases are of the correlated with J insertion, suggesting that G4s may serve as coronavirus family, it may be worth investigating potential a landmark for this process (Genest et al. 2015). Therefore, G4 mechanisms in SARS-CoV-2. targeting G4s in L. tarentolae could be used to kill the parasite by preventing proper transcriptional termination. 3.1. G4s and antigenic variation G4s in viruses have been shown to play a role in antigenic 2.3. G4s as therapeutic targets in parasites variation (Cahoon and Seifert 2009; Kuryavyi et al. 2012), a It can be clearly seen that G4s are implicated in a variety process by which pathogens switch out the antigen-encoding of important processes for several parasitic species, which genes that are being expressed to alter recognizable charac- makes them a potential target for therapeutic purposes. Of- teristics and thus avoid being detected by the immune sys- ten, G4s are targeted with binders composed of a fat, aromat- tem (Domingo et al. 2016). G4-mediated antigenic variation ic core which can stack on top of the terminal guanine tetrad is well modelled by Neisseria gonorrhoeae, where the antigenic in the G4 to provide a stabilizing efect. Several known G4 variation of pilin proteins, which are found on the surface of ligands were tested to determine their stabilization of P. falci- the bacteria, has been linked to a G4 structure (Cahoon and parum G4s. Compounds such as Phen-DC3, Phen-DC6, and Seifert 2009). A G4 motif near the pilE gene forms a parallel telomestatin were shown to have strong stabilization of G4s G4, the structure of which seems to be crucial, as replace- in P. falciparum, which is promising for the use of these com- ment with other G4s resulted in the loss of pilin antigenic pounds as therapeutic tools. However, the G4 binders did not variation (Cahoon and Seifert 2009). This G4 recruits the show strong selectivity for P.
Recommended publications
  • Specific Loop Modifications of the Thrombin Binding Aptamer Trigger the Formation of Parallel Structures
    “Specific loop modifications of the thrombin binding aptamer trigger the formation of parallel structures” Aviñó, A., Portella, G., Ferreira, R., Gargallo, R., Mazzini, S., Gabélica, V., Orozco, M., Eritja, R. The FEBS J., 281(4), 1085-1099 (2014). PMID: 24304855, doi: 10.1111/febs.12670 SPECIFIC LOOP MODIFICATIONS OF THE THROMBIN BINDING APTAMER TRIGGER THE FORMATION OF PARALLEL STRUCTURES Anna Aviñó1,#,Guillem Portella2,3,#, Ruben Ferreira1, Raimundo Gargallo5, Stefania Mazzini6, Valerie Gabélica7, Modesto Orozco,2,3,4*and Ramon Eritja1* 1Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26 08034 Barcelona, Spain. 2Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain 3Joint IRB-BSC Program in Computational Biology, Barcelona, Spain 4Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, University of Barcelona, 08028 Barcelona, Spain 5Department of Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain 6Department of Food, Environmental and Nutritional Sciences (DEFENS), Section of Chemical and Biomolecular Sciences, University of Milan, Via Celoria 2, 20133 Milan, Italy 7Physical Chemistry and Mass Spectrometry Laboratory, Department of Chemistry, University of Liège, Belgium. (Present addresses: (1) Univ. Bordeaux, IECB - ARNA laboratory, F-33600 Pessac, France, (2) INSERM, U869 - ARNA laboratory, F-33000 Bordeaux, France. * To whom correspondence should
    [Show full text]
  • Extensive Evaluation of Force Fields for G-Quadruplexes
    Extensive Evaluation of Force Fields for G-Quadruplexes Na Li1, Tong Zhu1,2* 1Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, People’s Republic of China. 2NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, People’s Republic of China ABSTRACT G-Quadruplexes (GQs), folded by guanine-rich nucleic acid sequences, involve in gene expression processes and closely associated with the formation of tumors. So far, GQ has drawn widespread attention for its notable application of serving as potential anti-cancer target. Recently, theoretical studies for GQs have achieved significant progress, most of which are inseparable from molecular dynamics (MD) simulation. As a necessary tool to explore dynamics behavior of molecules, MD simulations strictly depend on force field parameters, which is a sticking point to obtain accurate results. Currently, many force fields for nucleic acids have been developed, but none of them have been accepted widely for GQs. In this paper, we selected five popular force fields, which are parmbsc0, parmbsc1, OL15, Drude2017 and AMOEBANUC17, and conducted explicit-solvent MD simulations on two DNA GQs respectively. We evaluated these force fields from many aspects in detail. Meanwhile, we compared conformational energy using quantum chemistry calculations. With the comprehensive evaluation, Drude2017 achieved better description for GQs, which we suggest that using Drude2017 force field should be taken into account first when investigating GQs by MD simulation. * To whom correspondence should be addressed. Email: [email protected]; [email protected] INTRODUCTION G-Quadruplexes (GQs)1 are folded by guanine-rich nucleic acid sequences.
    [Show full text]
  • Structure and Function of Multimeric G-Quadruplexes
    molecules Review Structure and Function of Multimeric G-Quadruplexes Sofia Kolesnikova 1,2 and Edward A. Curtis 1,* 1 The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic 2 Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic * Correspondence: [email protected] Received: 13 August 2019; Accepted: 22 August 2019; Published: 24 August 2019 Abstract: G-quadruplexes are noncanonical nucleic acid structures formed from stacked guanine tetrads. They are frequently used as building blocks and functional elements in fields such as synthetic biology and also thought to play widespread biological roles. G-quadruplexes are often studied as monomers, but can also form a variety of higher-order structures. This increases the structural and functional diversity of G-quadruplexes, and recent evidence suggests that it could also be biologically important. In this review, we describe the types of multimeric topologies adopted by G-quadruplexes and highlight what is known about their sequence requirements. We also summarize the limited information available about potential biological roles of multimeric G-quadruplexes and suggest new approaches that could facilitate future studies of these structures. Keywords: G-quadruplex; dimer; tetramer; multimer; oligomer; telomere; promoter; R-loop; DNA:RNA hybrid 1. Introduction The B-form double helix is the most well known nucleic acid structure, but it is not the only one. Other examples include double helices with geometries that differ from that of classical B-form DNA, such as Z-DNA [1], triple helices [2], and even four-stranded structures in which canonical A-T and C-G base pairs are absent [3,4].
    [Show full text]
  • Thermodynamic Characterization of Tetraplex Dna Structures
    THERMODYNAMIC CHARACTERIZATION OF TETRAPLEX DNA STRUCTURES by BYUL KIM A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Pharmaceutical Sciences Leslie Dan Faculty of Pharmacy University of Toronto © Copyright by Byul Kim 2018 ABSTRACT Thermodynamic Characterization of Tetraplex DNA Structures Byul Kim Doctor of Philosophy Department of Pharmaceutical Sciences Leslie Dan Faculty of Pharmacy University of Toronto 2018 The role of counterion condensation as a dominant force governing the stability of DNA duplexes and triplexes is well established. In contrast, the effect of counterion condensation on the stability of G-quadrupex conformations is poorly understood. Unlike other ordered nucleic acid structures, G-quadruplexes exhibit a specific binding of counterions (typically, Na+ or K+) which are buried inside the central cavity and coordinated to the O6 carbonyls of the guanines forming the G-quartets. While it has been known that the G-quadruplex-to-coil transition temperature, TM, increases with an increase in the concentration of the stabilizing ion, the contributions of the specific (coordination in the central cavity) and nonspecific (condensation) ion binding have not been resolved. In the first part of the work performed in this dissertation, we used G-quadruplexes formed by four different sequences derived from the human telomeric region, c-MYC, and VEGF genes to separate the two ionic contributions. We studied the change + + in TM of preformed G-quadruplexes following the addition of nonstabilizing ions Li , Cs , and TMA+ (tetramethylammonium). Our data suggest that the stabilizing action of cations on the G- quadruplex conformation is, primarily, due to the central ions which act as specifically bound II ligands.
    [Show full text]
  • DNA Sequences That Interfere with Transcription: Implications for Genome Function and Stability † ‡ † Boris P
    Review pubs.acs.org/CR DNA Sequences That Interfere with Transcription: Implications for Genome Function and Stability † ‡ † Boris P. Belotserkovskii, Sergei M. Mirkin, and Philip C. Hanawalt*, † Department of Biology, Stanford University, Stanford, California 94305, United States ‡ Department of Biology, Tufts University, Medford, Massachusetts 02155, United States 1. INTRODUCTION The primary role of DNA-dependent RNA synthesis, or transcription, is to create components for the cellular machinery. The nascent RNA product of transcription is released from the DNA template and either serves as an intermediate message for protein synthesis or is used directly, as in the case of rRNA, tRNA, and various types of regulatory RNAs. Recently, a growing number of examples suggest that transcription per se, rather than its released product, could play a regulatory role in gene function or as a trigger for genomic modifications. The latter scenario is commonly attributed to anomalous progression of the RNA polymerase (RNAP), such as pausing CONTENTS or termination and/or retaining rather than releasing the nascent transcript. This has been implicated in class-switch 1. Introduction 8620 recombination and somatic hypermutation (reviewed in refs 1, − 2. Transcription Blockage Mechanisms 8621 2), telomere maintenance,3 and replication initiation.4 9 3. Effects of Unusual DNA Structures and DNA/RNA Anomalous transcription elongation has also been linked to Complexes on Transcription 8622 various deleterious phenomena, such as genomic instabilities, 3.1. General Introduction to DNA Structure and transcription−replication collisions, and transcription defi- DNA Supercoiling 8622 ciency in some hereditary human disorders (reviewed in refs 3.2. Overview of Unusual Structures and Their 10−14).
    [Show full text]
  • Structure, Properties, and Biological Relevance of the DNA and RNA G Quadruplexes: Overview 50 Years After Their Discovery
    ISSN 00062979, Biochemistry (Moscow), 2016, Vol. 81, No. 13, pp. 16021649. © Pleiades Publishing, Ltd., 2016. Original Russian Text © N. G. Dolinnaya, A. M. Ogloblina, M. G. Yakubovskaya, 2016, published in Uspekhi Biologicheskoi Khimii, 2016, Vol. 56, pp. 53154. REVIEW Structure, Properties, and Biological Relevance of the DNA and RNA GQuadruplexes: Overview 50 Years after Their Discovery N. G. Dolinnaya1*, A. M. Ogloblina2, and M. G. Yakubovskaya2 1Lomonosov Moscow State University, Department of Chemistry, 119991 Moscow, Russia; Email: [email protected] 2Blokhin Cancer Research Center, Institute of Carcinogenesis, Russian Academy of Medical Sciences, 115478 Moscow, Russia Received June 15, 2016 Abstract—Gquadruplexes (G4s), which are known to have important roles in regulation of key biological processes in both normal and pathological cells, are the most actively studied noncanonical structures of nucleic acids. In this review, we summarize the results of studies published in recent years that change significantly scientific views on various aspects of our understanding of quadruplexes. Modern notions on the polymorphism of DNA quadruplexes, on factors affecting thermo dynamics and kinetics of G4 folding–unfolding, on structural organization of multiquadruplex systems, and on conforma tional features of RNA G4s and hybrid DNA–RNA G4s are discussed. Here we report the data on location of G4 sequence motifs in the genomes of eukaryotes, bacteria, and viruses, characterize G4specific smallmolecule ligands and proteins, as well as the mechanisms of their interactions with quadruplexes. New information on the structure and stability of G4s in telomeric DNA and oncogene promoters is discussed as well as proof being provided on the occurrence of Gquadruplexes in cells.
    [Show full text]
  • A Novel G-Quadruplex-Forming GGA Repeat Region in the C-Myb Promoter Is a Critical Regulator of Promoter Activity Sunmi L
    Published online 5 February 2008 Nucleic Acids Research, 2008, Vol. 36, No. 6 1755–1769 doi:10.1093/nar/gkm1069 A novel G-quadruplex-forming GGA repeat region in the c-myb promoter is a critical regulator of promoter activity SunMi L. Palumbo1, Regan M. Memmott1, Diana J. Uribe1, Yulia Krotova-Khan1, Laurence H. Hurley1,2,3 and Scot W. Ebbinghaus1,* 1Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ 85724-5024, 2College of Pharmacy, University of Arizona, 1295 N. Martin Ave., Tucson, AZ 85721 and 3BIO5 Institute, University of Arizona, 1657 E. Helen St., Tucson, AZ 85721, USA Received May 31, 2007; Revised and Accepted November 13, 2007 ABSTRACT encodes a critical transcription factor for proliferation, differentiation and survival of haematopoietic progenitor The c-myb promoter contains multiple GGA repeats cells (1). High levels of the gene product c-Myb prevent beginning 17 bp downstream of the transcription haematopoietic stem cells from both differentiation and initiation site. GGA repeats have been previously apoptosis (2,3). Because of the critical role of c-Myb in shown to form unusual DNA structures in solution. determining cell fate, c-Myb expression levels are tightly Results from chemical footprinting, circular dichro- controlled in normal cells, showing high levels in ism and RNA and DNA polymerase arrest assays on immature, proliferating haematopoietic cells and unde- oligonucleotides representing the GGA repeat region tectable levels in differentiated cells (4). c-Myb is over of the c-myb promoter demonstrate that the element expressed in many leukemias and some solid tumors, and is able to form tetrad:heptad:heptad:tetrad (T:H:H:T) plays a critical role in leukemogenesis by maintaining cells G-quadruplex structures by stacking two tetrad:hep- in a proliferative state and by preventing terminal tad G-quadruplexes formed by two of the three differentiation (5–7).
    [Show full text]
  • Structural Studies on DNA G-Quadrupiexes
    October 2006 Structural studies on DNA G-quadrupIexes Sarah Wallace Burge {née Rankin) A thesis submitted for the degree of Doctor of Philosophy of the University of London Cancer Research UK Biomolecular Structure Group The School of Pharmacy University of London ProQuest Number: 10104293 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10104293 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Acknowledgements This work is in part a testament to the advice and encouragement I have received from various quarters over the past three years. They are too numerous to include and these brief mentions are somewhat inadequate to express my gratitude for their forbearance, wisdom and friendship. My supervisor, Professor Stephen Neidle, provided excellent direction and advice which resulted in a fulfilling and productive three years. I extend my thanks also to Dr Gary Parkinson for his advice and to Dr Mire Zloh for his assistance with NMR data collection at the School of Pharmacy. The hospitality of Dr Anh Tuan Phan and Professor Dinshaw Patel at the Memorial Sloan Kettering Cancer Center, New York, made for a truly memorable visit; I am indebted to them for their assistance in the synthesis of the '^N labelled DNA and collection of the associated NMR spectra.
    [Show full text]
  • Gauri Misra Editor Basics of Biophysics
    Gauri Misra Editor Introduction to Biomolecular Structure and Biophysics Basics of Biophysics Introduction to Biomolecular Structure and Biophysics Gauri Misra Editor Introduction to Biomolecular Structure and Biophysics Basics of Biophysics Editor Gauri Misra Amity University Noida, Uttar Pradesh India ISBN 978-981-10-4967-5 ISBN 978-981-10-4968-2 (eBook) DOI 10.1007/978-981-10-4968-2 Library of Congress Control Number: 2017952062 # The Editor(s) (if applicable) and The Author(s) 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
    [Show full text]
  • Molecular Dynamics Simulations Reveal the Balance of Forces Governing the Formation of a Guanine Tetrad––A Common Structural
    3020–3030 Nucleic Acids Research, 2016, Vol. 44, No. 7 Published online 14 March 2016 doi: 10.1093/nar/gkw160 Molecular dynamics simulations reveal the balance of forces governing the formation of a guanine tetrad––a common structural unit of G-quadruplex DNA Mateusz Kogut, Cyprian Kleist and Jacek Czub* Department of Physical Chemistry, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland Received January 20, 2016; Revised February 26, 2016; Accepted March 1, 2016 ABSTRACT mation of G4 motifs at the single-stranded telomeric 3- overhang leads to telomerase inhibition (10) and competes G-quadruplexes (G4) are nucleic acid conformations with the binding of the ssDNA overhang by POT1, a com- of guanine-rich sequences, in which guanines are ponent of shelterin protein complex protecting chromoso- arranged in the square-planar G-tetrads, stacked on mal ends (11–13). Accordingly, G4-stabilizing agents, such one another. G4 motifs form in vivo and are impli- as telomestatin, have been shown to impair telomere home- cated in regulation of such processes as gene ex- ostasis and thereby to induce growth arrest or apoptosis in pression and chromosome maintenance. The struc- cultured cells (14–16). As a result, G4 DNA is now consid- ture and stability of various G4 topologies were de- ered a promising target for anticancer therapy (17–19). G4- termined experimentally; however, the driving forces forming sequences are also found to be over-represented in for their formation are not fully understood at the other regulatory regions of the genome, including promot- molecular level. Here, we used all-atom molecular ers (20,21), introns (22), mitotic and meiotic double-strand break sites (6), immunoglobulin switch regions (9) and 5- dynamics to probe the microscopic origin of the G4 UTRs (23).
    [Show full text]
  • Possible Regulatory Roles of Promoter G-Quadruplexes in Cardiac Function-Related Genes – Human Tnic As a Model
    Possible Regulatory Roles of Promoter G-Quadruplexes in Cardiac Function-Related Genes – Human TnIc as a Model Wenhua Zhou1, Kogularamanan Suntharalingam2, Nigel J. Brand3, Paul J. R. Barton3,4, Ramon Vilar2, Liming Ying1* 1 Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom, 2 Department of Chemistry, Imperial College London, London, United Kingdom, 3 Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Middlesex, United Kingdom, 4 NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, United Kingdom Abstract G-quadruplexes (G4s) are four-stranded DNA secondary structures, which are involved in a diverse range of biological processes. Although the anti-cancer potential of G4s in oncogene promoters has been thoroughly investigated, the functions of promoter G4s in non-cancer-related genes are not well understood. We have explored the possible regulatory roles of promoter G4s in cardiac function-related genes using both computational and a wide range of experimental approaches. According to our bioinformatics results, it was found that potential G4-forming sequences are particularly enriched in the transcription regulatory regions (TRRs) of cardiac function-related genes. Subsequently, the promoter of human cardiac troponin I (TnIc) was chosen as a model, and G4s found in this region were subjected to biophysical characterisations. The chromosome 19 specific minisatellite G4 sequence (MNSG4) and near transcription start site (TSS) G4 sequence (280 G4) adopt anti-parallel and parallel structures respectively in 100 mM KCl, with stabilities comparable to those of oncogene G4s. It was also found that TnIc G4s act cooperatively as enhancers in gene expression regulation in HEK293 cells, when stabilised by a synthetic G4-binding ligand.
    [Show full text]
  • Genomic Deoxyuracil: Targeting, Regulation and Repair
    Illinois State University ISU ReD: Research and eData Theses and Dissertations 9-25-2015 Genomic Deoxyuracil: Targeting, Regulation And Repair Nate Warren Holton Illinois State University, [email protected] Follow this and additional works at: https://ir.library.illinoisstate.edu/etd Part of the Molecular Biology Commons Recommended Citation Holton, Nate Warren, "Genomic Deoxyuracil: Targeting, Regulation And Repair" (2015). Theses and Dissertations. 468. https://ir.library.illinoisstate.edu/etd/468 This Dissertation is brought to you for free and open access by ISU ReD: Research and eData. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ISU ReD: Research and eData. For more information, please contact [email protected]. GENOMIC DEOXYURACIL: TARGETING, REGULATION AND REPAIR Nate W. Holton 127 pages Maintaining genomic integrity is critical to avoid sequence mutations and genetic disease. However the immune system requires genomic rearrangements in order to produce novel antibodies and elicit a full immunological response. The expression of DNA modifying enzymes is essential for antibody production but the off target effects are not well understood. The work presented here was performed to elucidate molecular mechanisms responsible for the regulation and targeting of DNA editing enzymes, as well as characterize repair of these lesions at off target loci. KEYWORDS: Activation Induced Cytosine Deaminase, AID, miRNA, miR155, miR93, G-quadruplex, G4, Uracil DNA Glycosylase, UDG, UNG GENOMIC DEOXYURACIL: TARGETING, REGULATION AND REPAIR NATE W. HOLTON A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY School of Biological Sciences ILLINOIS STATE UNIVERSITY 2015 Copyright 2015 Nate W.
    [Show full text]