Lectures on Modular Forms 1St Edition Free Download

Total Page:16

File Type:pdf, Size:1020Kb

Lectures on Modular Forms 1St Edition Free Download FREE LECTURES ON MODULAR FORMS 1ST EDITION PDF Joseph J Lehner | 9780486821405 | | | | | Lectures on Modular Forms - Robert C. Gunning - Google книги In mathematicsa modular form is a complex analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the group action of the modular groupand also satisfying a growth condition. The theory of modular forms therefore belongs to complex analysis but the main importance of the theory has traditionally been in its connections with number theory. Modular forms appear in other areas, such as algebraic topologysphere packingand string theory. Instead, modular functions are meromorphic that is, they are almost holomorphic except for a set of isolated points. Modular form theory is a special case of the more general theory of automorphic formsand therefore can now be seen as just the most concrete part of a rich theory of discrete groups. Modular forms can also be interpreted as sections of a specific line bundles on modular varieties. The dimensions of these spaces of modular forms can be computed using the Riemann—Roch theorem [2]. A Lectures on Modular Forms 1st edition form of weight k for the modular group. A modular form can equivalently be defined as a function F from the set of lattices in C to the set of complex numbers which satisfies certain conditions:. The simplest examples from this point of view are the Eisenstein series. Then E k is a modular form of weight k. An even unimodular lattice L in R n is a lattice generated by n Lectures on Modular Forms 1st edition forming the columns of a matrix of determinant 1 and satisfying the condition that the square of the length of each vector in L is an even integer. The so-called theta function. It is not so easy to construct even unimodular lattices, but here is one way: Let n be an integer divisible by 8 and consider all vectors v in R n such that 2 v has integer coordinates, either all even or all odd, and such that the Lectures on Modular Forms 1st edition of the coordinates of v is an even integer. We call this lattice L n. Because there is only one modular form of weight 8 up to scalar multiplication. John Milnor observed that the dimensional tori obtained by dividing R 16 by these two lattices are consequently examples of compact Riemannian manifolds which are isospectral but not isometric see Hearing the shape of a drum. The Dedekind eta function is defined as. The presence of 24 is related to the fact that the Leech lattice has 24 dimensions. This was confirmed by the work of Eichler, Shimura, Kuga, Ihara, and Pierre Deligne as a result of Deligne's proof of the Weil conjectureswhich were shown to imply Ramanujan's conjecture. The second and third examples give some hint of the connection between modular forms and classical questions in number theory, such as representation of integers Lectures on Modular Forms 1st edition quadratic forms and the partition function. The crucial conceptual link between modular forms and number theory is furnished by the theory of Hecke operatorswhich also gives the link between the theory of modular forms and representation theory. When the weight k is zero, it can be shown using Liouville's theorem that the only modular forms are constant functions. However, relaxing the requirement that f be Lectures on Modular Forms 1st edition leads to the notion of modular functions. This is also referred to as the q -expansion of f. Thus, a modular function can also be regarded as a meromorphic function on the set of isomorphism Lectures on Modular Forms 1st edition of elliptic curves. For example, the j-invariant j z of an elliptic curve, regarded as a function on the set of all elliptic curves, is a modular function. More conceptually, modular functions can be thought of as functions on the moduli space of isomorphism classes of complex elliptic curves. A modular unit is a modular function whose poles and zeroes are confined to the cusps. The functional equation, i. Let G be a subgroup of SL 2, Z that is of finite index. Typically it is not compact, but can be compactified by adding a finite number of points called cusps. These are points at the boundary of Hi. What is more, it can be endowed with the structure of a Riemann surfacewhich allows one to speak of holo- and meromorphic functions. Important examples are, for any positive integer Neither one of the congruence subgroups. A modular form for G of weight k is a function on H satisfying the above functional equation for all matrices in Gthat is holomorphic on H and at all cusps of G. Again, modular forms that vanish at all cusps are called cusp forms for G. The C -vector spaces of modular and cusp forms of weight k are denoted M k G and S k Grespectively. For example, the spaces M k G and S k G are finite-dimensional, and their dimensions can be computed thanks to the Riemann-Roch theorem in terms of the geometry of the G -action on H. The modular functions constitute the field of functions of the Riemann surface, and hence form a field of transcendence degree one over C. Unfortunately, the only such functions are constants. If we allow denominators rational functions instead of polynomialswe can let F be the ratio of two homogeneous polynomials of the same degree. The solutions are then the homogeneous polynomials of degree k. One might ask, since the homogeneous polynomials are not really functions on P Vwhat are they, geometrically speaking? The algebro-geometric answer is that they are sections of a sheaf one could also say a line bundle in this case. The situation with modular forms is precisely analogous. Modular forms can also be profitably approached from this geometric direction, as sections of Lectures on Modular Forms 1st edition bundles on the moduli space of elliptic curves. Rings of modular forms of congruence subgroups of SL 2, Z are finitely generated due to a result of Pierre Deligne and Michael Rapoport. Such rings of modular forms are generated in weight at most 6 and the relations are generated in weight at most 12 when the congruence subgroup has nonzero odd weight modular forms, and the corresponding bounds are 5 and 10 when there are no nonzero odd weight modular forms. More generally, there are formulas for bounds on the weights of generators of the ring of modular forms and its relations for arbitrary Fuchsian groups. If f is meromorphic but not holomorphic at the cusp, it is called a non-entire modular form. The other forms are called old forms. A cusp form is a modular form with a zero constant coefficient in its Fourier series. It is called a cusp form because the form vanishes at all cusps. Maass forms are real-analytic eigenfunctions of the Laplacian but need not be holomorphic. The holomorphic parts of certain weak Maass wave forms turn out to be essentially Ramanujan's mock theta functions. Groups which are not subgroups of SL 2, Z can be considered. Siegel modular forms Lectures on Modular Forms 1st edition associated to larger symplectic groups in the same way in which classical modular forms are associated to SL 2, R ; in other words, they are related to abelian varieties in the same sense that Lectures on Modular Forms 1st edition modular forms which are sometimes called elliptic modular forms to emphasize the point are related to elliptic curves. Jacobi forms are a mixture of modular forms and elliptic functions. Examples of such functions are very classical - the Jacobi theta functions and the Fourier coefficients of Siegel modular forms of genus two - but it is a relatively recent observation that the Jacobi forms have an arithmetic theory very analogous to the usual theory of modular forms. Automorphic forms extend the notion of modular forms to general Lie groups. Modular integrals of weight k are meromorphic functions on the upper half plane of moderate growth at infinity which fail to be modular of weight Lectures on Modular Forms 1st edition by a rational function. The theory of modular forms was developed in four periods: first in connection with the theory of elliptic functionsin the first part of the nineteenth century; then by Felix Klein and others towards the end of the nineteenth century as the automorphic form concept became understood for one variable ; then by Erich Hecke from about ; and then in the s, as the needs of number theory and the formulation of the modularity theorem in particular made it clear that modular forms are deeply implicated. From Wikipedia, the free encyclopedia. Analytic function on the upper half-plane with a certain behavior under the modular group. A distinct use of this term appears in relation to Haar measure. Main article: Ring of modular forms. Main Lectures on Modular Forms 1st edition Atkin—Lehner theory. Main article: Cusp form. This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. October Learn how and when to remove this template message. Archived PDF from the Lectures on Modular Forms 1st edition on 1 August Archived PDF from the original on 31 July Topics in algebraic curves. Five points determine a conic Projective line Rational normal curve Riemann sphere Twisted cubic. Elliptic function Elliptic integral Fundamental pair of periods Modular form. Counting points on elliptic curves Division polynomials Hasse's theorem on elliptic curves Mazur's torsion theorem Modular elliptic curve Modularity theorem Mordell—Weil theorem Nagell—Lutz theorem Supersingular elliptic curve Schoof's algorithm Schoof—Elkies—Atkin algorithm.
Recommended publications
  • Arxiv:2003.01675V1 [Math.NT] 3 Mar 2020 of Their Locations
    DIVISORS OF MODULAR PARAMETRIZATIONS OF ELLIPTIC CURVES MICHAEL GRIFFIN AND JONATHAN HALES Abstract. The modularity theorem implies that for every elliptic curve E=Q there exist rational maps from the modular curve X0(N) to E, where N is the conductor of E. These maps may be expressed in terms of pairs of modular functions X(z) and Y (z) where X(z) and Y (z) satisfy the Weierstrass equation for E as well as a certain differential equation. Using these two relations, a recursive algorithm can be used to calculate the q - expansions of these parametrizations at any cusp. Using these functions, we determine the divisor of the parametrization and the preimage of rational points on E. We give a sufficient condition for when these preimages correspond to CM points on X0(N). We also examine a connection between the al- gebras generated by these functions for related elliptic curves, and describe sufficient conditions to determine congruences in the q-expansions of these objects. 1. Introduction and statement of results The modularity theorem [2, 12] guarantees that for every elliptic curve E of con- ductor N there exists a weight 2 newform fE of level N with Fourier coefficients in Z. The Eichler integral of fE (see (3)) and the Weierstrass }-function together give a rational map from the modular curve X0(N) to the coordinates of some model of E: This parametrization has singularities wherever the value of the Eichler integral is in the period lattice. Kodgis [6] showed computationally that many of the zeros of the Eichler integral occur at CM points.
    [Show full text]
  • QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday, October 24, 1995 (Day 1)
    QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday, October 24, 1995 (Day 1) 1. Let K be a ¯eld of characteristic 0. a. Find three nonconstant polynomials x(t); y(t); z(t) K[t] such that 2 x2 + y2 = z2 b. Now let n be any integer, n 3. Show that there do not exist three nonconstant polynomials x(t); y(t); z(t) K[t] suc¸h that 2 xn + yn = zn: 2. For any integers k and n with 1 k n, let · · Sn = (x ; : : : ; x ) : x2 + : : : + x2 = 1 n+1 f 1 n+1 1 n+1 g ½ be the n-sphere, and let D n+1 be the closed disc k ½ D = (x ; : : : ; x ) : x2 + : : : + x2 1; x = : : : = x = 0 n+1: k f 1 n+1 1 k · k+1 n+1 g ½ n Let X = S D be their union. Calculate the cohomology ring H¤(X ; ¡ ). k;n [ k k;n 2 3. Let f : be any 1 map such that ! C @2f @2f + 0: @x2 @y2 ´ Show that if f is not surjective then it is constant. 4. Let G be a ¯nite group, and let ; ¿ G be two elements selected at random from G (with the uniform distribution). In terms2 of the order of G and the number of conjugacy classes of G, what is the probability that and ¿ commute? What is the probability if G is the symmetric group S5 on 5 letters? 1 5. Let ­ be the region given by ½ ­ = z : z 1 < 1 and z i < 1 : f j ¡ j j ¡ j g Find a conformal map f : ­ ¢ of ­ onto the unit disc ¢ = z : z < 1 .
    [Show full text]
  • Generalization of a Theorem of Hurwitz
    J. Ramanujan Math. Soc. 31, No.3 (2016) 215–226 Generalization of a theorem of Hurwitz Jung-Jo Lee1,∗ ,M.RamMurty2,† and Donghoon Park3,‡ 1Department of Mathematics, Kyungpook National University, Daegu 702-701, South Korea e-mail: [email protected] 2Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario, K7L 3N6, Canada e-mail: [email protected] 3Department of Mathematics, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, South Korea e-mail: [email protected] Communicated by: R. Sujatha Received: February 10, 2015 Abstract. This paper is an exposition of several classical results formulated and unified using more modern terminology. We generalize a classical theorem of Hurwitz and prove the following: let 1 G (z) = k (mz + n)k m,n be the Eisenstein series of weight k attached to the full modular group. Let z be a CM point in the upper half-plane. Then there is a transcendental number z such that ( ) = 2k · ( ). G2k z z an algebraic number Moreover, z can be viewed as a fundamental period of a CM elliptic curve defined over the field of algebraic numbers. More generally, given any modular form f of weight k for the full modular group, and with ( )π k /k algebraic Fourier coefficients, we prove that f z z is algebraic for any CM point z lying in the upper half-plane. We also prove that for any σ Q Q ( ( )π k /k)σ = σ ( )π k /k automorphism of Gal( / ), f z z f z z . 2010 Mathematics Subject Classification: 11J81, 11G15, 11R42.
    [Show full text]
  • Patching and Galois Theory David Harbater∗ Dept. of Mathematics
    Patching and Galois theory David Harbater∗ Dept. of Mathematics, University of Pennsylvania Abstract: Galois theory over (x) is well-understood as a consequence of Riemann's Existence Theorem, which classifies the algebraic branched covers of the complex projective line. The proof of that theorem uses analytic and topological methods, including the ability to construct covers locally and to patch them together on the overlaps. To study the Galois extensions of k(x) for other fields k, one would like to have an analog of Riemann's Existence Theorem for curves over k. Such a result remains out of reach, but partial results in this direction can be proven using patching methods that are analogous to complex patching, and which apply in more general contexts. One such method is formal patching, in which formal completions of schemes play the role of small open sets. Another such method is rigid patching, in which non-archimedean discs are used. Both methods yield the realization of arbitrary finite groups as Galois groups over k(x) for various classes of fields k, as well as more precise results concerning embedding problems and fundamental groups. This manuscript describes such patching methods and their relationships to the classical approach over , and shows how these methods provide results about Galois groups and fundamental groups. ∗ Supported in part by NSF Grants DMS9970481 and DMS0200045. (Version 3.5, Aug. 30, 2002.) 2000 Mathematics Subject Classification. Primary 14H30, 12F12, 14D15; Secondary 13B05, 13J05, 12E30. Key words and phrases: fundamental group, Galois covers, patching, formal scheme, rigid analytic space, affine curves, deformations, embedding problems.
    [Show full text]
  • Supersingular Zeros of Divisor Polynomials of Elliptic Curves of Prime Conductor
    Kazalicki and Kohen Res Math Sci(2017) 4:10 DOI 10.1186/s40687-017-0099-8 R E S E A R C H Open Access Supersingular zeros of divisor polynomials of elliptic curves of prime conductor Matija Kazalicki1* and Daniel Kohen2,3 *Correspondence: [email protected] Abstract 1Department of Mathematics, p p University of Zagreb, Bijeniˇcka For a prime number , we study the zeros modulo of divisor polynomials of rational cesta 30, 10000 Zagreb, Croatia elliptic curves E of conductor p. Ono (CBMS regional conference series in mathematics, Full list of author information is 2003, vol 102, p. 118) made the observation that these zeros are often j-invariants of available at the end of the article supersingular elliptic curves over Fp. We show that these supersingular zeros are in bijection with zeros modulo p of an associated quaternionic modular form vE .This allows us to prove that if the root number of E is −1 then all supersingular j-invariants of elliptic curves defined over Fp are zeros of the corresponding divisor polynomial. If the root number is 1, we study the discrepancy between rank 0 and higher rank elliptic curves, as in the latter case the amount of supersingular zeros in Fp seems to be larger. In order to partially explain this phenomenon, we conjecture that when E has positive rank the values of the coefficients of vE corresponding to supersingular elliptic curves defined over Fp are even. We prove this conjecture in the case when the discriminant of E is positive, and obtain several other results that are of independent interest.
    [Show full text]
  • Weierstrass Points of Superelliptic Curves
    Weierstrass points of superelliptic curves C. SHOR a T. SHASKA b a Department of Mathematics, Western New England University, Springfield, MA, USA; E-mail: [email protected] b Department of Mathematics, Oakland University, Rochester, MI, USA; E-mail: [email protected] Abstract. In this lecture we give a brief introduction to Weierstrass points of curves and computational aspects of q-Weierstrass points on superel- liptic curves. Keywords. hyperelliptic curves, superelliptic curves, Weierstrass points Introduction These lectures are prepared as a contribution to the NATO Advanced Study In- stitute held in Ohrid, Macedonia, in August 2014. The topic of the conference was on the arithmetic of superelliptic curves, and this lecture will focus on the Weierstrass points of such curves. Since the Weierstrass points are an important concept of the theory of Riemann surfaces and algebraic curves and serve as a prerequisite for studying the automorphisms of the curves we will give in this lecture a detailed account of holomorphic and meromorphic functions of Riemann arXiv:1502.06285v1 [math.CV] 22 Feb 2015 surfaces, the proofs of the Weierstrass and Noether gap theorems, the Riemann- Hurwitz theorem, and the basic definitions and properties of higher-order Weier- strass points. Weierstrass points of algebraic curves are defined as a consequence of the important theorem of Riemann-Roch in the theory of algebraic curves. As an immediate application, the set of Weierstrass points is an invariant of a curve which is useful in the study of the curve’s automorphism group and the fixed points of automorphisms. In Part 1 we cover some of the basic material on Riemann surfaces and algebraic curves and their Weierstrass points.
    [Show full text]
  • Weierstrass Points on Cyclic Covers of the Projective Line 3357
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 348, Number 8, August 1996 WEIERSTRASS POINTS ON CYCLIC COVERS OFTHEPROJECTIVELINE CHRISTOPHER TOWSE Abstract. We are interested in cyclic covers of the projective line which are totally ramified at all of their branch points. We begin with curves given by an equation of the form yn = f(x), where f is a polynomial of degree d. Under a mild hypothesis, it is easy to see that all of the branch points must be Weierstrass points. Our main problem is to find the total Weierstrass weight of these points, BW. We obtain a lower bound for BW,whichweshowisexact if n and d are relatively prime. As a fraction of the total Weierstrass weight of all points on the curve, we get the following particularly nice asymptotic formula (as well as an interesting exact formula): BW n +1 lim = , d g3 g 3(n 1)2 →∞ − − where g is the genus of the curve. In the case that n = 3 (cyclic trigonal curves), we are able to show in most cases that for sufficiently large primes p, the branch points and the non-branch Weierstrass points remain distinct modulo p. Introduction A Weierstrass point is a point on a curve such that there exists a non-constant function which has a low order pole at the point and no other poles. By low order we mean that the pole has order less than or equal to the genus g of the curve. The Riemann-Roch theorem shows that every point on a curve has a (non-constant) function associated to it which has a pole of order less than or equal to g +1and no other poles, so Weierstrass points are somewhat special.
    [Show full text]
  • Arithmetic on Curves
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 14, Number 2, April 1986 ARITHMETIC ON CURVES BY BARRY MAZUR CONTENTS I. What are Diophantine problems? 1. Miscellaneous Diophantine problems 2. Systematic formulations 3. Digression: Questions of integral solutions vs. Questions of Diophantine approxima­ tions II. Curves 1. Plane curves 2. Algebraic curves 3. Smooth curves 4. Riemann surfaces 5. Simplifying the singularities of a plane curve 6. Genus 7. The fundamental trichotomy 8. Interlude: A geometric finiteness result 9. On Mordell's conjecture and its analogue III. Jacobians and abelian varieties 1. An extension of the chord-and-tangent method to curves of genus > 2: The jacobian of a curve 2. The analytic parametrization of J by algebraic integrals modulo periods 3. The algebraic nature of the jacobian 4. The arithmetic nature of the jacobian IV. Classification of families with bounded bad reduction 1. Kodaira's problem 2. Shafarevich's problems 3. Parshin's construction: Shafarevich's conjecture implies Mordell's conjecture V. Heights 1. Height of points 2. Normed vector spaces 3. Heights of abelian varieties 4. A block diagram Received by the editors June 12, 1985. 1980Mathematics Subject Classification (1985 Revision). Primary 14Hxx, 14Kxx, llDxx, 00-01, 01-01, 01A65, 11-01, 11G05, 11G10, 11G15. ©1986 American Mathematical Society 0273-0979/86 $1.00 + $.25 per page 207 License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 208 BARRY MAZUR Bibliography 1. General references 2. References requiring some background 3. Accounts of the proof of Mordell's conjecture which require familiarity with the techniques of number theory or algebraic geometry 4.
    [Show full text]
  • Arxiv:1905.03954V1 [Math.AG] 10 May 2019 0 ∗ ∗ ⊥⊥ ∗ 0 0 → Homgr Pic (X), K → (ΣX ) /ΣX → Pic (X) for Algebraically Closed K (And an Analog for finite fields)
    AN IDELIC QUOTIENT RELATED TO WEIL RECIPROCITY AND THE PICARD GROUP JOSE´ MAR´IA MUNOZ~ PORRAS, LUIS MANUEL NAVAS VICENTE, FERNANDO PABLOS ROMO, AND FRANCISCO J. PLAZA MART´IN Abstract. This paper studies the function field of an algebraic curve over an arbitrary perfect field by using the Weil reciprocity law and topologies on the adele ring. A topological subgroup of the idele class group is introduced and it is shown how it encodes arithmetic properties of the base field and of the Picard group of the curve. These results are applied to study extensions of the function field. Dedicated to the memory of Jos´eMar´ıaMu~nozPorras 1. Introduction The study of extensions of a given field is a classical problem in mathematics. Within algebraic number theory, class field theory is concerned with the classifica- tion of abelian extensions of local and global fields ([5, Chap. XV, Tate's Thesis], [16]). This paper studies function fields of algebraic curves over an arbitrary perfect field by mimicking the approach of class field theory. To be more precise, recall that, in the case of number fields, Tate proved the existence of a duality in the following sense: if Σ is a number field and AΣ is its adele ring, the character group of AΣ=Σ is isomorphic to Σ. Here, we explore the multiplicative analog of this result in the case of function fields of an algebraic curve X. For this purpose, ∗ we consider the multiplicative group of the function field of the curve, ΣX , as a 1 subgroup of the idele group IX , and the pairing used to establish the duality is the local multiplicative symbol ([7, 11]).
    [Show full text]
  • Hyperelliptic Curves with Many Automorphisms
    Hyperelliptic Curves with Many Automorphisms Nicolas M¨uller Richard Pink Department of Mathematics Department of Mathematics ETH Z¨urich ETH Z¨urich 8092 Z¨urich 8092 Z¨urich Switzerland Switzerland [email protected] [email protected] November 17, 2017 To Frans Oort Abstract We determine all complex hyperelliptic curves with many automorphisms and decide which of their jacobians have complex multiplication. arXiv:1711.06599v1 [math.AG] 17 Nov 2017 MSC classification: 14H45 (14H37, 14K22) 1 1 Introduction Let X be a smooth connected projective algebraic curve of genus g > 2 over the field of complex numbers. Following Rauch [17] and Wolfart [21] we say that X has many automorphisms if it cannot be deformed non-trivially together with its automorphism group. Given his life-long interest in special points on moduli spaces, Frans Oort [15, Question 5.18.(1)] asked whether the point in the moduli space of curves associated to a curve X with many automorphisms is special, i.e., whether the jacobian of X has complex multiplication. Here we say that an abelian variety A has complex multiplication over a field K if ◦ EndK(A) contains a commutative, semisimple Q-subalgebra of dimension 2 dim A. (This property is called “sufficiently many complex multiplications” in Chai, Conrad and Oort [6, Def. 1.3.1.2].) Wolfart [22] observed that the jacobian of a curve with many automorphisms does not generally have complex multiplication and answered Oort’s question for all g 6 4. In the present paper we answer Oort’s question for all hyperelliptic curves with many automorphisms.
    [Show full text]
  • Diophantine Problems in Polynomial Theory
    Diophantine Problems in Polynomial Theory by Paul David Lee B.Sc. Mathematics, The University of British Columbia, 2009 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in The College of Graduate Studies (Mathematics) THE UNIVERSITY OF BRITISH COLUMBIA (Okanagan) August 2011 c Paul David Lee 2011 Abstract Algebraic curves and surfaces are playing an increasing role in mod- ern mathematics. From the well known applications to cryptography, to computer vision and manufacturing, studying these curves is a prevalent problem that is appearing more often. With the advancement of computers, dramatic progress has been made in all branches of algebraic computation. In particular, computer algebra software has made it much easier to find rational or integral points on algebraic curves. Computers have also made it easier to obtain rational parametrizations of certain curves and surfaces. Each algebraic curve has an associated genus, essentially a classification, that determines its topological structure. Advancements on methods and theory on curves of genus 0, 1 and 2 have been made in recent years. Curves of genus 0 are the only algebraic curves that you can obtain a rational parametrization for. Curves of genus 1 (also known as elliptic curves) have the property that their rational points have a group structure and thus one can call upon the massive field of group theory to help with their study. Curves of higher genus (such as genus 2) do not have the background and theory that genus 0 and 1 do but recent advancements in theory have rapidly expanded advancements on the topic.
    [Show full text]
  • Congruences Between Modular Forms
    CONGRUENCES BETWEEN MODULAR FORMS FRANK CALEGARI Contents 1. Basics 1 1.1. Introduction 1 1.2. What is a modular form? 4 1.3. The q-expansion priniciple 14 1.4. Hecke operators 14 1.5. The Frobenius morphism 18 1.6. The Hasse invariant 18 1.7. The Cartier operator on curves 19 1.8. Lifting the Hasse invariant 20 2. p-adic modular forms 20 2.1. p-adic modular forms: The Serre approach 20 2.2. The ordinary projection 24 2.3. Why p-adic modular forms are not good enough 25 3. The canonical subgroup 26 3.1. Canonical subgroups for general p 28 3.2. The curves Xrig[r] 29 3.3. The reason everything works 31 3.4. Overconvergent p-adic modular forms 33 3.5. Compact operators and spectral expansions 33 3.6. Classical Forms 35 3.7. The characteristic power series 36 3.8. The Spectral conjecture 36 3.9. The invariant pairing 38 3.10. A special case of the spectral conjecture 39 3.11. Some heuristics 40 4. Examples 41 4.1. An example: N = 1 and p = 2; the Watson approach 41 4.2. An example: N = 1 and p = 2; the Coleman approach 42 4.3. An example: the coefficients of c(n) modulo powers of p 43 4.4. An example: convergence slower than O(pn) 44 4.5. Forms of half integral weight 45 4.6. An example: congruences for p(n) modulo powers of p 45 4.7. An example: congruences for the partition function modulo powers of 5 47 4.8.
    [Show full text]