14 2018 Spiny-Tailed Lizard UAE.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

14 2018 Spiny-Tailed Lizard UAE.Pdf The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN or any of the funding organizations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN. Published by: IUCN/SSC Reintroduction Specialist Group & Environment Agency-Abu Dhabi Copyright: © 2018 IUCN, International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Soorae, P. S. (ed.) (2018). Global Reintroduction Perspectives: 2018. Case studies from around the globe. IUCN/SSC Reintroduction Specialist Group, Gland, Switzerland and Environment Agency, Abu Dhabi, UAE. xiv + 286pp. 6th Edition ISBN: 978-2-8317-1901-6 (PDF) 978-2-8317-1902-3 (print edition) DOI: https://doi.org/10.2305/IUCN.CH.2018.08.en Cover photo: Clockwise starting from top-left: I. Reticulated python, Singapore © ACRES II. Trout cod, Australia © Gunther Schmida (Murray-Darling Basin Authority) III. Yellow-spotted mountain newt, Iran © M. Sharifi IV. Scimitar-horned oryx, Chad © Justin Chuven V. Oregon silverspot butterfly, USA © U.S. Fish and Wildlife Service VI. Two-colored cymbidium orchid, Singapore © Tim Wing Yam VII. Mauritius fody, Mauritius © Jacques de Spéville Cover design & layout by: Pritpal S. Soorae, IUCN/SSC Reintroduction Specialist Group Printed by: Arafah Printing Press LLC, Abu Dhabi, UAE Download at: www.iucnsscrsg.org www.iucn.org/resources/publications ii Reptiles Translocation trial of spiny-tailed lizard or dhub in Dubai, United Arab Emirates Declan O’Donovan 1,2 & Ruth O’Riordan 2 1 - Wadi Al Safa Wildlife Centre, Dubai, UAE [email protected] 2 - School of Biological, Earth & Environmental Sciences and the Environmental Research Institute, University College Cork, Cork, Ireland [email protected] Introduction The spiny-tailed lizard or dhub (Uromastyx aegyptia leptieni) is one of three subspecies of Uromastyx aegyptia and is found from Oman's Hajar al-Gharbi Mountains through to the northeastern United Arab Emirates (UAE). The species is listed on CITES Appendix II and categorised as vulnerable by the IUCN. Within the UAE, where this project is taking place, it is protected specifically under Federal Decree Law Number 9 of 1983. An estimated 1.5 million people are moving to cities globally each week. It is estimated that almost 90% of the UAE population will be urbanised by 2020, a trend obvious in Dubai in particular. Road infrastructure, services and megaproject construction are seriously impacting on available habitat for many local species of biota. Habitat conversion for development and agricultural use are identified as key threats to threatened reptile species of the Arabian Peninsula (Cox et al., 2012). A translocation attempt moved dhubs from the Abu Dhabi Airport expansion (Barcello & Tourenq, 2005), with the subsequent recovery of animals at one of the release sites (Soorae et al., 2008). There is no other official documentation of translocating dhubs within the UAE, although there have been attempts within the Emirate of Dubai during the Al Maktoum Airport development and development of other coastal projects. Goals Goal 1: Evaluate burrow usage and animal movements. Goal 2: Determine the feasibility and protocol for translocating U. a. leptieni. Goal 3: Monitor the release site fidelity in preparation for future translocations. Success Indicators Indicator 1: Released animals remain within the release area over one brumation period. Spiny-tailed lizard or dhub 69 Reptiles Holding pens placed on top of burrows for seven days Indicator 2: Released animals follow a similar activity pattern to animals that were not translocated but monitored in a similar fashion. Indicator 3: Capture of animals with no mortality or injury. Project Summary: Feasibility: Throughout their range, dhubs can be found on loose to hard gravel plains, avoiding soft sands. This is also prime construction land, as well as being a favoured surface for off road vehicles and weekend campers. There is some debate as to whether dhub are completely vegetarian or, as suggested by some authors (Castilla et al., 2011) whether they are selective scavengers. The authors (O’Donovan and O’Riordan, in prep.) suggest that those in the UAE are more likely to be incidental scavengers and consume non-vegetative items as they forage and therefore have specific dietary requirements. Preferred forage species from the study sites include, Heliotropium kotschyi, Tribulus sp., Fagonia bruguieri, Stipagrostis plumosa, Panicum turgidum, Helianthemum lippii, Pennisetum divisum and Leptadenia pyrotechnica seed pods when they were available. During the initial survey period, a total of 1,653 individual burrows (both active and abandoned) were identified. Of these the orientation of 784 were recorded with more than 50% orientated in a westerly direction, which was different to the primary orientation previously recorded for Uromastyx aegyptia (Cuningham, 2001). Implementation: The initial phase of the present study saw 13 animals captured and fitted with radio transmitters (Model # R1860 ATS, Isanti, MN, USA) and Hygrochron Temperature & Humidity iButton (DS1923-F5# Embedded Data Systems) during 2014 and 2015. These 13 animals were monitored throughout subsequent phases allowing the collection of important movement data (O’Donovan and O’Riordan, in prep.). A localised trial translocation was attempted with three of these animals (AQ01, WAS 002 and WAS 004). Subsequently, in September 2014, two animals, NAK 003 and NAK 004, were moved from a proposed construction site to a new area approximately 1 km from their capture burrow. These two animals were each released into a holding pen placed on top of the release burrow, which was left in place for the first seven days after translocation. 70 Reptiles In early October 2015, 10 more animals were caught on the same day, subjected to veterinary checks and fitted with the same transmitter and iButton combinations. Five were returned to their capture burrows and five translocated to a new site approximately 31 km away. For these five translocated animals, abandoned burrows, where there was adequate and suitable vegetation, which had been identified in earlier surveys (O’Donovan and O’Riordan, in prep.) were excavated and the animals released into these. Post-release monitoring: Of the first three early localised translocations, AQ01 was successful, WAS 002 survived for 25 days before being predated and WAS 004 lost its transmitter. The other two dhubs, NAK 003 and NAK 004, who had been kept within holding pens for the first seven days after release, remained in their release area and were observed there in early 2017. All ten of the October 2015 tagged animals were monitored on a daily basis for the first 14 days and every alternate second day thereafter for four months. Of the five translocated animals, three died, two from predation as they did not settle in any specific burrow and one was presumed dead in a burrow where it took up residence in. All the deaths were within 90 days of release. The other two were considered to have established in the release area. Of the five dhubs that had been tagged in October 2015 but were not translocated, four were found alive at the end of the monitoring, while one, WAS 059, was presumed predated as it disappeared with no radio signal detected. Of the remaining monitored but not translocated animals throughout the study, there was only one other mortality, MUG 005 which died of natural causes. The monitored animals showed a lot of movement between burrows and while there was certain burrow fidelity, animals were often recorded (using bespoke RFID traps - RFIDRW-E-232, Priority 1 Design, Melbourne, Australia) in burrows up to several hundred metres apart (O’Donovan and O’Riordan, in prep.). Also two of the translocated animals were recorded in RFID traps during January 2018. Major difficulties faced Released animals establishing in release burrows. Predation from feral cats, foxes or raptors. Ability to identify release animals after removal of transmitter either after battery depletion or loss of transmitter. Follow up monitoring would be difficult without further captures. Major lessons learned Release animals need to be retained in a Overview of habitat at release site (yellow arrow shows dhub) 71 Reptiles temporary holding pen for several days at the release location and allowed to excavate their own way out. Old abandoned burrows can be utilised in translocation projects. Success of project Highly Successful Successful Partially Successful Failure √ Reason(s) for success/failure: There were too many mortalities which could be attributed to the homing instincts of dhub exposing them to increased risk of predation or chilling/ heating extremes. The chance of success was much greater when animals were held in release pens or caught and returned to the release burrow until it had established in the release area. Capture and monitoring protocols have now been established and can be implemented rapidly in the case of urgent translocation from construction projects. As this was a short-term pilot project the measurement of success was the ability to complete one brumation cycle effectively. Whether any of the translocated animals have contributed to the increase of the local population would be difficult to determine. References Barcello, I. & Tourenq, C. (2005) Airport dhub (Spiny-tailed lizard - Uromastyx sp.) translocation operation. Abu Dhabi: Dhabi, E.A.A. Castilla, A.M., Richer, R., Herrel, A., Conkey, A.A.T., Tribuna, J. & Al-Thani, M. (2011) First evidence of scavenging behaviour in the herbivorous lizard Uromastyx aegyptia microlepis.
Recommended publications
  • An Overview and Checklist of the Native and Alien Herpetofauna of the United Arab Emirates
    Herpetological Conservation and Biology 5(3):529–536. Herpetological Conservation and Biology Symposium at the 6th World Congress of Herpetology. AN OVERVIEW AND CHECKLIST OF THE NATIVE AND ALIEN HERPETOFAUNA OF THE UNITED ARAB EMIRATES 1 1 2 PRITPAL S. SOORAE , MYYAS AL QUARQAZ , AND ANDREW S. GARDNER 1Environment Agency-ABU DHABI, P.O. Box 45553, Abu Dhabi, United Arab Emirates, e-mail: [email protected] 2Natural Science and Public Health, College of Arts and Sciences, Zayed University, P.O. Box 4783, Abu Dhabi, United Arab Emirates Abstract.—This paper provides an updated checklist of the United Arab Emirates (UAE) native and alien herpetofauna. The UAE, while largely a desert country with a hyper-arid climate, also has a range of more mesic habitats such as islands, mountains, and wadis. As such it has a diverse native herpetofauna of at least 72 species as follows: two amphibian species (Bufonidae), five marine turtle species (Cheloniidae [four] and Dermochelyidae [one]), 42 lizard species (Agamidae [six], Gekkonidae [19], Lacertidae [10], Scincidae [six], and Varanidae [one]), a single amphisbaenian, and 22 snake species (Leptotyphlopidae [one], Boidae [one], Colubridae [seven], Hydrophiidae [nine], and Viperidae [four]). Additionally, we recorded at least eight alien species, although only the Brahminy Blind Snake (Ramphotyplops braminus) appears to have become naturalized. We also list legislation and international conventions pertinent to the herpetofauna. Key Words.— amphibians; checklist; invasive; reptiles; United Arab Emirates INTRODUCTION (Arnold 1984, 1986; Balletto et al. 1985; Gasperetti 1988; Leviton et al. 1992; Gasperetti et al. 1993; Egan The United Arab Emirates (UAE) is a federation of 2007).
    [Show full text]
  • Report on Species/Country Combinations Selected for Review by the Animals Committee Following Cop16 CITES Project No
    AC29 Doc. 13.2 Annex 1 UNEP-WCMC technical report Report on species/country combinations selected for review by the Animals Committee following CoP16 CITES Project No. A-498 AC29 Doc. 13.2 Annex 1 Report on species/country combinations selected for review by the Animals Committee following CoP16 Prepared for CITES Secretariat Published May 2017 Citation UNEP-WCMC. 2017. Report on species/country combinations selected for review by the Animals Committee following CoP16. UNEP-WCMC, Cambridge. Acknowledgements We would like to thank the many experts who provided valuable data and opinions in the compilation of this report. Copyright CITES Secretariat, 2017 The UN Environment World Conservation Monitoring Centre (UNEP-WCMC) is the specialist biodiversity assessment centre of UN Environment, the world’s foremost intergovernmental environmental organisation. The Centre has been in operation for over 30 years, combining scientific research with practical policy advice. This publication may be reproduced for educational or non-profit purposes without special permission, provided acknowledgement to the source is made. Reuse of any figures is subject to permission from the original rights holders. No use of this publication may be made for resale or any other commercial purpose without permission in writing from UN Environment. Applications for permission, with a statement of purpose and extent of reproduction, should be sent to the Director, UNEP-WCMC, 219 Huntingdon Road, Cambridge, CB3 0DL, UK. The contents of this report do not necessarily reflect the views or policies of UN Environment, contributory organisations or editors. The designations employed and the presentations of material in this report do not imply the expression of any opinion whatsoever on the part of UN Environment or contributory organisations, editors or publishers concerning the legal status of any country, territory, city area or its authorities, or concerning the delimitation of its frontiers or boundaries or the designation of its name, frontiers or boundaries.
    [Show full text]
  • Uromastyx by Catherine Love, DVM Updated 2021
    Uromastyx By Catherine Love, DVM Updated 2021 Natural History Uromastyx, also known as spiny-tailed or dabb lizards, are a genus of herbivorous, diurnal lizards found in northern Africa, the Middle East, and northwest India. This genus of lizard is in the agamid family, the same family as bearded dragons and frilled lizards. There are 13 recognized uromastyx species, but not all are commonly kept in captivity in the United States. U. aegyptia (Egyptian), U. ornatus (ornate), U. geyri (saharan), U. nigriventris (Moroccan), U. dispar (Mali), and U. ocellata (ocellated) are some of the most commonly kept. Uros dig burrows or spend time in rocky crevices to protect themselves from the elements in their desert habitats. These lizards naturally inhabit rocky terrain in very arid climates and are often found basking in direct sunlight. Characteristics and Behavior Uros tend to be quite docile and tolerant of handling, with some owners even claiming their lizard seeks out interaction. These lizards don’t tend to bite, but can be skittish if time is not taken to tame them. Ornate uromastyx have been noted to be bolder, while Egyptian and Moroccan uromastyx may be more shy. As with other members of the agamid family, uromastyx do not possess tail autotomy (they can’t drop their tails). Uros are heat loving, mid-day basking lizards that thrive in arid environments. Uros have a gland near their nose that excretes salt, which may cause a white build-up near their nostrils (keepers affectionately refer to this build-up as “snalt”). They are fairly hardy and handleable lizards that make good pets for intermediate keepers.
    [Show full text]
  • Review of the Taxonomy of the Spiny-Tailed Lizards of Arabia (Reptilia: Agamidae: Leiolepidinae: Uromastyx)
    FAUNA OF ARABIA 23: 435–468 Date of publication: 15.07.2007 Review of the taxonomy of the spiny-tailed lizards of Arabia (Reptilia: Agamidae: Leiolepidinae: Uromastyx) Thomas M. Wilms and Wolfgang Böhme A b s t r a c t : Currently six species of the genus Uromastyx (Reptilia: Agamidae: Leiolepidinae), representing three phylogenetic lineages, are known to occur in Arabia: Uromastyx aegyptia, U. benti, U. leptieni, U. ornata, U. thomasi and U. yemenensis. The present paper gives an overview of the taxonomy of these lizards and presents new data on the morphology and ecology of Uro- mastyx leptieni. ������� ������ ��� � ����� ����� ������ ������� ������ (Leiolepidinae: Uromastyx :��������� :�������) ���� ��������� ����� ����� (Leiolepidinae :��������� :�������) Uromastyx ���� �� ����� � ������� ������ ��� � ������ ���� :���� .U. yemenensis � U. benti, U. leptieni, U. ornata, U. thomasi, Uromastyx aegyptia ���� ������ ����� � � ����� .Uromastyx leptieni ����� ������� ������ ����� ����� ����� ����� ������ ��� ������ ������ ����� ���� INTRODUCTION Spiny-tailed agamas are small to medium-sized, ground- or rock-dwelling lizards. Most species reach a maximum length of 25-50 cm, and only species of the Uromastyx aegyptia group can reach a total length of up to 70 cm or more. The animals have a bulky, depressed body and strong, short limbs. The tail is covered by spiny scales, arranged in distinct whorls. The tympanum is visible. None of the species has a nuchal or dorsal crest or a gular pouch or fan. Only a transverse fold at the throat is present (gular fold). Body scales are small and mostly homogenous, but some species have enlarged tubercular scales on the body and/or limbs. The main diagnostic character of the genus is the highly specialised tooth-like bony structure replacing the incisor teeth in the upper jaw in adults. This transformation of the premaxillary bone to a tooth-like structure is an autapomorphy of the genus Uromastyx, convergent in Sphenodon, which has also a convergently acrodont dentition.
    [Show full text]
  • Study of Halal and Haram Reptil (Dhab "Uromastyx Aegyptia
    Study of Halal and Haram Reptil (Dhab "Uromastyx aegyptia", Biawak "Varanus salvator", Klarap "Draco volans") in Interconnection-Integration Perspective in Animal Systematics Practicum Sutriyono Integrated Laboratory of Science and Technology State Islamic University Sunan Kalijaga Yogyakarta - Indonesia Correspondency email: [email protected] Abstract Indonesia as a country with the largest Muslim population in the world, halal and haram being important and interesting issues, and will have more value if being related to science and religion. The research aimed to study halal and haram of reptiles by tracing manuscripts of Islam and science, combining, analyzing, and drawing conclusions with species Uromastyx aegyptia (Desert lizard), Varanus salvator (Javan lizard), and Draco volan (Klarap). The results showed that Dhab (Uromastyx aegyptia) (Desert lizard) is halal, based on the hadith narrated by Muslim no. 3608, hadith narrated by Al-Bukhari no. 1538, 1539. Uromastyx aegyptia are herbivorous animals although sometimes they eat insects. Javanese lizards (Varanus salvator) in Arabic called waral, wild and fanged animals is haram for including carnivores, based on hadith narrated by Muslim no. 1932, 1933, 1934, hadith narrated by Al-Bukhari no. 5530. Klarap (Draco volans)/cleret gombel/gliding lizard is possibly halal because no law against it. Draco volans is an insectivorous, not a wild or fanged animal, but it can be haram if disgusting. Draco volans has the same category taxon as Uromastyx aegyptia at the family taxon. Keywords: Halal-haram, Reptile, Interconnection, Integration, Animal Systematics. Introduction Indonesia as a country with the largest Muslim population in the world, halal and haram are an important and interesting issues and will have more value if being related to science and religion.
    [Show full text]
  • Evolutionary History of Spiny- Tailed Lizards (Agamidae: Uromastyx) From
    Received: 6 July 2017 | Accepted: 4 November 2017 DOI: 10.1111/zsc.12266 ORIGINAL ARTICLE Evolutionary history of spiny- tailed lizards (Agamidae: Uromastyx) from the Saharo- Arabian region Karin Tamar1 | Margarita Metallinou1† | Thomas Wilms2 | Andreas Schmitz3 | Pierre-André Crochet4 | Philippe Geniez5 | Salvador Carranza1 1Institute of Evolutionary Biology (CSIC- Universitat Pompeu Fabra), Barcelona, The subfamily Uromastycinae within the Agamidae is comprised of 18 species: three Spain within the genus Saara and 15 within Uromastyx. Uromastyx is distributed in the 2Allwetterzoo Münster, Münster, Germany desert areas of North Africa and across the Arabian Peninsula towards Iran. The 3Department of Herpetology & systematics of this genus has been previously revised, although incomplete taxo- Ichthyology, Natural History Museum of nomic sampling or weakly supported topologies resulted in inconclusive relation- Geneva (MHNG), Geneva, Switzerland ships. Biogeographic assessments of Uromastycinae mostly agree on the direction of 4CNRS-UMR 5175, Centre d’Écologie Fonctionnelle et Évolutive (CEFE), dispersal from Asia to Africa, although the timeframe of the cladogenesis events has Montpellier, France never been fully explored. In this study, we analysed 129 Uromastyx specimens from 5 EPHE, CNRS, UM, SupAgro, IRD, across the entire distribution range of the genus. We included all but one of the rec- INRA, UMR 5175 Centre d’Écologie Fonctionnelle et Évolutive (CEFE), PSL ognized taxa of the genus and sequenced them for three mitochondrial and three Research University, Montpellier, France nuclear markers. This enabled us to obtain a comprehensive multilocus time- calibrated phylogeny of the genus, using the concatenated data and species trees. We Correspondence Karin Tamar, Institute of Evolutionary also applied coalescent- based species delimitation methods, phylogenetic network Biology (CSIC-Universitat Pompeu Fabra), analyses and model- testing approaches to biogeographic inferences.
    [Show full text]
  • AC29 Doc. 13.2 A2
    AC29 Doc. 13.2 Annex / Annexe / Anexo 2 (English only / Seulement en anglais / Únicamente en inglés) Species/country combinations selected for review by the Animals Committee following CoP16: Range State responses Contents Ghana ............................................................................................................................................... 2 Guyana ............................................................................................................................................. 3 Indonesia ......................................................................................................................................... 7 Jordan ............................................................................................................................................. 39 Malaysia ......................................................................................................................................... 43 Turkey ............................................................................................................................................ 46 1 Ghana From: NANA KOFI ADU-NSIAH <[email protected]> Sent: 17 March 2017 09:53 To: species Cc: [email protected]; [email protected] Subject: Re: Review of taxa in Ghana subject to the CITES Review of Significant Trade Dear colleague, This is to provide response to your email on Geochelone sulcata. Distribution, Population Size, Status and Trends. Ghana is not a range state of the species in question, however Ghanaian
    [Show full text]
  • (Reptilia, Agamidae) in Western Sahara: De
    Rev. Esp. Herp. ( 1998) 12:97-109 97 Chorological analysis and morphological variations of Saurians of the genus Uromastyx (Reptilia, Agamidae) in western Sabara. Description of two new taxa. 1 2 3 JOSÉ ANTONIO MATE0 ·3, PHILIPPE ÜENIEZ , LUIS FELIPE LÓPEZ-JURAD0 & JACQUES BONS2 I Estación Biológica de Doñana-CSIC, Apartado 1056, E-4108 Sevilla, Spain. 2laboratoire de Biogéographie et Ecologie des Vertébrés-EPHE, Université Montpellier 2, Place Eugene Bataillon, F-34095 Montpellier, France. 3 Departamento de Biología, Universidad de las Palmas de Gran Canaria, 35017 las Palmas de Gran Canaria, Spain. E-mail: luisfelipe. lopez@biologia. ulpgc. es Abstract: The description of a new species ofthe genus Uromastyx is proposed on the basis oftwo specimens from the Adrar Souttouf in Western Sahara. This taxon differs greatly from U. acanthinura on account its larger size, the much larger number of scales, the arrangement of tubercules on its upper thighs, the different habitus and colouring. These morphological features mean it closely resembles U. aegyptia. The existence of a relictual U. aegyptia-group throughout the Sahara is suggested. In addition, the morphological variations in Spiny-tailed agamas (or Mastigures) ofthe Uromastyx acanthinura group in the west ofthe Sahara are briefl y analysed. This produces evidence for the existence of a species proper to Western Sahara and surrounding areas, Uromastyx jlavifasciata, represented by two subspecies: U. f jlavifasciata in the north and U. f obscura subsp. nov. in the south. The latter new form is characterised by uniformly black colouring, even in active individuals. This work also demonstrates that Uromastyx acanthinura werneri does not penetrate Western Sahara and that its distribution is parapatric with that of U.
    [Show full text]
  • Felis Margarita, Sand Cat
    The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2008: T8541A50651884 Felis margarita, Sand Cat Assessment by: Sliwa, A., Ghadirian, T., Appel, A., Banfield, L., Sher Shah, M. & Wacher, T. View on www.iucnredlist.org Citation: Sliwa, A., Ghadirian, T., Appel, A., Banfield, L., Sher Shah, M. & Wacher, T. 2016. Felis margarita. The IUCN Red List of Threatened Species 2016: e.T8541A50651884. http://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T8541A50651884.en Copyright: © 2016 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: BirdLife International; Botanic Gardens Conservation International; Conservation International; Microsoft; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; Wildscreen; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information provided. THE IUCN RED LIST OF THREATENED SPECIES™ Taxonomy Kingdom Phylum Class Order Family Animalia Chordata Mammalia Carnivora Felidae Taxon Name: Felis margarita Loche, 1858 Regional Assessments: • Mediterranean Common Name(s): • English: Sand Cat, Sand Dune Cat • French: Chat des sables • Spanish: Gato de las Arenas, Gato del Sahara Taxonomic Notes: Taxonomy is currently under review by the IUCN SSC Cat Specialist Group (2014).
    [Show full text]
  • On the Phylogeny and Taxonomy of the Genus Uromastyx Merrem, 1820 (Reptilia: Squamata: Agamidae: Uromastycinae) – Resurrection of the Genus Saara Gray, 1845
    Bonner zoologische Beiträge Band 56 (2007) Heft 1/2 Seiten 55–99 Bonn, März 2009 On the Phylogeny and Taxonomy of the Genus Uromastyx Merrem, 1820 (Reptilia: Squamata: Agamidae: Uromastycinae) – Resurrection of the Genus Saara Gray, 1845 Thomas M. WILMS1),4), WOLFGANG BÖHME2), Philipp WAGNER2), Nicolà LUTZMANN2) & Andreas SCHMITZ3) 1)Zoologischer Garten Frankfurt, Bernhard-Grzimek-Allee 1, D-60316 Frankfurt am Main, Germany; E-Mail: [email protected]; 2)Zoologisches Forschungsmuseum A. Koenig, Adenauerallee 160, D- 53113 Bonn, Germany; 3)Muséum d’Histoire naturelle, C. P. 6434, CH-1211 Genève 6, Switzerland; 4)Corresponding author Abstract. We assessed the taxonomic relationships within the genus Uromastyx Merrem, 1820 using morphologi- cal and genetic methods, resulting in the resurrection of the genus Saara Gray, 1845 for Saara hardwickii, S. as- mussi and S. loricata and in changes of the taxonomic rank of Uromastyx nigriventris, U. aegyptia leptieni and U. shobraki. A synopsis of all taxa considered to be valid is provided, including differential diagnosis, description and data on their respective distribution. A key for the species of Saara and Uromastyx is presented. Keywords. Reptilia; Sauria; Agamidae; Uromastycinae; Uromastyx; Saara; Saara hardwickii; Saara asmussi new comb.; Saara loricata new comb.; Uromastyx aegyptia leptieni new status; Uromastyx nigriventris new status; Uromastyx sho- braki new status; Phylogeny; Taxonomy; Morphology. 1. INTRODUCTION Within the Palearctic genus Uromastyx Merrem, 1820 a (KNAPP 2004, WILMS 2007a). But the consumption of total of 17 species are considered to be valid by WILMS spiny-tailed lizards in their countries of origin may be con- & SCHMITZ (2007) and WILMS & BÖHME (2007).
    [Show full text]
  • The Use of Spiny-Tailed Lizards for Medicinal Purposes In
    S H O R T C O M M U N I C A T I O N The use of spiny-tailed lizards Uromastyx spp. for medicinal purposes in Peninsular Malaysia Or Oi Ching and Serene C.L. Chng by the required CITES export permits. A study on CITES data trade records of Uromastyx spp. reported over 200 000 INTRODUCTION specimens traded internationally, with an increasing trend DIWHU .QDSS 6SLQ\WDLOHG OL]DUG VSHFLHV DUH piny-tailed lizards Uromastyx spp. consist of 20 also protected by national laws in many range countries. recognized species that inhabit the deserts and Unregulated and unsustainable hunting of spiny-tailed semi-deserts from northern Africa across the lizards may adversely affect the ecosystem (Yom-Tov, Middle East to north-western India (Wilms et al., DVWKH\DUHDQLPSRUWDQWSUH\VSHFLHV &RQVHUYDWLRQ 2009; Wilms, et al., $OVRNQRZQDVGDEERU ,QGLD DQGWKHLUEXUURZVVHUYHDVWKHUPDOUHIXJHV Sdhab lizards, they are hunted and traded for their purported for many other species (Wilms et al., 7KHVHOL]DUGV medicinal value, as well as for meat and for the pet trade feed on plants and insects, providing some degree of pest (Mahmood et al., 2011; Subramanean and Vikram Reddy, control, and are also scavengers (Castilla et al., 2011; 2012; Wilms et al., 2012; Das et al., 2013; Pradhan et al., 6XEUDPDQHDQDQG9LNUDP5HGG\ /DUJHQXPEHUVDUHWDNHQIURPWKHZLOGLQ6DXGL$UDELD DQGVROGWRPLGGOHPHQIRUDURXQG6$5± 86'± BACKGROUND 86' 1 $QRQ )DL]D 3RDFKLQJ WHFKQLTXHV include pouring water or blowing smoke into burrows to The sale of spiny-tailed lizard parts and products used for force
    [Show full text]
  • Foraging Behavior of the Egyptian Spiny-Tailed Lizard Uromastyx Aegyptia (FORSKÅL, 1775)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Herpetozoa Jahr/Year: 2009 Band/Volume: 22_1_2 Autor(en)/Author(s): Cunningham Peter Low Artikel/Article: Foraging behavior of the Egyptian Spiny-tailed Lizard Uromastyx aegyptia (FORSKÅL, 1775). 91 ©Österreichische Gesellschaft für Herpetologie e.V., Wien, Austria, download unter www.biologiezentrum.at SHORT NOTE HERPETOZOA 22 (1/2) Wien, 30. Juni 2009 SHORT NOTE 91 Foraging behavior of the Egyptian scaling bigger shrubs/trees to forage. This Spiny-tailed Lizard Uromastyx current observed foraging behavior is proba- bly due to the adverse conditions experienced aegyptia (FORSKÅL, 1775) in the Mahazat as-Sayd Protected Area – the below average rainfall and poor overall veg- Uromastyx aegyptia (FORSKÅL, 1775) etative growth – and/or changes in vegetation are terrestrial burrowing lizards viewed as composition and structure influencing their generalist herbivores, utilizing a wide vari- foraging behavior. ety of plant species throughout their range How this selection of A. tortilis leaves (MANDAVILLE 1965; FOLEY et al. 1992; DISI and pods affects the required energy intake et al. 2001; CUNNINGHAM 2000, 2001a, and consequently time spent foraging, cou- 2001b). Their food plants usually consist of pled with seasonal changes in plant species, low growing forbs and grasses, but they are plant part selection and availability, requires even known to be predacious, especially as further investigations. These could lead to juveniles, on arthropods, and opportunisti- answers to the successful foraging strategy cally consume items such as date kernels, of this extreme desert-dwelling species. ungulate droppings and human objects – e.g.
    [Show full text]