Effect of Diaprepes Root Weevil on Leaf Gas Exchange and Growth of Select Ornamental Tree Species

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Diaprepes Root Weevil on Leaf Gas Exchange and Growth of Select Ornamental Tree Species EFFECT OF DIAPREPES ROOT WEEVIL ON LEAF GAS EXCHANGE AND GROWTH OF SELECT ORNAMENTAL TREE SPECIES By ALEXANDER P. DIAZ A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2005 Copyright 2005 by Alexander P. Diaz ACKNOWLEDGMENTS I would like to thank Catharine Mannion and Bruce Schaffer for granting me this opportunity to pursue graduate studies and providing funding for this research project. I would also like to thank them along with Susan Webb for their guidance and support throughout this experience. I would like to thank all those who helped me in many different ways while working on my research, especially Holly Glenn, Julio Almanza, Karen Griffin, Mike Gutierrez and Dalia Stubblefield. Finally, I would like to thank my family for their continual encouragement and support. iii TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................................................................................. iii LIST OF TABLES............................................................................................................. vi LIST OF FIGURES .......................................................................................................... vii ABSTRACT....................................................................................................................... ix CHAPTER 1 LITERATURE REVIEW .............................................................................................1 Introduction...................................................................................................................1 Weevils..................................................................................................................2 Root Weevils .........................................................................................................3 Citrus Root Weevils ..............................................................................................5 Diaprepes Root Weevil..........................................................................................7 Damage..................................................................................................................9 Arthropod feeding and whole-plant physiology...........................................11 Flooding stress and plant physiology...........................................................16 The ornamental plant industry......................................................................18 Current and potential impact of Diaprepes root weevil on the ornamental plant industry ............................................................................................19 Buttonwood, Live Oak and Pygmy Date Palm ...................................................20 Research Objectives....................................................................................................22 2 EFFECT OF LARVAL ROOT FEEDING BY DIAPREPES ROOT WEEVIL ON LEAF GAS EXCHANGE AND GROWTH OF SELECT ORNAMENTAL TREE SPECIES.....................................................................................................................23 Introduction.................................................................................................................23 Materials and Methods ...............................................................................................25 Plant and Insect Material.....................................................................................26 Experiment 1 ................................................................................................26 Experiment 2 ................................................................................................26 Treatments ...........................................................................................................27 Experiment 1 ................................................................................................27 Experiment 2 ................................................................................................28 iv Temperature Measurements ................................................................................29 Statistical Analysis ..............................................................................................30 Results.........................................................................................................................30 Experiment 1 .......................................................................................................30 Experiment 2 .......................................................................................................32 Discussion...................................................................................................................35 3 EFFECT OF FLOODING AND DIAPREPES ROOT WEEVIL LARVAL FEEDING ON LEAF GAS EXCHANGE AND GROWTH OF BUTTONWOOD AND LIVE OAK........................................................................................................54 Introduction.................................................................................................................54 Materials and Methods ...............................................................................................56 Plant and Insect Material.....................................................................................56 Treatments ...........................................................................................................56 Soil Redox Potential............................................................................................57 Leaf Gas Exchange..............................................................................................58 Plant Growth and Larval Recovery .....................................................................58 Statistical Analysis ..............................................................................................58 Results.........................................................................................................................59 Soil Redox Potential (Eh)....................................................................................59 Leaf Gas Exchange..............................................................................................59 Plant Growth and Larval Recovery .....................................................................60 Discussion...................................................................................................................61 4 EFFECT OF ADULT DIAPREPES ROOT WEEVIL ON LEAF GAS EXCHANGE AND GROWTH OF BUTTONWOOD AND LIVE OAK.................72 Introduction.................................................................................................................72 Materials and Methods ...............................................................................................74 Plant and Insect Material.....................................................................................74 Leaf Gas Exchange..............................................................................................75 Plant biomass.......................................................................................................76 Statistical Analysis ..............................................................................................76 Results.........................................................................................................................76 Visible Signs of Herbivory..................................................................................76 Leaf Gas Exchange..............................................................................................77 Plant Biomass ......................................................................................................77 Discussion...................................................................................................................78 5 SUMMARY AND CONCLUSIONS.........................................................................86 LIST OF REFERENCES...................................................................................................89 BIOGRAPHICAL SKETCH .............................................................................................97 v LIST OF TABLES Table page 2-1 The effect of Diaprepes root weevil larvae on height and trunk diameter of buttonwood and live oak trees..................................................................................51 2-2 The effect of Diaprepes root weevil larvae on buttonwood leaf, stem and root fresh and dry weights at each harvest date...............................................................52 2-3 The effect of Diaprepes root weevil larvae on leaf stem and root fresh and dry weights of live oak and pygmy date palm................................................................53 2-4 Number of Diaprepes root weevil larvae recovered from plants harvested 2, 3, 4 & 5 months after infestation.....................................................................................53 3-1 The effect of flooding (FLD) and insect infestation (INFST) on leaf gas exchange of buttonwood and live oak trees. ............................................................70 3-2 The effect of Diaprepes root weevil larvae on leaf, stem, root and total biomass of infested or non-infested buttonwood and live oak trees. .....................................71 4-1 The effect of adult Diaprepes root weevil
Recommended publications
  • Arthropod Pests of Citrus Roots
    lds. r at ex­ ual to ap ­ ila­ red t is een vi­ Clayton W. McCoy fa­ University of Florida ks Citrus Res ea rch and Educati on Center, Lake Alfred )0­ Ily I'::y les Ill­ up 10 Arthropod Pests of Citrus Roots 'ul r-J!l 'Ie '](1 cc The major arthropods that are injurious to plant roots are Geographical Distribution members of the classes Insecta and Acari (mites). Two-thi rds of these pests are members of the order Coleoptera (beetles), Citrus root weevi ls are predominantly trop ical ; however, a which as larvae cause serious economic loss in a wide range few temperate species are important pests in the United States, of plan t hosts. Generally, the larvae hatch from eggs laid by Chile. Argentina. Australia. and New Zealand (Table 14.1). adults on plan ts or in the soil and complete part of their life The northern blue-green citrus root weevil, Pachnaeus opalus; cycle chewing on plant roots, and in many cases as adults the Fuller rose beetle, Asynonychus godmani: and related spe ­ they feed on the foli age of the same or other host plan ts. A cies in the genus Pantomorus are found in temperate areas. Ap ­ number of arthropods inhabit the rhizosphere of citrus trees. proximately 150 species have been recorded in the Caribbean some as unique syrnbionts, but few arc injurious to the roots. region, including Florida. Central America, and South America, Only citrus root weevils. termi tes. and ants. in descending or­ feeding as larvae on the roots of all species of the genus Citrus.
    [Show full text]
  • U.S. EPA, Pesticide Product Label, MICROMITE 4L, 02/05/2002
    Lf/JO - '176 i)../s/~o~ UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE 01' PREVENTION. PESTICIDES ANO TOXIC SUBSTANCES Judith O. Ball Registration Specialist FEe 5 20D2 Research .t DcveIopment 74 Amity 1load Bethany, CT 06524-3402 Subject: EPA Reg. No. 400-476, Micromite 4L Label Amendment Letter dated Jamwy 17, 2002 Dear Ms. Ball: The 1abe1ina referred to above, submitted in connection with registration undec the Fedenl 1nJecticide, FIII'&icide and Rodenticide Act (FIFRA), u amended, is acceptable provided tIIIt you make the following change to the iIbd: • Bold or highlight lDert Inpients A stamped copy is enclosed for your records. Please submit one (I) copy of your fina1 printed 1abeIing before you releue the product for shipment. If you have any questions or comments about this lett«, pleue contact me at 703-308-8291. Sincerely yours, Rita Kumar, Senior Regulatory Specialist Insecticide Rodenticide Branch Registration Division (7S0Se 1-A]3EL Restricted Use Pesticide. Due to toxicity to aquatic invertebrate animals. For retail sale to and use only by Certified Applicators, or persons under their direct supervision, and only for those uses covered by the Certified Applicator's certification. CCEPTElJ with COMMENl."'S Micromite® 4~'A Letter Dated Insect Growth Regulator FEB 5 2002 Net UDder the Fede,,' Insect~nts: Suspension Concentrate fwABiclde, and Rodenticide. Act, as amended, for th~ pesl.l.dde For Use on Citrus 'Teg!::;tcred, w,d,"'j t:'!), " lh~i~ N{.1 ...LfJro-I-/ iL Active IngredIent: (% by weight) Diflubenzuron N·II (4·Chlorophenyl)amino jcarbonylj- 2, 6·difluorobenzamide· ............... 40.4% Inert Ingredients: ...................................................................................
    [Show full text]
  • Use of Landscape Fabric to Manage Diaprepes Root Weevil in Citrus Groves
    Use of Landscape Fabric to Manage Diaprepes Root Weevil in Citrus Groves Authors: L. W. Duncan, R. J. Stuart, F. G. Gmitter, and S. L. Lapointe Source: Florida Entomologist, 92(1) : 74-79 Published By: Florida Entomological Society URL: https://doi.org/10.1653/024.092.0112 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Florida-Entomologist on 21 Jun 2019 Terms of Use: https://bioone.org/terms-of-use 74 Florida Entomologist 92(1) March 2009 USE OF LANDSCAPE FABRIC TO MANAGE DIAPREPES ROOT WEEVIL IN CITRUS GROVES L. W. DUNCAN,1 R. J. STUART1, F. G. GMITTER2 AND S. L. LAPOINTE3 1Department of Entomology and Nematology and 2Department of Horticultural Sciences, University of Florida, IFAS, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL 33850 3U. S. Horticultural Research Lab, U.
    [Show full text]
  • Arizona Administrative Code Between the Dates of October 1, 2020 Through December 31, 2020 (Supp
    3 A.A.C. 4 Supp. 20-4 December 31, 2020 Title 3 TITLE 3. AGRICULTURE CHAPTER 4. DEPARTMENT OF AGRICULTURE - PLANT SERVICES DIVISION The table of contents on the first page contains quick links to the referenced page numbers in this Chapter. Refer to the notes at the end of a Section to learn about the history of a rule as it was published in the Arizona Administrative Register. Sections, Parts, Exhibits, Tables or Appendices codified in this supplement. The list provided contains quick links to the updated rules. This Chapter contains rule Sections that were filed to be codified in the Arizona Administrative Code between the dates of October 1, 2020 through December 31, 2020 (Supp. 20-4). Table 1. Fee Schedule ......................................................47 Questions about these rules? Contact: Name: Brian McGrew Address: Department of Agriculture 1688 W. Adams St. Phoenix, AZ 85007 Telephone: (602) 542-3228 Fax: (602) 542-1004 E-mail: [email protected] Website: https://agriculture.az.gov/plantsproduce/industrial- hemp-program The release of this Chapter in Supp. 20-4 replaces Supp. 20-3, 1-50 pages Please note that the Chapter you are about to replace may have rules still in effect after the publication date of this supplement. Therefore, all superseded material should be retained in a separate binder and archived for future reference. i PREFACE Under Arizona law, the Department of State, Office of the Secretary of State (Office), accepts state agency rule filings and is the publisher of Arizona rules. The Office of the Secretary of State does not interpret or enforce rules in the Administrative Code.
    [Show full text]
  • Genetic Relationships Among Fla Diaprepes
    ECOLOGY AND POPULATION BIOLOGY Genetic Relationships Among Florida Diaprepes abbreviatus (Coleoptera: Curculionidae) Populations 1 1 2 1 3 1 B. BAS, Z. DALKILIC, T. L. PEEVER, H. N. NIGG, S. E. SIMPSON, F. G. GMITTER, JR., AND R. C. ADAIR4 Institute of Food and Agricultural Sciences, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850 Ann. Entomol. Soc. Am. 93(3): 459Ð467 (2000) ABSTRACT Genetic differentiation among six Florida populations of Diaprepes abbreviatus (L.) was determined using protein and random ampliÞed polymorphic DNA-polymerase chain reaction (RAPD-PCR) markers. Proteins were separated by electrophoresis and stained with silver stain and for ␣-naphthylacetate esterase activity. No differentiation was observed among populations when egg proteins were silver stained: ␣-naphthylacetate esterase activity differentiated Þve of the six populations. RAPD-PCR data showed signiÞcant differentiation among populations, consistent with the hypothesis of three independent introductions of D. abbreviatus into Florida. Our data indicate that D. abbreviatus populations, once introduced, have generally remained in one locality with limited dispersal to new areas. KEY WORDS Diaprepes, esterase, population differentiation, random ampliÞed polymorphic DNA-polymerase chain reaction ADULT AND LARVAL stages of Diaprepes abbreviatus (L.) Electrophoretic banding patterns of isozymes have feed on leaves, roots, and fruit of Ͼ250 agronomic and been used to differentiate strains in insects (Singh and native host plants in Florida and several island nations Krishna 1982; Berlocher 1989; Terranova et al. 1990, of the Caribbean (Fennah 1942, Simpson et al. 1996). 1991). Random ampliÞed polymorphic DNA-poly- Since its introduction in 1964, D. abbreviatus has merase chain reaction (RAPD-PCR) analysis also has spread to 20 counties in Florida, where it currently been used for insect strain differentiation (Hunt and infests Ϸ66,420 ha (164,000 acres) (Anonymous 1997).
    [Show full text]
  • Curriculum Vitae Nico M
    Nico M. Franz – Vitae, February 2020 1 Curriculum Vitae Nico M. Franz Address Campus School of Life Sciences PO Box 874501 Arizona State University Tempe, AZ 85287-4501, USA Collection Alameda Building – Natural History Collections 734 West Alameda Drive Tempe, AZ 85282-4108, USA Collection – AB 145: (480) 965-2036 Fax: (480) 727-2203 Virtual E-mail: [email protected] Twitter: @taxonbytes BioKIC: https://biokic.asu.edu/ Education 1993 – 1996 Prediploma in Biology, University of Hamburg, Hamburg, Germany Undergraduate Advisor: Klaus Kubitzki 1996 Diploma Studies in Systematic Botany and Ecology, University of Ulm, Ulm, Germany Graduate Advisor: Gerhard Gottsberger 1996 – 1999 M.Sc. in Biology, University of Costa Rica, San José, Costa Rica Graduate Advisor: Paul E. Hanson 1999 Graduate Research Fellow, Behavioral Ecology, Smithsonian Tropical Research Institute (STRI), Balboa, Panama Research Advisor: William T. Wcislo 1999 – 2005 Ph.D. in Systematic Entomology, Cornell University, Ithaca, NY Graduate Advisor: Quentin D. Wheeler 2003 – 2005 Postdoctoral Research Fellow, National Center for Ecological Analysis and Synthesis, University of California at Sta. Barbara, Sta. Barbara, CA Postdoctoral Mentor: Robert K. Peet Languages English, German, Spanish (fluent); French, Latin, Vietnamese (proficient) Nico M. Franz – Vitae, February 2020 2 Faculty Appointments 2006 – 2011 Assistant Professor (tenure-track appointment), Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, PR 2011 – present Adjunct Professor, Department
    [Show full text]
  • EU Project Number 613678
    EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 7 - REPORT on Oranges and Mandarins – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Grousset F, Wistermann A, Steffen K, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Oranges and Mandarins – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/112o3f5b0c014 DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on ORANGES AND MANDARINS – Fruit pathway and Alert List 1. Introduction ............................................................................................................................................... 2 1.1 Background on oranges and mandarins ..................................................................................................... 2 1.2 Data on production and trade of orange and mandarin fruit ........................................................................ 5 1.3 Characteristics of the pathway ‘orange and mandarin fruit’ .......................................................................
    [Show full text]
  • Coleoptera: Curculionidae), with Special Reference to South American Taxa
    diversity Article A Combined Molecular and Morphological Approach to Explore the Higher Phylogeny of Entimine Weevils (Coleoptera: Curculionidae), with Special Reference to South American Taxa Adriana E. Marvaldi 1,*, María Guadalupe del Río 1,*, Vanina A. Pereyra 2, Nicolás Rocamundi 3 and Analía A. Lanteri 1 1 División Entomología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, CONICET, Paseo del Bosque s/n, La Plata B1900FWA, Argentina; [email protected] 2 Instituto Argentino de Investigaciones de Zonas Áridas, CONICET, C.C. 507, Mendoza 5500, Argentina; [email protected] 3 Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, CONICET, FCEFyN, Córdoba X5016GCA, Argentina; [email protected] * Correspondence: [email protected] (A.E.M.); [email protected] (M.G.d.R.) Received: 1 August 2018; Accepted: 20 August 2018; Published: 23 August 2018 Abstract: The Entiminae are broad-nosed weevils constituting the most diverse subfamily of Curculionidae, with over 50 tribes. We performed Bayesian and Maximum Parsimony combined phylogenetic analyses with the main objective of testing higher-level relationships and the naturalness of the major Neotropical and Southern South American (Patagonia and Andes) tribes, including some members from other regions. We compiled a data matrix of 67 terminal units with 63 Entiminae species, as well as four outgroup taxa from Cyclominae, by 3522 molecular (from nuclear 18S rDNA and 28S rDNA, and mitochondrial 16S rDNA and COI gene sequences) and 70 morphological characters. The resulting trees recover a clade Entiminae with a monophyletic Cylydrorhinini and Premnotrypes branching off early.
    [Show full text]
  • Diaprepes Abbreviatus</I> (Coleoptera: Curculionidae): Host
    POPULATION ECOLOGY Diaprepes abbreviatus (Coleoptera: Curculionidae): Host Plant Associations S. E. SIMPSON,l H. N. NIGG, N. C. COILE,2 AND R. A. ADAIR:! University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL .'3.'3850 Environ. Entollloi. 25(2): 333-349 (1996) ABSTRACT Diaprepes ahhreviatus (L.) is an insidious pest of citrus, sugarcane, and other economic crops of subtropical and tropical areas of the United States and several Caribbean island nations. Host plants associated with this pest, 157 genera, =270 species in 59 plant families, are listed. Plants that support egg deposition to adult include Citrus spp.; Arachis hypogal'a 1.., peanut; Sorghum hicolor L. (synonym: S. vulgare) sorghum; Sorghum hic%r L. ssp. him/or, guinea com; 7£a mays L., com; Eugenia uniflora L., Surinam-cherry; Dracaena draco (L.) L. dragon tree; Ipomoea hatata (L.) Lam., sweet potato; and Saccharum officinarl1lll L., sugarcane. More than 40 plant species, in 20 families, are associated with larval feeding. As a result of inadequate management strategies and a wide range of adult and larval food plants, D. abbreviatus can be considered a major long-term threat to the survival of several agronomic crops. KEY WORDS Diaprepes ahhreviatlls, host plant, citrus, sugarcane, corn, potato, peanut Diaprepes abbreviatlls (L.) (=the West Indian sug- ulatory and control measures to be effective, the arcane rootstalk borer weevil) has become an im- plant hosts of D. abbreviatlls must be identified. portant long-term pest of citrus and ornamental Otherwise, an overlooked hosl could allow endem- crops in Florida (Hall 1995).Since its introduction ic infestation.
    [Show full text]
  • Suppression of Pachnaeus Litus and Diaprepes
    Proc. Fla. State Hort. Soc. 107:90-92. 1994. SUPPRESSION OF PACHNAEUS LITUS AND DIAPREPES ABBREVIATUS (COLEOPTERA: CURCULIONIDAE) ADULT EMERGENCE WITH STEINERNEMA CARPOCAPSAE (RHABDITIDA: STEINERNEMATIDAE) SOIL DRENCHES IN FIELD EVALUATIONS R. C. Bullock mopathogens conducted with caged D. abbreviatus larvae, na University of Florida, IFAS tive 5. carpocapsae was found to dominate infected hosts. S. Agricultural Research and Education Center carpocapsae was present at 16-36% of citrus sites surveyed and 2199 South Rock Road, Fort Pierce, FL 34945-3138 accounted for 38-68% mortality of all caged larvae during the wet summer months (Beaver et al., 1983). Laboratory and R. W. Miller greenhouse studies confirmed pathogenicity of S. carpocapsae Biosys, Inc. to P. litus and D. abbreviatus larvae (Montes, et al., 1981; Ro 1057 East Meadow Circle man and Figueroa, 1985; Schroeder, 1987; Figueroa and Ro Palo Alto, CA 94303 man, 1990). In an initial trial, Schroeder (1990) documented 55% overall reduction of D. abbreviatus adult emergence for5 Abstract Soil drenches of the entomopathogenic nematode, months following a soil drench of 5 x 106 5. carpocapsae per Steinernema carpocapsae (Weiser), were tested for suppres tree. Downing et al. (1991) recorded a 45% reduction of D. sion of subterranean stages of the citrus root weevil, Pachnae- abbreviatus and a 32% reduction of P. opalus with the same us litus (Germar), and the West Indian sugarcane rootstalk rates of S. carpocapsae. borer, Diaprepes abbreviatus (L), in spring and fall trials in Fort Pierce, FL citrus groves. Water suspensions of S. carpoc Our trials were conducted to determine the field efficacy apsae (5 x 106) were applied to soil at the base of citrus trees.
    [Show full text]
  • MICROMITE® 2L EPA Reg
    TECHNICAL INFORMATION BULLETIN Restricted Use Pesticide. Due to toxicity to aquatic invertebrate animals. For retail sale to and use only by Certified Applicators, or persons under their direct supervision, and only for those uses covered by the Certified Applicator’s certification. GROUP 15 INSECTICIDE MICROMITE® 2L EPA Reg. No. 400-461 FIFRA Section 2(ee) Recommendation This recommendation is made as permitted by Section 2(ee) of FIFRA and has not been submitted to or approved by the U.S. Environmental Protection Agency. FOR USE AND DISTRIBUTION IN THE STATE OF CALIFORNIA ONLY. The addition of multiple pests in CITRUS FRUIT GROUP Insect Growth Regulator Not for Homeowner/Residential Use DIRECTIONS FOR USE Use information in accordance with Section 2(ee) of FIFRA. It is a violation of Federal Law to use this product in a manner inconsistent with its labeling. Read and follow all applicable directions for use, restrictions, worker protection standard requirements, and precautions on the EPA registered main label attached to the container of MICROMITE® 2L (EPA Reg. No. 400-461). 060617V072CA2ee Page 1 of 4 CITRUS FRUIT GROUP (Crop Group 10-10): Australian desert lime; Australian finger-lime; Australian round lime; Brown River finger lime; calamondin; citron; citrus hybrids; grapefruit; Japanese summer grapefruit; kumquat; lemon; lime; Mediterranean mandarin; mount white lime; New Guinea wild lime; orange, sour; orange, sweet; pummelo; Russell River lime; satsuma mandarin; sweet lime; tachibana orange; Tahiti lime; tangelo; tangerine (mandarin); tangor; trifoliate orange; uniq fruit; cultivars, varieties, and/or hybrids of these. APPLICATION PESTS RATE APPLICATION TIMING (fl oz/acre) Lepidopterous Miners: 20 Apply 20 fluid ounces of MICROMITE 2L per acre Citrus Leafminer when leaf flush is present and the oldest leaf is (CLM) (Phyllocnistis approximately one-quarter expanded, or when citrella) oviposition by citrus leafminer (CLM) is expected or seen, or when leaf mining is evident.
    [Show full text]
  • Part III. Pests of Selected Forest Tree Species
    PART III Pests of selected forest tree species PART III Pests of selected forest tree species 143 Abies grandis Order and Family: Pinales: Pinaceae Common names: grand fir; giant fir NATURAL DISTRIBUTION Abies grandis is a western North American (both Pacific and Cordilleran) species (Klinka et al., 1999). It grows in coastal (maritime) and interior (continental) regions from latitude 39 to 51 °N and at a longitude of 125 to 114 °W. In coastal regions, it grows in southern British Columbia (Canada), in the interior valleys and lowlands of western Washington and Oregon (United States), and in northwestern California (United States). Its range extends to eastern Washington, northern Idaho, western Montana, and northeastern Oregon (Foiles, 1965; Little, 1979). This species is not cultivated as an exotic to any significant extent. PESTS Arthropods in indigenous range The western spruce budworm (Choristoneura occidentalis) and Douglas-fir tussock moth (Orgyia pseudotsugata) have caused widespread defoliation, top kill and mortality to grand fir. Early-instar larvae of C. occidentalis mine and kill the buds, while late- instar larvae are voracious and wasteful feeders, often consuming only parts of needles, chewing them off at their bases. The western balsam bark beetle (Dryocoetes confusus) and the fir engraver (Scolytus ventralis) are the principal bark beetles. Fir cone moths (Barbara spp.), fir cone maggots (Earomyia spp.), and several seed chalcids destroy large numbers of grand fir cones and seeds. The balsam woolly adelgid (Adelges piceae) is a serious pest of A. grandis in western Oregon, Washington and southwestern British Columbia (Furniss and Carolin, 1977). Feeding by this aphid causes twigs to swell or ‘gout’ at the nodes and the cambium produces wide, irregular annual growth rings consisting of reddish, highly lignified, brittle wood (Harris, 1978).
    [Show full text]