Neural Engineering Engineering Is at the Heart of Society, Underpinning and Continually Improving the Quality of Our Lives

Total Page:16

File Type:pdf, Size:1020Kb

Neural Engineering Engineering Is at the Heart of Society, Underpinning and Continually Improving the Quality of Our Lives The Royal Academy of Engineering UK Focus for Biomedical Engineering Policy Briefing Neural engineering Engineering is at the heart of society, underpinning and continually improving the quality of our lives. The Royal Academy of Engineering brings together the country’s most eminent engineers from all disciplines to promote excellence and support the engineering performance of the UK. Biomedical engineering creates new medical technologies and systems that can greatly improve patient care and quality of life. The UK Focus for Biomedical Engineering is the Academy’s forum for this increasingly important area of engineering in which the UK is taking a lead. Introduction interfacing technology directly with the A second example of neuroprosthetics human nervous system. is deep brain stimulation (DBS), which Biomedical engineering is constantly involves the surgical implantation of a expanding and extending the areas There are already real-world clinical medical device called a brain pacemaker of application within healthcare. solutions for areas such as controlling that sends electrical pulses to very Technological developments, coupled essential tremor through implants in with a stronger understanding of specific parts of the brain. While DBS in deep-brain stimulation for Parkinson’s biological processes brought about specific brain regions has provided very Disease, vagal nerve stimulation for help by cutting-edge research, create new good therapeutic benefits for otherwise in controlling epilepsy, and the use of areas within biomedical engineering. treatment-resistant movement and Neural engineering is one such recent cochlear implants to restore hearing in affective disorders such as chronic pain development. the profoundly deaf (neuroprosthetics). and dystonia, it is in Parkinson’s disease and tremor that DBS is best known. Neural engineering, sometimes known The technology Parkinson’s disease is a as neuroengineering, is the discipline in Neuroprosthetics is concerned with neurodegenerative disease whose which engineering skills and techniques developing neural prostheses, devices primary symptom is tremor. DBS are used to understand, repair, replace, that can substitute a motor, sensory does not cure Parkinson’s, but it can or enhance neural systems. Neural or cognitive modality that might have help manage some symptoms and engineers solve design problems at the been damaged as a result of an injury or subsequently improve the patient’s interface of living neural tissue and non- a disease. An example of such a device living systems. quality of life. At present, the procedure is is the cochlear implant. This device used only for patients whose symptoms substitutes the functions performed Like other areas in biomedical cannot be adequately controlled with by the biological components of the engineering, neural engineering medications, or in whom medications ear and the cochlea, and stimulates draws on the expertise of a variety of have severe side-effects. Although the the auditory nerves directly through disciplines such as computational and underlying principles are not clear, an implanted device. A microphone on experimental neuroscience, clinical DBS directly changes brain activity in a an external unit gathers the sound and neurology, electrical engineering and controlled manner, and its effects are processes it. The processed signal is then signal processing. Of special note is the reversible, unlike those brought about interface to living neural tissue, which transferred to an implanted unit that through direct surgical intervention. brings together elements from robotics, stimulates the auditory nerves through a In fact the effects of DBS on essential cybernetics, computer engineering, microelectrode array. tremor can be starkly seen when the DBS neural tissue engineering, materials system is switched off – the characteristic science and nanotechnology. In 2009, more than 188,000 people tremor returning within moments. worldwide had received cochlear While neural engineering still has a implants – many of them children. The Engineering’s strong research component, it has vast majority of implants take place in contribution some very clear and beneficial goals. developed countries because of the Like any other area in biomedical These are centred on the restoration high cost of the device, surgery and engineering, neural engineering is and augmentation of human function post-implantation therapy. Following highly cross-disciplinary and requires the via direct interactions between the recent advice by the National Institute for interaction of specialisms in engineering nervous system and artificial devices, for Health and Clinical Excellence (NICE) in example, restoring the ability to interact the UK, a growing number of recipients and in life and health sciences. with the environment following a stroke have bilateral implants – one implant in Developments in the neural engineering or debilitating neural disease through each cochlea. field could not happen without training in many areas of expertise. These include: before they start. This technique is ways to achieve non-muscular BCI by core training in electrical and electronic similar to that being researched in the capturing brain activity in real-time. engineering, specialist training in signal treatment of epilepsy – where the goal is EEG-based BCI systems require relatively processing and systems modelling, as to use DBS to stop debilitating epileptic simple and inexpensive equipment, well as computer engineering training seizures before they even start. should be portable and easy to set up, in computational intelligence and and should function in most real-world machine-learning. This needs to be Brainstem stroke, brain or spinal cord environments – but this is a non-trivial coupled with expertise in physiology, injury and numerous other muscle problem. neuro-anatomy, neurology, elements of wasting diseases such as amyotrophic chemistry – as well as advanced areas lateral sclerosis (ALS) result in the Conclusion degeneration of specific motor neurons such as nanotechnology. Neural engineering is an up and coming which causes muscles to stop receiving area within biomedical engineering. It movement commands. People suffering Neural engineering relies on biomedical addresses a wide range of debilitating from these disorders ultimately lose the engineering educational programmes illnesses and shows promise to address ability to control their muscles and to to produce graduates with the correct much more. It is an area which shows communicate while their intelligence, base skills to handle the unique clearly the benefits of multi-disciplinary memory and ability to think remain problems associated with restoring and research and the continued need to fund intact. Therefore, a healthy brain is augmenting human function through research and development at the life- “locked in” a paralysed body. As the direct interface with the nervous system. sciences interface. Continued funding French journalist, Jean-Dominique in this area will help to create new Bauby, has shown in his memoir The Future work businesses that exploit emerging neural Diving Bell and the Butterfly, which was engineering techniques, assessing and Areas under development and nearing composed letter by letter with 200,000 evaluating them and delivering them clinical application include the use blinks of his left eyelid after suffering through the most appropriate means. of functional electrical stimulation to from a massive stroke, establishing an control limbs following spinal injury alternative to neuromuscular interaction Author: Professor Christopher James, and neural interfacing to prosthetics to is a painstakingly challenging day-to-day Director, Institute of Digital Healthcare, control artificial limbs. Other areas under venture for severely impaired people. research include ocular implants to University of Warwick restore sight to the visually impaired and Consequently, neural engineers the use of brain-computer interfacing have been attempting to develop to restore communication to those who systems that enable these patients to lack the ability through stroke, severe communicate with computers directly Contact brain disease or spinal injury. through brain activity rather than by For more information please contact: physical means. Such systems are Within neuroprosthetics, research meant to provide new, non-muscular Katherine MacGregor is being carried out with the aim of channels of communication – a brain Policy Advisor predicting the onset of tremors before computer interface (BCI) for conveying The Royal Academy of Engineering they occur by monitoring activity deep messages and commands to computers. Tel: 0207 766 0623 in the brain. The specific goal for doing Electroencephalography (EEG), this is to provide stimulation only when measuring brain activity from the scalp, [email protected] needed, to stop any tremors occurring and related measurements are possible January 2011 Neural engineering .
Recommended publications
  • Neuroplasticity in Adult Human Visual Cortex
    Neuroplasticity in adult human visual cortex Elisa Castaldi1, Claudia Lunghi2 and Maria Concetta Morrone3,4 1 Department of Neuroscience, Psychology, Pharmacology and Child health, University of Florence, Florence, Italy 2 Laboratoire des systèmes perceptifs, Département d’études cognitives, École normale supérieure, PSL University, CNRS, 75005 Paris, France 3 Department of Translational Research and New technologies in Medicine and Surgery, University of Pisa, Pisa, Italy 4 IRCCS Stella Maris, Calambrone (Pisa), Italy Abstract Between 1-5:100 people worldwide has never experienced normotypic vision due to a condition called amblyopia, and about 1:4000 suffer from inherited retinal dystrophies that progressively lead them to blindness. While a wide range of technologies and therapies are being developed to restore vision, a fundamental question still remains unanswered: would the adult visual brain retain a sufficient plastic potential to learn how to ‘see’ after a prolonged period of abnormal visual experience? In this review we summarize studies showing that the visual brain of sighted adults retains a type of developmental plasticity, called homeostatic plasticity, and this property has been recently exploited successfully for adult amblyopia recover. Next, we discuss how the brain circuits reorganizes when visual stimulation is partially restored by means of a ‘bionic eye’ in late blinds with Retinitis Pigmentosa. The primary visual cortex in these patients slowly became activated by the artificial visual stimulation, indicating that
    [Show full text]
  • A New Curriculum in Neural Engineering with Emphasis on Design of Neural Systems
    Session ???? A New Curriculum in Neural Engineering with Emphasis on Design of Neural Systems John R. Hetling, Christopher M. Comer*, and Richard L. Magin Departments of Bioengineering / *Biological Sciences, University of Illinois at Chicago Introduction. Academic and commercial research teams are currently developing a new generation of devices that will interact with, incorporate, and/or emulate living nervous systems. Neural prostheses to restore hearing, mobility or sight will offer a wider range of function; robotic devices will become more effective with “neuromorphic” control systems; fundamentally new methods for processing information will be motivated by biological systems. Neural Engineering is the intellectual force behind these developments, supported by recent advances in cellular neurobiology, microfabrication and neural modeling. Based on decades of quantitative approaches to increase our understanding of neural systems, bioengineers are now beginning to design neural systems and neural interfaces. Neural engineers have new tools to control aspects of these systems such as guided axon growth and multielectrode arrays for stimulation and recording. In addition to potential applications attracting the attention of biotech and defense industries, these efforts in turn increase our understanding of natural neural systems. One of the most intriguing aspects of contemporary Neural Engineering is the increasing degree to which scientists can repair and exploit the properties of neural systems, including applications such as neural prostheses, biosensors, or hybrid neural computing devices. The former application currently supports significant industrial involvement; for example, Clarion and Medtronic have commercially available cochlear implants, and Optobionics Inc. (IL) and Second Sight (CA) are companies developing prostheses for vision (in existence for approximately 14 and 4 years, respectively).
    [Show full text]
  • Intention, Emotion, and Action: a Neural Theory Based on Semantic Pointers
    Cognitive Science 38 (2014) 851–880 Copyright © 2013 Cognitive Science Society, Inc. All rights reserved. ISSN: 0364-0213 print / 1551-6709 online DOI: 10.1111/cogs.12100 Intention, Emotion, and Action: A Neural Theory Based on Semantic Pointers Tobias Schroder,€ Terrence C. Stewart, Paul Thagard Department of Philosophy, University of Waterloo Received 14 May 2012; received in revised form 3 March 2013; accepted 28 March 2013 Abstract We propose a unified theory of intentions as neural processes that integrate representations of states of affairs, actions, and emotional evaluation. We show how this theory provides answers to philosophical questions about the concept of intention, psychological questions about human behav- ior, computational questions about the relations between belief and action, and neuroscientific questions about how the brain produces actions. Our theory of intention ties together biologically plausible mechanisms for belief, planning, and motor control. The computational feasibility of these mechanisms is shown by a model that simulates psychologically important cases of intention. Keywords: Intention; Emotion; Action; Implementation intentions; Automatic; Deliberative; Planning; Neural engineering framework; Semantic pointers 1. The problem of explaining intention The concept of intention is important in many disciplines, including philosophy, psy- chology, artificial intelligence, cognitive neuroscience, and law. For example, criminal law treats cases where one person intends to kill another very differently from cases where death results unintentionally from negligence. Despite decades of discussions, how- ever, there is no received theory of intention within any of these disciplines, let alone a theory that accounts for all the phenomena identified across all of the disciplines. We propose a unified theory of intentions as neural processes that integrate representa- tions of states of affairs, actions, and emotional evaluation.
    [Show full text]
  • Brain-Machine Interface: from Neurophysiology to Clinical
    Neurophysiology of Brain-Machine Interface Rehabilitation Matija Milosevic, Osaka University - Graduate School of Engineering Science - Japan. Abstract— Long-lasting cortical re-organization or II. METHODS neuroplasticity depends on the ability to synchronize the descending (voluntary) commands and the successful execution Stimulation of muscles with FES was delivered using a of the task using a neuroprosthetic. This talk will discuss the constant current biphasic waveform with a 300μs pulse width neurophysiological mechanisms of brain-machine interface at 50 Hz frequency via surface electrodes. First, repetitive (BMI) controlled neuroprosthetics with the aim to provide transcranial magnetic stimulation (rTMS) intermittent theta implications for development of technologies for rehabilitation. burst protocol (iTBS) was used to induce cortical facilitation. iTBS protocol consists of pulses delivered intermittently at a I. INTRODUCTION frequency of 50 Hz and 5 Hz for a total of 200 seconds. Functional electrical stimulation (FES) neuroprosthetics Moreover, motor imagery protocol was used to display a can be used to applying short electric impulses over the virtual reality hand opening and closing sequence of muscles or the nerves to generate hand muscle contractions movements (hand flexion/extension) while subject’s hands and functional movements such as reaching and grasping. remained at rest and out of the visual field. Our work has shown that recruitment of muscles using FES goes beyond simple contractions, with evidence suggesting III. RESULTS re-organization of the spinal reflex networks and cortical- Our first results showed that motor imagery can affect level changes after the stimulating period [1,2]. However, a major challenge remains in achieving precise temporal corticospinal facilitation in a phase-dependent manner, i.e., synchronization of voluntary commands and activation of the hand flexor muscles during hand closing and extensor muscles [3].
    [Show full text]
  • A Neural Engineering Track Within Bioengineering: Lecture and Lab Courses
    2006-2510: A NEURAL ENGINEERING TRACK WITHIN BIOENGINEERING: LECTURE AND LAB COURSES David Schneeweis, University of Illinois-Chicago J Hetling, University of Illinois-Chicago Patrick Rousche, University of Illinois-Chicago Page 11.77.1 Page © American Society for Engineering Education, 2006 A NEURAL ENGINEERING TRACK WITHIN BIOENGINEERING: LECTURE AND LAB COURSES Neural engineering as a distinct specialty within bioengineering Neural engineering (also called neuroengineering) has recently been identified as an emerging field of specialization within the broader field of biomedical engineering, or bioengineering. (The terms “biomedical engineering” and “bioengineering” are virtually synonymous in most contexts, so “bioengineering” will be used in this article for simplicity.) Neural engineers self-identify as engineers/scientists interested in engineering challenges related to the brain and nervous system. It has been referred to as a “merger of engineering and neuroscience” [1]. Many neural engineers work on clinically oriented challenges, including for example developing sensory prostheses for the deaf and blind or designing systems to stimulate walking motion in the legs of spinal chord injury patients. But other neural engineers are interested primarily in understanding how the brain and nervous system work, or are affected by disease. Although engineers and scientists have been doing this kind of work for decades, it is only within the last decade or so that neural engineering has become recognized as a named sub- specialty. Indeed it has only been recently that “neural engineering” has existed as a distinct subject track at the annual meeting of the Biomedical Engineering Society. But the field is rapidly growing as witnessed by the establishment of the Journal of Neural Engineering in 2004, and the holding of the 1st International IEEE EMBS Conference on Neural Engineering in 2003.
    [Show full text]
  • Deep Learning in the Biomedical Applications: Recent and Future Status
    applied sciences Article Deep Learning in the Biomedical Applications: Recent and Future Status Ryad Zemouri 1,*, Noureddine Zerhouni 2 and Daniel Racoceanu 3 1 CEDRIC Laboratory of the Conservatoire National des Arts et métiers (CNAM), HESAM Université, 292, rue Saint-Martin, 750141 Paris CEDEX 03, France 2 FEMTO-ST, University of Bourgogne-Franche-Comté, 15B avenue des Montboucons, 25030 Besançon CEDEX, France; [email protected] 3 Sorbonne University, 4 Place Jussieu, 75005 Paris, France; [email protected] or [email protected] * Correspondence: [email protected] Received: 12 March 2019; Accepted: 9 April 2019; Published: 12 April 2019 Abstract: Deep neural networks represent, nowadays, the most effective machine learning technology in biomedical domain. In this domain, the different areas of interest concern the Omics (study of the genome—genomics—and proteins—transcriptomics, proteomics, and metabolomics), bioimaging (study of biological cell and tissue), medical imaging (study of the human organs by creating visual representations), BBMI (study of the brain and body machine interface) and public and medical health management (PmHM). This paper reviews the major deep learning concepts pertinent to such biomedical applications. Concise overviews are provided for the Omics and the BBMI. We end our analysis with a critical discussion, interpretation and relevant open challenges. Keywords: deep neural networks; biomedical applications; Omics; medical imaging; brain and body machine interface 1. Introduction The biomedical domain nourishes a very rich research field with many applications, medical specialties and associated pathologies. Some of these pathologies are very well-known and mastered by physicians, but others, much less. With the technological and scientific advances, the biomedical data used by the medical practitioners are very heterogeneous, such as a wide range of clinical analyses and parameters, biological parameters and medical imaging modalities.
    [Show full text]
  • Brain-Computer Interfaces: U.S. Military Applications and Implications, an Initial Assessment
    BRAIN- COMPUTER INTERFACES U.S. MILITARY APPLICATIONS AND IMPLICATIONS AN INITIAL ASSESSMENT ANIKA BINNENDIJK TIMOTHY MARLER ELIZABETH M. BARTELS Cover design: Peter Soriano Cover image: Adobe Stock/Prostock-studio Limited Print and Electronic Distribution Rights This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal use only, as long as it is unaltered and complete. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. For information on reprint and linking permissions, please visit www.rand.org/pubs/permissions.html. RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors. R® is a registered trademark. For more information on this publication, visit www.rand.org/t/RR2996. Library of Congress Cataloging-in-Publication Data is available for this publication. ISBN: 978-1-9774-0523-4 © Copyright 2020 RAND Corporation Summary points of failure, adversary access to new informa- tion, and new areas of exposure to harm or avenues Brain-computer interface (BCI) represents an emerg- of influence of service members. It also underscores ing and potentially disruptive area of technology institutional vulnerabilities that may arise, includ- that, to date, has received minimal public discussion ing challenges surrounding a deficit of trust in BCI in the defense and national security policy commu- technologies, as well as the potential erosion of unit nities. This research considered key areas in which cohesion, unit leadership, and other critical inter- future BCI technologies might be relevant for the personal military relationships.
    [Show full text]
  • Signal Quality of Simultaneously Recorded Endovascular, Subdural and Epidural Signals Are Comparable Received: 7 September 2017 Sam E
    www.nature.com/scientificreports Correction: Author Correction OPEN Signal quality of simultaneously recorded endovascular, subdural and epidural signals are comparable Received: 7 September 2017 Sam E. John 1,2,3,7, Nicholas L. Opie2,3,7, Yan T. Wong1,6, Gil S. Rind2,3,7, Stephen M. Accepted: 10 May 2018 Ronayne2,3,7, Giulia Gerboni1,2,3, Sebastien H. Bauquier5, Terence J. O’Brien2,3, Clive N. May3, Published online: 30 May 2018 David B. Grayden 1,4 & Thomas J. Oxley2,3,7 Recent work has demonstrated the feasibility of minimally-invasive implantation of electrodes into a cortical blood vessel. However, the efect of the dura and blood vessel on recording signal quality is not understood and may be a critical factor impacting implementation of a closed-loop endovascular neuromodulation system. The present work compares the performance and recording signal quality of a minimally-invasive endovascular neural interface with conventional subdural and epidural interfaces. We compared bandwidth, signal-to-noise ratio, and spatial resolution of recorded cortical signals using subdural, epidural and endovascular arrays four weeks after implantation in sheep. We show that the quality of the signals (bandwidth and signal-to-noise ratio) of the endovascular neural interface is not signifcantly diferent from conventional neural sensors. However, the spatial resolution depends on the array location and the frequency of recording. We also show that there is a direct correlation between the signal-noise-ratio and classifcation accuracy, and that decoding accuracy is comparable between electrode arrays. These results support the consideration for use of an endovascular neural interface in a clinical trial of a novel closed-loop neuromodulation technology.
    [Show full text]
  • Neural Engineering Lead
    Neural Engineering Lead Job description Paradromics is looking for a Neural Engineer to lead the preclinical and clinical testing of the key components of our neural implant system and to oversee successful translation into humans. This position will require close coordination with other engineering teams and therefore the ideal candidate will have worked across both disciplines of engineering and neuroscience in relation to biomedical devices. In addition, excellent communication and interpersonal skills are crucial for excelling at this role. If you like big challenges, working at the frontier of human technology, and straddling the line between applied science and engineering, we would like to hear from you. Required Skills & Experience ● Experience working with team members of diverse professional and academic backgrounds ● Experience leading or mentoring engineers and scientists ● Experience in performing electrophysiological recordings in humans, non-human primates, or other large animals ● Basic understanding of the principals of operation for neural electronics ● Programming knowledge and experience ● Excellent written and oral communication skills ● Very strong analytical and debugging skills ● Ability to produce well-written technical reports and documentation ● Experience with scientific communication in peer-reviewed journals ● PhD in Biomedical Engineering, Neuroscience, or a closely related discipline Preferred Skills & Experience ● Knowledge of advanced feature extraction techniques for neural decoding ● Familiarity with dynamical systems models for neural decoding ● Deep knowledge of systems neuroscience relating to Brain Machine/Computer Interface ● Knowledge of Neuromodulation and Bioelectronic devices in the CNS ● Experience in medical device industry or other highly regulated environment ● Experience conducting GLP animal studies intended for submission to the FDA or other regulators Paradromics is an Equal Opportunity Employer.
    [Show full text]
  • Cognitive Neuroscience Student Handbook 2019-2020
    M.S. Program in Cognitive Neuroscience 2019-2020 The Graduate Center 365 Fifth Avenue, New York, NY 10016-4309 [email protected] https://www.gc.cuny.edu/Page-Elements/Academics-Research-Centers-Initiatives/Masters- Programs/Cognitive-Neuroscience Disclaimer: The M.S. Program in Cognitive Neuroscience reserves the right to make changes to this Student Handbook, as necessary, depending on changes made by The Graduate Center or the program. Please check our website regularly to ensure that you have the most recent copy. Parts of this handbook provide a brief overview of The Graduate Center Student Handbook and The Graduate Center Bulletin; please refer to them for further information and/or clarification of The Graduate Center policies. 2 Table of Contents Introduction ....................................................................................................................................................... 6 Letter from the Director ................................................................................................................................ 6 About the M.S. Program in Cognitive Neuroscience ................................................................................... 7 Program Goals ................................................................................................................................................ 7 Program Officers ................................................................................................................................................ 7 College Assistant(s).......................................................................................................................................
    [Show full text]
  • Opportunities and Implications of Brain-Computer Interface Technology
    OPPORTUNITIES AND IMPLICATIONS OF BRAIN- COMPUTER INTERFACE TECHNOLOGY Mark W. Vahle, Major, USAF Air Command and Staff College Evan L. Pettus, Brigadier General, Commandant James Forsyth, PhD, Dean of Resident Programs Bart R. Kessler, PhD, Dean of Distance Learning Paul Springer, PhD, Director of Research Please send inquiries or comments to Editor The Wright Flyer Papers Department of Research and Publications (ACSC/DER) Air Command and Staff College 225 Chennault Circle, Bldg. 1402 Maxwell AFB AL 36112-6426 Tel: (334) 953-3558 Fax: (334) 953-2269 Email: [email protected] AIR UNIVERSITY AIR COMMAND AND STAFF COLLEGE Opportunities and Implications of Brain- Computer Interface Technology Mark W. Vahle, major, usaf Wright Flyer Paper No. 75 Air University Press Muir S. Fairchild Research Information Center Maxwell Air Force Base, Alabama Commandant, Air Command and Staff Accepted by Air University Press April 2019 and published July 2020. College Brig Gen Evan L. Pettus Director, Air University Press Maj Richard Harrison Project Editor Catherine Parker Illustrator Daniel Armstrong Print Specialist Megan N. Hoehn Disclaimer Air University Press Opinions, conclusions, and recommendations expressed or implied 600 Chennault Circle, Building 1405 within are solely those of the author and do not necessarily repre- Maxwell AFB, AL 36112-6010 sent the views of the Department of Defense, the United States Air https://www.airuniversity.af.edu/AUPress/ Force, the Air Education and Training Command, the Air Univer- sity, or any
    [Show full text]
  • A Technical Overview of the Neural Engineering Framework Terrence C
    A Technical Overview of the Neural Engineering Framework Terrence C. Stewart Centre for Theoretical Neuroscience technical report. Oct 29, 2012 This is an extended version of an article written for AISB Quarterly: The Newsletter of the Society for the Study of Artificial Intelligence and Simulation of Behaviour, Issue 135 (Autumn, 2012). The Neural Engineering Framework (NEF) is a general methodology that allows you to build large- scale, biologically plausible, neural models of cognition [1]. In particular, it acts as a neural compiler: you specify the properties of the neurons, the values to be represented, and the functions to be computed, and it solves for the connection weights between components that will perform the desired functions. Importantly, this works not only for feed-forward computations, but recurrent connections as well, allowing for complex dynamical systems including integrators, oscillators, Kalman filters, and so on [2]. It also incorporates realistic local error-driven learning rules, allowing for online adaptation and optimization of responses [3]. The NEF has been used to model visual attention [4], inductive reasoning [5], reinforcement learning [6], and many other tasks. Recently, we used it to build Spaun, the world's largest functional brain model, using 2.5 million neurons to perform eight different cognitive tasks by interpreting visual input and producing hand-written output via a simulated 6-muscle arm [7,8]. Our open-source software Nengo was used for all of these, and is available at http://nengo.ca, along with tutorials, demos, and downloadable models. Motivation At first, it may seem odd to some that we would want to create biologically plausible models of cognition.
    [Show full text]