Dark Matter Don Lincoln

Total Page:16

File Type:pdf, Size:1020Kb

Dark Matter Don Lincoln Dark Matter Don Lincoln Citation: Phys. Teach. 51, 134 (2013); doi: 10.1119/1.4792003 View online: http://dx.doi.org/10.1119/1.4792003 View Table of Contents: http://tpt.aapt.org/resource/1/PHTEAH/v51/i3 Published by the American Association of Physics Teachers Related Articles The Einstein Theory of Relativity: A Trip to the Fourth Dimension: Lillian R. Lieber, The Einstein Theory of Relativity: Lillian R. Lieber Phys. Teach. 51, 191 (2013) THE 3 Rs Phys. Teach. 51, 132 (2013) Fermi Questions Phys. Teach. 51, 187 (2013) Tutorials in Physics Science Making by Andy Elby, University of Maryland, tinyurl.com/WSEIbyMakeSense Phys. Teach. 51, 190 (2013) Washing the Plates Phys. Teach. 51, 184 (2013) Additional information on Phys. Teach. Journal Homepage: http://tpt.aapt.org/ Journal Information: http://tpt.aapt.org/about/about_the_journal Top downloads: http://tpt.aapt.org/most_downloaded Information for Authors: http://www.aapt.org/publications/tptauthors.cfm Downloaded 04 Mar 2013 to 24.27.111.209. Redistribution subject to AAPT license or copyright; see http://tpt.aapt.org/authors/copyright_permission Dark Matter Don Lincoln, Fermi National Accelerator Laboratory, Batavia, IL t’s a dark, dark universe out there, and I don’t mean where, from the mentioned motion of clusters of galaxies and because the night sky is black. After all, once you leave gravitational lensing, to objects like NGC 4555, an elliptical the shadow of the Earth and get out into space, you’re galaxy surrounded by hydrogen gas heated to 10,000,000 K. Isurrounded by countless lights glittering everywhere you The temperature of this gas is so high that it should have dis- look. But for all of Sagan’s billions and billions of stars and persed, were it not for something holding it in. However, the galaxies, it’s a jaw-dropping fact that the ordinary kind of evidence for dark matter that is simplest for an introductory matter like that which makes up you and me is but 5% of the physics student to understand is the rotation curves of galax- energy budget of the universe. The glittering spectacle of the ies. Rotation curves are simply plots of the orbital velocity of heavens is a rather thin icing on a very large and dark cake. stars as a function of their distance from the galactic center. According to the most current estimates, ordinary matter Astronomers can exploit the Doppler shift to measure makes up merely 4.6% of the universe, with a form of mat- the velocity of stars in galaxies. Further, they can use known ter called “dark matter” being 22.7%. An even more esoteric relationships between the brightness and color of stars to the component of the cosmos is called “dark energy” and it com- star’s mass to work out the distribution of the light-emitting prises a whopping 72.8% of the energy and matter budget of (i.e., visible) mass in the galaxy. By combining simple Newto- the universe. This article describes our current understand- nian principles, it is easy to work out the dominant features ing of dark matter and why so many astronomers are confi- expected to be present in the rotation curve. The calculation dent that it exists. One of the various strands of evidence for begins by identifying gravity as the centripetal force. We then the existence of dark matter is also of pedagogical interest, insert the standard formulae for these terms: as it is perhaps unique in being a conundrum on the cosmic frontier that is easily understood using only algebra-based (1) introductory physics. The first inkling astronomers had that perhaps their and with some manipulation, we get telescopes were not telling the entire story came not long after a publication in 1925 by Edwin Hubble. Combining the (2) observations of others along with his own, Hubble made the scientific community aware of the existence of other galaxies, Mattractive is the amount of the galaxy’s mass that attracts with the implicit consequence that we lived in a galaxy of our the star to move in its orbit. Outside the galaxy, this is trivial; own—the Milky Way galaxy. The realization that the Milky Mattractive= Mgalaxy. However, inside the galaxy, not all of Way was a compact, gravitationally bound conglomeration the galaxy’s mass plays a role in determining the motion of of stars led theorist Bertil Lindblad and observer Jan Oort (of the stars. The distribution of mass within a typical galaxy is Oort cloud fame) to compare Newtonian predictions of the complex, necessitating that we turn to numerical techniques. rotation of the Milky Way with observations. The implications However, as an illustration we can treat the galaxy as a sphere were clear. The Milky Way was rotating faster than predicted of uniform density. By employing Newton’s shell theorem, using Newtonian principles and the observed amount of mat- which is the same logic familiar to introductory students in ter. Linblad and Oort’s work led Oort to state in 1932 that their exploration of Gauss’ law, one sees that the mass that at- there seemed to be two to three times more mass in the Milky tracts a star is the mass inside a sphere of radius equal to the Way than could be observed. Of course, this was the 1920s distance between the center of the galaxy and the star. Thus, 3 and 1930s, and a data/theory agreement within a factor of two inside the galaxy, Mattractive= Mgalaxy × (r/Rgalaxy) . By insert- was actually pretty good. It was quite possible that the sim- ing this term into Eq. (2), we are able to predict the rotation plest explanation (observational error) was the correct one. curve of stars inside this simplified galaxy. In 1933, astronomer Fritz Zwicky studied the Coma cluster of galaxies and ascertained that the galaxies in the outskirts of the cluster were moving far too fast to remain . (3) gravitationally bound to the cluster core. This discrepancy was much larger than Oort’s, with the luminous mass able to account for only 10% of the gravity necessary to describe Thus we see that the orbital velocity of a star rises linearly the motion of these galaxies. The plot thickened. Subsequent as a function of radius within the body of the galaxy and then attempts to measure the mass of galaxies using gravitational falls as the inverse of the square root of the radius outside lensing added to the tension. Zwicky invented the term “dark of the mass distribution of the galaxy. While physical gal- matter” to describe this invisible component of the cosmos. axies have a more complex mass distribution than the one In the intervening decades, there have been many observa- used here, the actual rotation curves have similar features, tions1 supporting the contention that dark matter is every- as shown in Fig. 1. Near the center of the galaxy, the veloc- 134 The Physics Teacher ◆ Vol. 51, March 2013 DOI: 10.1119/1.4792003 Downloaded 04 Mar 2013 to 24.27.111.209. Redistribution subject to AAPT license or copyright; see http://tpt.aapt.org/authors/copyright_permission By invoking the standard relationship between centripetal acceleration and velocity, a = v2/r, and making the appropri- ate substitutions into Eq. (1), we find that MOND predicts that at large orbital radii, which is independent of the radius. At smaller radii, MOND makes the same pre- dictions as traditional Newtonian theory. This behavior is consistent with observations. Of course, this agreement is by construction. There are many valid criticisms of the MOND theory. First, the form of the function m(a/a0) is known only in its limiting cases. Another criticism of the simplified version Fig. 1. Rotation curves of thousands of galaxies tell the same tale. given in Eq. (4) is that it conserves neither energy nor mo- Inside the galaxy, data and theory are in agreement. However, in the outskirts of the galaxy, stars are observed to orbit with nearly mentum. This serious deficiency was overcome in a 1984 constant velocity. This is in striking contrast with predictions. paper by Milgrom and Jakob Bekenstein, in which a Lagrang- (Figure adapted from Ref. 2.) ian formulation was employed. Another criticism of the early versions of MOND is that it is not a relativistic theory. Subse- ity is roughly proportional to the orbital radius, and outside quent work, including some by Bekenstein, has found various the galaxy the velocity decreases, since the increased radius ways to marry MOND with relativity. incorporates no new mass but does decrease the force due The proof of a theory is in how well it works. So how to gravity. In the outskirts of the galaxy, the rotation curve is well does MOND work? For the question of galaxy rotation predicted to smoothly bridge these two behaviors, reflecting curves, it works extremely well. It also has some successes for the fact that real galaxies aren’t uniform spheres but instead the myriad other bits of evidence that has led to the dark mat- have a gradient in the distribution of mass. ter conundrum. We will return to the strengths of the various Figure 1 shows a prediction and observation for a typical proposed solutions to this problem after other solutions have galaxy. Over the decades, thousands of galaxies have been been discussed. investigated. Time and time again, astronomers found that at large radii, stars all tend to orbit with the same velocity, in Dark matter: Baryonic clear disagreement with the predictions. The general idea of dark matter is that there exists mat- The pedagogical beauty of the dark matter conundrum is ter in the universe that does not emit or absorb light.
Recommended publications
  • Report of the IPPOG Higgs Panel
    International Particle Physics Outreach Group Higgs - What now ? Report of the IPPOG Higgs Panel Thomas Naumann DESY 1 Explaining the Higgs International Particle Physics Outreach Group • The basics of the Higgs boson [TED-Ed, D. Barney + S. Goldfarb] based on many IPPOG discussions… • A new particle is discovered: a Higgs boson! [made with CERN-EDU] simple video playing in a loop at the entrance of Microsom + Globe @ CERN, explains very basic concepts, FR + EN • The Higgs Field, explained [TED-Ed, Don Lincoln] • The Higgs Boson Explained [PhD Comics] • The Particle Adventure [ParticleAdventure.org] 2 IPPOG Meeting, November 2013, Sylvie Brunet for ATLAS Outreach Higgs Resources: ATLAS International Particle Physics Outreach Group www.atlas.ch/HiggsResources http://cms.web.cern.ch/org/cms- presentations-public new ATLAS Book: classify Higgs resources + put to IPPOG DB: • by format • by target audience 3 UK: Royal Society summer science exhibition booklet International Particle Physics Outreach Group Contributions from all UK Particle Physics groups Coordinator Cristina Lazzeroni Excellent web resource for those not able to visit exhibition http://understanding-the-higgs-boson.org/exhibit/booklet/ Higgs: messages International Particle Physics Outreach Group • announcement of the Nobel Prize: ‚ ... for the theoretical discovery ...‘ ??? Freudian slip to honour CERN ? but G. Ingelman: • ‘this is a triumph of the scientific method … of formulating theoretical predictions … and testing them in experiments’ • LHC to resolve a theory jam of
    [Show full text]
  • Jul/Aug 2013
    I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 3 N UMBER 6 J ULY /A UGUST 2 0 1 3 CERN Courier – digital edition Welcome to the digital edition of the July/August 2013 issue of CERN Courier. This “double issue” provides plenty to read during what is for many people the holiday season. The feature articles illustrate well the breadth of modern IceCube brings particle physics – from the Standard Model, which is still being tested in the analysis of data from Fermilab’s Tevatron, to the tantalizing hints of news from the deep extraterrestrial neutrinos from the IceCube Observatory at the South Pole. A connection of a different kind between space and particle physics emerges in the interview with the astronaut who started his postgraduate life at CERN, while connections between particle physics and everyday life come into focus in the application of particle detectors to the diagnosis of breast cancer. And if this is not enough, take a look at Summer Bookshelf, with its selection of suggestions for more relaxed reading. To sign up to the new issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. ISOLDE OUTREACH TEVATRON From new magic LHC tourist trail to the rarest of gets off to a LEGACY EDITOR: CHRISTINE SUTTON, CERN elements great start Results continue DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p6 p43 to excite p17 CERNCOURIER www.
    [Show full text]
  • Prusaprinters
    CERN's CMS Detector A Alex VIEW IN BROWSER updated 24. 4. 2019 | published 24. 4. 2019 Summary The Compact Muon Solenoid (CMS) detector is one of the big four experiments of the Large Hadron Collider (LHC), the world’s largest and most powerful particle accelerator. The LHC is part of CERN's accelerator complex in Geneva, Switzerland. The detector is located 100 meters underground near Cessy, France, at the opposite end of the LHC from ATLAS detector. It is 15 meters high and 21 meters long, and it weighs 14,000 tonnes. This 120:1 scale model shows CMS' most important components. It is based on the original Technical Design Reports and the SketchUpCMS project. It was originally modeled by James Wetzel, W.G. Wetzel and Nick Arevalo with a grant from Don Lincoln. Objective of CMS CMS is a general-purpose detector with a broad physics programme ranging from studying the Standard Model (including the Higgs boson) to searching for extra dimensions and particles that could make up dark matter. Components The CMS detector is shaped like a cylindrical onion, with several concentric layers of components. These components help prepare “photographs” of each collision event by determining the properties of the particles produced in that particular collision. Particle collisions occur at the very center of the detector, within the LHC accelerator's beam pipes. Inside the accelerator, two high-energy particle beams travel at close to the speed of light before they are made to collide. The beams travel in opposite directions in separate beam pipes – two tubes kept at ultrahigh vacuum.
    [Show full text]
  • PDF Version for Printing
    Fermilab Today Thursday, Feb. 11, 2010 Calendar Photo of the Day Fermilab Result of the Week Have a safe day! Fermilab kicks off lab's Seeing clearly with photons Thursday, Feb. 11 Engineers Week 2010 1:30-4 p.m. Special LPC lecture - One West Speaker: Dan Green, Fermilab Title:Early LHC Data 2:30 p.m. Theoretical Physics Seminar - Curia II Speaker: Elvira Gamiz, Fermilab Title: Phenomenology of Fermilab's engineers gather for a group photo in Neutral B-Meson Mixing and celebration of Engineers Week 2010. Decays Constants To kick off Engineers Week at Fermilab on 3:30 p.m. Wednesday, Feb. 10, Director Pier Oddone Events in which two photons are produced are DIRECTOR'S COFFEE addressed all engineers at a talk in Ramsey natural laboratories in which to study collisions Auditorium. BREAK - 2nd Flr X-Over between quarks. These studies can unambiguously 4 p.m. rule out certain theoretical calculations. Accelerator Physics and Oddone gave an overview of Fermilab's future projects and highlighted how crucial engineers With Valentine’s Day just around the corner, this Technology Seminar - One are to the laboratory. Result of the Week draws what might seem an West unlikely analogy between physics and dating. Speaker: Eliana Gianfelice- "All the big dreams we can cook up would not Wendt, Fermilab be realized if we didn't have your help," he Contrary to Mom’s best advice, some people on Title: Abort Gap Cleaning at said. a first date might try to appear smarter, richer or LHC better than they really are. Indeed, a big point of Fermilab's Engineers Week celebration will dating is to see through the façade to get a Friday, Feb.
    [Show full text]
  • Scaling Mass Profiles Around Elliptical Galaxies Observed with Chandra
    Scaling Mass Profiles around Elliptical Galaxies Observed with Chandra and XMM-Newton Y. Fukazawa1, J. G. Betoya-Nonesa1, J. Pu1, A. Ohto1, and N. Kawano1 Department of Physical Science, School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 [email protected] ABSTRACT We investigated the dynamical structure of 53 elliptical galaxies, based on the Chandra archival X-ray data. In X-ray luminous galaxies, a temperature increases with radius and a gas density is systematically higher at the optical outskirts, indicating a presence of a significant amount of the group-scale hot gas. In contrast, X-ray dim galaxies show a flat or declining temperature profile against radius and the gas density is relatively lower at the optical outskirts. Thus it is found that X-ray bright and faint elliptical galaxies are clearly distinguished by the temperature and gas density profile. The mass profile is well scaled by a virial radius r200 rather than an optical-half radius re, and is quite similar at (0.001 − 0.03)r200 between X-ray luminous and dim galaxies, and smoothly connects to those of clusters of galaxies. At the inner region of (0.001 − 0.01)r200 or (0.1 − 1)re, the mass profile well traces a stellar mass with a constant mass-to- light ratio of M/LB =3 − 10(M⊙/L⊙). M/LB ratio of X-ray bright galaxies rises up steeply beyond 0.01r200, and thus requires a presence of massive dark matter halo. From the deprojection analysis combined with the XMM-Newton data, we arXiv:astro-ph/0509521v1 18 Sep 2005 found that X-ray dim galaxies, NGC 3923, NGC 720, and IC 1459, also have a high M/LB ratio of 20–30 at 20 kpc, comparable to that of X-ray luminous galaxies.
    [Show full text]
  • The Theory of Everything: the Quest to Explain All Reality
    Topic Subtopic Science & Mathematics Physics The Theory of Everything The Quest to Explain All Reality Course Guidebook Professor Don Lincoln Fermi National Accelerator Laboratory topaudiobooks.ir PUBLISHED BY: THE GREAT COURSES Corporate Headquarters 4840 Westfields Boulevard, Suite 500 Chantilly, Virginia 20151-2299 Phone: 1-800-832-2412 Fax: 703-378-3819 www.thegreatcourses.com Copyright © The Teaching Company, 2017 Printed in the United States of America This book is in copyright. All rights reserved. Without limiting the rights under copyright reserved above, no part of this publication may be reproduced, stored in topaudiobooks.iror introduced into a retrieval system, or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording, or otherwise), without the prior written permission of The Teaching Company. DON LINCOLN, PH.D. SENIOR SCIENTIST FERMI NATIONAL ACCELERATOR LABORATORY on Lincoln is a Senior Scientist at Fermi National Accelerator Laboratory. His research time has been divided between studying Ddata from the Tevatron Collider (until it closed in 2011) and data from the CERN Large Hadron Collider, located outside of Geneva, Switzerland. Dr. Lincoln is also a Guest Professor of High Energy Physics at the University of Notre Dame. He received his Ph.D. in Experimental Particle Physics from Rice University. Dr. Lincoln is the coauthor of more than 1000 scientific publications that range over subjects from microscopic black holes and extra dimensions to the elusive Higgs boson. His most noteworthy scientific accomplishments include being part of the teams that discovered the top quark in 1995 and confirmed the Higgs boson in 2012. Dr. Lincoln is interested in everything about particle physics and cosmology, but his most burning interest is in understanding the reasons for why there are so many known subatomic building blocks.topaudiobooks.ir He searches for possible constituents of the quarks and leptons, which are treated in the standard model of particle physics as featureless and point-like particles.
    [Show full text]
  • Key Information • This Exam Contains 6 Parts, 79 Questions, and 180 Points Total
    Reach for the Stars *** Practice Test 2020-2021 Season Answer Key Information • This exam contains 6 parts, 79 questions, and 180 points total. • You may take this test apart. Put your team number on each page. There is not a separate answer page, so write all answers on this exam. • You are permitted the resources specified on the 2021 rules. • Don't worry about significant figures, use 3 or more in your answers. However, be sure your answer is in the correct units. • For calculation questions, any answers within 10% (inclusive) of the answer on the key will be accepted. • Ties will be broken by section score in reverse order (i.e. Section F score is the first tiebreaker, Section A the last). • Written by RiverWalker88. Feel free to PM me if you have any questions, feedback, etc. • Good Luck! Reach for the stars! Reach for the Stars B Team #: Constants and Conversions CONSTANTS Stefan-Boltzmann Constant = σ = 5:67 × 10−8 W=m2K4 Speed of light = c = 3 × 108m/s 30 Mass of the sun = M = 1:99 × 10 kg 5 Radius of the sun = R = 6:96 × 10 km Temperature of the sun = T = 5778K 26 Luminosity of the sun = L = 3:9 × 10 W Absolute Magnitude of the sun = MV = 4.83 UNIT CONVERSIONS 1 AU = 1:5 × 106km 1 ly = 9:46 × 1012km 1 pc = 3:09 × 1013km = 3.26 ly 1 year = 31557600 seconds USEFUL EQUATIONS 2900000 Wien's Law: λ = peak T • T = Temperature (K) • λpeak = Peak Wavelength in Blackbody Spectrum (nanometers) 1 Parallax: d = p • d = Distance (pc) • p = Parallax Angle (arcseconds) Page 2 of 13Page 13 Reach for the Stars B Team #: Part A: Astrophotographical References 9 questions, 18 points total For each of the following, identify the star or deep space object pictured in the image.
    [Show full text]
  • The MASSIVE Survey – X
    MNRAS 479, 2810–2826 (2018) doi:10.1093/mnras/sty1649 Advance Access publication 2018 June 22 The MASSIVE Survey – X. Misalignment between kinematic and photometric axes and intrinsic shapes of massive early-type galaxies Irina Ene,1,2‹ Chung-Pei Ma,1,2 Melanie Veale,1,2 Jenny E. Greene,3 Jens Thomas,4 5 6,7 8 9 John P. Blakeslee, Caroline Foster, Jonelle L. Walsh, Jennifer Ito and Downloaded from https://academic.oup.com/mnras/article-abstract/479/2/2810/5042947 by Princeton University user on 27 June 2019 Andy D. Goulding3 1Department of Astronomy, University of California, Berkeley, CA 94720, USA 2Department of Physics, University of California, Berkeley, CA 94720, USA 3Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA 4Max Plank-Institute for Extraterrestrial Physics, Giessenbachstr. 1, D-85741 Garching, Germany 5Dominion Astrophysical Observatory, NRC Herzberg Astronomy and Astrophysics, Victoria, BC V9E 2E7, Canada 6Sydney Institute for Astronomy, School of Physics A28, The University of Sydney, NSW 2006, Australia 7ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia 8George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA 9Department of Physics, University of California, San Diego, CA 92093, USA Accepted 2018 June 19. Received 2018 June 19; in original form 2018 January 30 ABSTRACT We use spatially resolved two-dimensional stellar velocity maps over a 107 × 107 arcsec2 field of view to investigate the kinematic features of 90 early-type galaxies above stellar mass 1011.5 M in the MASSIVE survey.
    [Show full text]
  • 2005 Astronomy Magazine Index
    2005 Astronomy Magazine Index Subject index flyby of Titan, 2:72–77 Einstein, Albert, 2:30–53 Cassiopeia (constellation), 11:20 See also relativity, theory of Numbers Cassiopeia A (supernova), stellar handwritten manuscript found, 3C 58 (star remnant), pulsar in, 3:24 remains inside, 9:22 12:26 3-inch telescopes, 12:84–89 Cat's Eye Nebula, dying star in, 1:24 Einstein rings, 11:27 87 Sylvia (asteroid), two moons of, Celestron's ExploraScope telescope, Elysium Planitia (on Mars), 5:30 12:33 2:92–94 Enceladus (Saturn's moon), 11:32 2003 UB313, 10:27, 11:68–69 Cepheid luminosities, 1:72 atmosphere of water vapor, 6:22 2004, review of, 1:31–40 Chasma Boreale (on Mars), 7:28 Cassini flyby, 7:62–65, 10:32 25143 (asteroid), 11:27 chonrites, and gamma-ray bursts, 5:30 Eros (asteroid), 11:28 coins, celestial images on, 3:72–73 Eso Chasma (on Mars), 7:28 color filters, 6:67 Espenak, Fred, 2:86–89 A Comet Hale-Bopp, 7:76–79 extrasolar comets, 9:30 Aeolis (on Mars), 3:28 comets extrasolar planets Alba Patera (Martian volcano), 2:28 from beyond solar system, 12:82 first image of, 4:20, 8:26 Aldrin, Buzz, 5:40–45 dust trails of, 12:72–73 first light from, who captured, 7:30 Altair (star), 9:20 evolution of, 9:46–51 newly discovered low-mass planets, Amalthea (Jupiter's moon), 9:28 extrasolar, 9:30 1:68–71 amateur telescopes. See telescopes, Conselice, Christopher, 1:20 smallest, 9:26 amateur constellations whether have diamond layers, 5:26 Andromeda Galaxy (M31), 10:84–89 See also names of specific extraterrestrial life, 4:28–34 disk of stars surrounding, 7:28 constellations eyepieces, telescope.
    [Show full text]
  • Making a Sky Atlas
    Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Introducing the Large Hadron Collider to Its Stakeholders
    Metascience DOI 10.1007/s11016-015-0012-2 BOOK REVIEW Introducing the world’s most famous particle accelerator to its stakeholders Don Lincoln: The Large Hadron Collider: The extraordinary story of the Higgs Boson and other stuff that will blow your mind. Baltimore: John Hopkins University Press, 2014, xii+223pp, $29.95 HB Naomi Pasachoff1 Ó Springer Science+Business Media Dordrecht 2015 Don Lincoln, author of this introduction to the Large Hadron Collider, has written other books bent on clarifying concepts of particle physics to the general reader. An experimental particle physicist at both Fermilab and CERN, he knows whereof he speaks. Lincoln’s explanatory skills earned him the 2013 European Physical Society’s High Energy Particle Physics Board’s Outreach Award ‘‘for communi- cating in multiple media the excitement of High Energy Physics to high-school students and teachers, and the public at large.’’ Knowing these things, when picking up this compact book of eight chapters, the reader should expect to find it written in accessible language and an engaging manner. I regret to report, however, that, while every page conveys the author’s enthusiasm for what he does, the book’s reading level is very uneven. Marketed as a trade book and not as a textbook, much of the book is perfectly comprehensible to the average reader of, say, The New York Times or New Scientist. The second half of the book, however, has enough very technical sections to scare off less dedicated general readers. Lincoln’s awareness of the issue ‘‘of having a diverse readership’’ (23) is not hidden.
    [Show full text]