Bibliography
Total Page:16
File Type:pdf, Size:1020Kb
Bibliography 1. Abikoff, William, TherealanalytictheoryofTeichm¨uller space, Lecture Notes in Mathematics, 820, Springer-Verlag, Berlin, 1980. 2. Abramovich, D., Corti, A. and Vistoli, A., Twisted bundles and admissible covers, Comm. Algebra 31 (2003), 3547–3618. 3. Adem, A., Leida, J. and Ruan, Y., Orbifolds and stringy topology, Cambridge Tracts in Mathematics, 171, Cambridge University Press, New York, 2007. 4. Ahlfors, Lars V., Lectures on quasiconformal mappings,University Lecture Series, 38, American Mathematical Society, Providence, RI, 2006. 5. Ahlfors, Lars and Bers, Lipman, Riemann’s mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385–404. 6. Alexeev, Valery, Compactified Jacobians and Torelli map, Publ. Res. Inst. Math. Sci. 40 (2004), 1241–1265. 7. Altman, Allen B. and Kleiman, Steven L., Compactifying the Jacobian, Bull. Amer. Math. Soc. 82 (1976), 947–949. 8. Altman, Allen B. and Kleiman, Steven L., Compactifying the Picard scheme, Adv. in Math. 35 (1980), 50–112. 9. Altman, Allen B. and Kleiman, Steven L., Compactifying the Picard scheme. II, Amer. J. Math. 101 (1979), 10–41. 10. Andreotti, Aldo, On a theorem of Torelli, Amer. J. Math. 80 (1958), 801–828. 11. Aprodu, Marian, Brill–Noether theory for curves on K3 surfaces,in Contemporary geometry and topology and related topics, Cluj Univ. Press, Cluj-Napoca, 2008, pp. 1–12. 12. Aprodu, Marian and Farkas, Gavril, Koszul cohomology and applications to moduli, arXiv:0811.3117v1 [math.AG]. 13. Aprodu, Marian and Farkas, Gavril, Green’s conjecture for curves on arbitrary K3 surfaces, arXiv:0911.5310 (2009). 14. Aprodu, Marian and Nagel, Jan, Koszul cohomology and Algebraic Geometry, University Lecture Series, 52, American Mathematical Society, Providence, RI, 2010. 15. Aprodu, Marian and Pacienza, Gianluca, The Green conjecture for exceptional curves on a K3 surface, Int. Math. Res. Not. IMRN 14 (2008), 8–25. E. Arbarello et al., Geometry of Algebraic Curves, Grundlehren der mathematischen Wissenschaften 268, DOI 10.1007/978-3-540-69392-5, c Springer-Verlag Berlin Heidelberg 2011 904 Bibliography 16. Aprodu, Marian and Voisin, Claire, Green–Lazarsfeld’s conjecture for generic curves of large gonality, C. R. Math. Acad. Sci. Paris 336 (2003), 335–339. 17. Arakelov, S. Ju., Families of algebraic curves with fixed degeneracies, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1269–1293. 18. Arakelov, S. Ju., An intersection theory for divisors on an arithmetic surface, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1179–1192. 19. Arbarello, Enrico, Weierstrass points and moduli of curves, Compositio Math. 29 (1974), 325–342. 20. Arbarello, Enrico, On subvarieties of the moduli space of curves of genus g defined in terms of Weierstrass points, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8) 15 (1978), 3–20. 21. Arbarello, Enrico, Sketches of KdV, in Symposium in Honor of C. H. Clemens (Salt Lake City, UT, 2000), Contemp. Math., Amer. Math. Soc., Providence, RI, 2002, pp. 9–69. 22. Arbarello, Enrico and Cornalba, Maurizio, Su di una propriet`a notevole dei morfismi di una curva a moduli generali in uno spazio proiettivo, Rend. Sem. Mat. Univ. Politec. Torino 38 (1980), 87–99. 23. Arbarello, Enrico and Cornalba, Maurizio, Su una congettura di Petri, Comment. Math. Helv. 56 (1981), 1–38. 24. Arbarello, Enrico and Cornalba, Maurizio, Footnotes to a paper of Beniamino Segre: “Sui moduli delle curve poligonali, e sopra un complemento al teorema di esistenza di Riemann” [Math. Ann. 100 1 (1928), 537–551], The number of gd’s on a general d-gonal curve and the unirationality of the Hurwitz spaces of 4-gonal and 5-gonal curves, Math. Ann. 256 (1981), 341–362. 25. Arbarello, Enrico and Cornalba, Maurizio, A few remarks about the variety of irreducible plane curves of given degree and genus, Ann. Sci. Ecole´ Norm. Sup. (4) 16 (1983), 467–488. 26. Arbarello, Enrico and Cornalba, Maurizio, The Picard groups of the moduli spaces of curves, Topology 26 (1987), 153–171. 27. Arbarello, Enrico and Cornalba, Maurizio, Combinatorial and algebro- geometric cohomology classes on the moduli spaces of curves,J. Algebraic Geom. 5 (1996), 705–749. 28. Arbarello, Enrico and Cornalba, Maurizio, Calculating cohomology groups of moduli spaces of curves via algebraic geometry, Inst. Hautes Etudes´ Sci. Publ. Math. 88 (1998), 97–127. 29. Arbarello, Enrico and Cornalba, Maurizio, Teichm¨uller space via Kuranishi families, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8 (2009), 89–116. 30. Arbarello, Enrico and Cornalba, Maurizio, Divisors in the moduli spaces of curves, in Geometry of Riemann surfaces and their moduli spaces (Lizhen Ji, Scott Wolpert, Shing-Tung Yau, eds.), Surveys in Differential Geometry 14, International Press, Somerville, MA, 2010, pp. 1–22. Bibliography 905 31. Arbarello, Enrico and Cornalba, Maurizio, Jenkins-Strebel Differentials, Rend. Lincei Mat. Appl. (9) 21 (2010), 115–157. 32. Arbarello, E., Cornalba, M., Griffiths, P., and Harris, J., Geometry of algebraic curves, I, Grundlehren der mathematischen Wissenschaften, 267, Springer-Verlag, New York, 1985. 33. Arbarello, E., De Concini, C., Kac, V., and Procesi, C., Moduli spaces of curves and representation theory, Comm. Math. Phys 117 (1988), 1–36. 34. Arbarello, Enrico and Sernesi, Edoardo, Petri’s approach to the study of the ideal associated to a special divisor, Invent. Math. 49 (1978), 99–119. 35. Arbarello, Enrico and Sernesi, Edoardo, The equation of a plane curve, Duke Math. J. 46 (1979), 469–485. 36. Arsie, Alessandro and Vistoli, Angelo, Stacks of cyclic covers of projective spaces, Compos. Math. 140 (2004), 647–666. 37. Artin, Michael, Algebraic spaces, Yale University Press, New Haven, Conn., 1971. 38. Artin, Michael, Th´eor`emes de repr´esentabilit´e pour les espaces alg´ebriques, Les Presses de l’Universit´e de Montr´eal, Montreal, Que., 1973, pp. 282. En collaboration avec A. Lascu et J.-F. Boutot, S´eminaire de Math´ematiques Sup´erieures, No. 44 (Et´´ e, 1970). 39. Atiyah, M. F., Complex analytic connections in fibre bundles,Trans. Amer. Math. Soc. 85 (1957), 181–207. 40. Baer, R., Kurventypen auf Fl¨achen, J. Reine angew. Math. 156 (1927), 231–246. 41. Baer, R., Isotopie von Kurven auf orientierbaren, geschlossenen Fl¨achen und ihr Zusammenhang mit der topologischen Deformation der Fl¨achen, J. Reine angew. Math. 159 (1928), 101–111. 42. Baily, Walter L., Jr., On the moduli of Jacobian varieties, Ann. of Math. (2) 71 (1960), 303–314. 43. Baily, Walter L., Jr. and Borel, Armand, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. 84 (1966), 442–528. 44. Ballico, Edoardo, Brill–Noether theory for vector bundles on projective curves, Math. Proc. Cambridge Philos. Soc. 124 (1998), 483–499. 45. Ballico, Edoardo, On the Brill–Noether theory of stable bundles on curves,Int.Math.J.4 (2003), 281–284. 46. Ballico, Edoardo, Brill–Noether theory for stable vector bundles with fixed determinant on a smooth curve, Int. J. Pure Appl. Math. 36 (2007), 413–415. 47. Bardelli, Fabio, Lectures on stable curves, in Lectures on Riemann surfaces (Trieste, 1987), World Sci. Publ., Teaneck, NJ, 1989, pp. 648–704. 48. Barja, Miguel Angel,´ On the slope of bielliptic fibrations, Proc. Amer. Math. Soc. 129 (2001), 1899–1906. 906 Bibliography 49. Barja, Miguel Angel´ and Stoppino, Lidia, Linear stability of projected canonical curves with applications to the slope of fibred surfaces,J. Math. Soc. Japan 60 (2008), 171–192. 50. Barja, Miguel Angel´ and Stoppino, Lidia, Slopes of trigonal fibred surfaces and of higher dimensional fibrations. arXiv:0811.3305v1 [math.AG]. 51. Barja, Miguel Angel´ and Zucconi, Francesco, On the slope of fibred surfaces, Nagoya Math. J. 164 (2001), 103–131. 52. Barth, W. P., Hulek, K., Peters, C. A. M., and Van de Ven, A., Compact complex surfaces, Springer-Verlag, Berlin, 2004, pp. xii+436. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 4, second edition. 53. Bayer, D., The division algorithm and the Hilbert scheme,Harvard thesis, Order number 82–22558, University Microfilms Int’l., Ann Arbor, Michigan, 1982. 54. Beauville, Arnaud, Prym varieties and the Schottky problem, Invent. Math. 41 (1977), 149–196. 55. Beauville, Arnaud, Surfaces alg´ebriques complexes,Soci´et´e Math´ematique de France, Paris, 1978, pp. iii+172. Ast´erisque, No. 54. 56. Beauville, Arnaud, La conjecture de Green g´en´erique (d’apr`es C. Voisin),Ast´erisque 299 (2005), Exp. No. 924, vii, 1–14. 57. Behrend, K. and Fantechi, B., The intrinsic normal cone, Invent. Math. 128 (1997), 45–88. 58. Beilinson, A. A. and Manin, Yu. I., The Mumford form and the Polyakov measure in string theory, Comm. Math. Phys. 107 (1986), 359–376. 59. Beilinson, A. A., Manin, Yu. I., and Schechtman, V. V., Sheaves of the Virasoro and Neveu–Schwarz algebras,inK-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., Springer, Berlin, 1987, pp. 52–66. 60. Beilinson, A. A. and Schechtman, V. V., Determinant bundles and Virasoro algebras, Comm. Math. Phys. 118 (1988), 651–701. 61. Benedetti, R. and Petronio, C., Lectures on Hyperbolic Geometry, Universitext, Springer-Verlag, Berlin, 1992. 62. Bers, Lipman, Spaces of Riemann Surfaces, in Proc. Int. Congress of Math., Cambridge, 1958 (J. A. Todd, ed.), Cambridge Univ. Press, Cambridge, 1960. 63. Bers, Lipman, Quasiconformal mappings and Teichm¨uller’s theorem, in Analytic functions, Princeton Univ. Press, Princeton, N.J., 1960, pp. 89–119. 64. Bers, Lipman, On Moduli of Riemann surfaces, summer Lectures Forschunginst. Math. 38. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard, Eidgen¨ossische Technische Hochschule, Zurich, 1964. Bibliography 907 65. Bers, Lipman, Nielsen extensions of Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 2 (1976), 29–34. 66. Bertram, A., Cavalieri, R., and Todorov, G., Evaluating tautological classes using only Hurwitz numbers, Trans.