ISSN 00062979, Biochemistry (Moscow), 2016, Vol. 81, No. 13, pp. 16021649. © Pleiades Publishing, Ltd., 2016. Original Russian Text © N. G. Dolinnaya, A. M. Ogloblina, M. G. Yakubovskaya, 2016, published in Uspekhi Biologicheskoi Khimii, 2016, Vol. 56, pp. 53154. REVIEW Structure, Properties, and Biological Relevance of the DNA and RNA GQuadruplexes: Overview 50 Years after Their Discovery N. G. Dolinnaya1*, A. M. Ogloblina2, and M. G. Yakubovskaya2 1Lomonosov Moscow State University, Department of Chemistry, 119991 Moscow, Russia; Email:
[email protected] 2Blokhin Cancer Research Center, Institute of Carcinogenesis, Russian Academy of Medical Sciences, 115478 Moscow, Russia Received June 15, 2016 Abstract—Gquadruplexes (G4s), which are known to have important roles in regulation of key biological processes in both normal and pathological cells, are the most actively studied noncanonical structures of nucleic acids. In this review, we summarize the results of studies published in recent years that change significantly scientific views on various aspects of our understanding of quadruplexes. Modern notions on the polymorphism of DNA quadruplexes, on factors affecting thermo dynamics and kinetics of G4 folding–unfolding, on structural organization of multiquadruplex systems, and on conforma tional features of RNA G4s and hybrid DNA–RNA G4s are discussed. Here we report the data on location of G4 sequence motifs in the genomes of eukaryotes, bacteria, and viruses, characterize G4specific smallmolecule ligands and proteins, as well as the mechanisms of their interactions with quadruplexes. New information on the structure and stability of G4s in telomeric DNA and oncogene promoters is discussed as well as proof being provided on the occurrence of Gquadruplexes in cells.