Codename: Manganknolle
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Exploring How the Outer Space Treaty Will Impact American Commerce and Settlement in Space
S. HRG. 115–219 REOPENING THE AMERICAN FRONTIER: EXPLORING HOW THE OUTER SPACE TREATY WILL IMPACT AMERICAN COMMERCE AND SETTLEMENT IN SPACE HEARING BEFORE THE SUBCOMMITTEE ON SPACE, SCIENCE, AND COMPETITIVENESS OF THE COMMITTEE ON COMMERCE, SCIENCE, AND TRANSPORTATION UNITED STATES SENATE ONE HUNDRED FIFTEENTH CONGRESS FIRST SESSION MAY 23, 2017 Printed for the use of the Committee on Commerce, Science, and Transportation ( Available online: http://www.govinfo.gov U.S. GOVERNMENT PUBLISHING OFFICE 29–998 PDF WASHINGTON : 2018 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 VerDate Nov 24 2008 10:53 May 15, 2018 Jkt 075679 PO 00000 Frm 00001 Fmt 5011 Sfmt 5011 S:\GPO\DOCS\29998.TXT JACKIE SENATE COMMITTEE ON COMMERCE, SCIENCE, AND TRANSPORTATION ONE HUNDRED FIFTEENTH CONGRESS FIRST SESSION JOHN THUNE, South Dakota, Chairman ROGER F. WICKER, Mississippi BILL NELSON, Florida, Ranking ROY BLUNT, Missouri MARIA CANTWELL, Washington TED CRUZ, Texas AMY KLOBUCHAR, Minnesota DEB FISCHER, Nebraska RICHARD BLUMENTHAL, Connecticut JERRY MORAN, Kansas BRIAN SCHATZ, Hawaii DAN SULLIVAN, Alaska EDWARD MARKEY, Massachusetts DEAN HELLER, Nevada CORY BOOKER, New Jersey JAMES INHOFE, Oklahoma TOM UDALL, New Mexico MIKE LEE, Utah GARY PETERS, Michigan RON JOHNSON, Wisconsin TAMMY BALDWIN, Wisconsin SHELLEY MOORE CAPITO, West Virginia TAMMY DUCKWORTH, Illinois CORY GARDNER, Colorado -
China's Strategic Modernization: Implications for the United States
CHINA’S STRATEGIC MODERNIZATION: IMPLICATIONS FOR THE UNITED STATES Mark A. Stokes September 1999 ***** The views expressed in this report are those of the author and do not necessarily reflect the official policy or position of the Department of the Army, the Department of the Air Force, the Department of Defense, or the U.S. Government. This report is cleared for public release; distribution is unlimited. ***** Comments pertaining to this report are invited and should be forwarded to: Director, Strategic Studies Institute, U.S. Army War College, 122 Forbes Ave., Carlisle, PA 17013-5244. Copies of this report may be obtained from the Publications and Production Office by calling commercial (717) 245-4133, FAX (717) 245-3820, or via the Internet at [email protected] ***** Selected 1993, 1994, and all later Strategic Studies Institute (SSI) monographs are available on the SSI Homepage for electronic dissemination. SSI’s Homepage address is: http://carlisle-www.army. mil/usassi/welcome.htm ***** The Strategic Studies Institute publishes a monthly e-mail newsletter to update the national security community on the research of our analysts, recent and forthcoming publications, and upcoming conferences sponsored by the Institute. Each newsletter also provides a strategic commentary by one of our research analysts. If you are interested in receiving this newsletter, please let us know by e-mail at [email protected] or by calling (717) 245-3133. ISBN 1-58487-004-4 ii CONTENTS Foreword .......................................v 1. Introduction ...................................1 2. Foundations of Strategic Modernization ............5 3. China’s Quest for Information Dominance ......... 25 4. -
Explosive Content: Re-Examining the Mystery of Azgir Date Posted: 18-Aug-2014
Explosive Content: Re-examining the mystery of Azgir Date Posted: 18-Aug-2014 Publication: Satellite Imagery Analysis by Robert Kelley UPDATED Contents Key points Executive summary Imagery summary Directed Energy Weapons fears: 1970s-1980s Semipalatinsk spheres Journey to Azgir Misunderstandings US experience Connections to Iran, V. V. Danilenko and VNIITF Parchin Restarting Yava Long history of mistakes regarding explosives containment Acknowledgements Key points Kazakhstan is to resume industrial-diamond production using refurbished Soviet-era technology, including a giant explosive containment sphere near the village of Azgir, western Kazakhstan The rediscovery of the sphere and its industrial reuse is the latest instalment in its long story, as the Azgir sphere and its counterparts have been wrongly implicated in several intelligence estimates including its use in a Soviet directed energy weapon programme Proliferation fears were furthered by the spread of former Soviet scientists and their nuclear know-how, particularly when the IAEA reported similar containment vessels in Iran Executive summary In November 2013, Kazakhstan announced that it would begin producing artificial industrial diamonds through the compaction of graphite with high explosives. The site chosen is a huge 12m diameter steel sphere near the village of Azgir, western Kazakhstan. Originally built in 1980, the sphere was to contain large conventional-explosive events for the Arzamas-16 nuclear weapons laboratory (The All-Russian Research Institute of Experimental © 2018 IHS. No portion of this report may be reproduced, reused, or otherwise distributed in any form without prior written Page 1 of 11 consent, with the exception of any internal client distribution as may be permitted in the license agreement between client and IHS. -
Safeguards, Non-Proliferation and Peaceful Nuclear Energy
Chapter 8 SAFEGUARDS, NON-PROLIFERATION AND PEACEFUL NUCLEAR ENERGY © M. Ragheb 9/2/2021 “Stalemate, Hello, A strange game. The only winning move is not to play. How about a nice game of Chess?” War Games movie, 1983. “We live in a world where there is more and more information, and less and less meaning.” “It is dangerous to unmask images, since they dissimulate the fact that there is nothing behind them.” Jean Baudrillard, “Simulacra and Simulation” “I know not with what weapons World War III will be fought, but World War IV will be fought with sticks and stones.” Albert Einstein “For nothing can seem foul to those that win.” William Shakespeare "Simpler explanations are, other things being equal, generally better than more complex ones.” “Among competing hypotheses, the one that makes the fewest assumptions should be selected.” “It is futile to do with more things that which can be done with fewer.” Occam’s Razor Principle, William of Ockham, Medieval philosopher. “We are to admit no more causes of natural things than such as are both true and sufficient to explain their appearances. Therefore, to the same natural effects we must, so far as possible, assign the same causes.” Isaac Newton “Whenever possible, substitute constructions out of known entities for inferences to unknown entities.” Bertrand Russell “If a thing can be done adequately by means of one, it is superfluous to do it by means of several; for we observe that nature does not employ two instruments [if] one suffices.” Thomas Aquinas “If your enemy is secure at all points, be prepared for him. -
Lasers: Future of Military Defence Systems, by Surya Kiran
scholar warrior Lasers: Future of Military Defence Systems SURYA KIRAN SHARMA US President Ronald Reagan proposed an ambitious project in 1983, the Strategic Defence Initiative (SDI) that aimed to use land-based and space-based systems to protect the country from strategic nuclear ballistic missiles.1The programme was dubbed “Star Wars” for its expansive approach and application of space-based assets. The SDI intended to intersect Soviet ballistic missiles at various phases of their flight and direct laser beams from earth-based and space-based stations. Project Excalibur, part of SDI, was the research programme that conceived the development of a nuclear pumped x-ray laser as a directed energy weapon for ballistic missile defence. The objective was to direct x-rays towards the enemy missiles to heat their surface, causing them to vapourise explosively, destroying them or changing their course. Though the SDI was technologically infeasible for the time and critics questioned its military and political implications, the programme and, in particular, its Project Excalibur component, laid the groundwork for the application of lasers for military purposes. SDI was christened the Ballistic Missile Defence Organisation (BMDO) in 1993 and was later renamed the Missile Defence Agency in 2002. Three decades after its inception, SDI has become a reality with lasers being used as deterrents against ballistic missiles and other military targets. Laser, which stands for Light Amplification by Stimulated Emission of Radiation, emits light coherently that allows it to focus to a tight spot and stay narrow over long distances (called collimation). Compared to conventional 86 ä SPRING 2015 ä scholar warrior scholar warrior Laser based weaponry, lasers or directed-energy weapons have the weapon under-mentioned advantages. -
'It's Going to Happen': Is the World Ready for War in Space?
‘It’s going to happen’: is the world ready for war in space? The next theatre of conflict is likely to be in Earth’s orbit – and may have dire consequences for us all Stuart Clark Sun 15 Apr 2018 02.59 EDT hen you hear the phrase “space war”, it is easy to conjure images that could have come from a Star Wars movie: dogfights in space, motherships blasting into warp speed, planet-killing lasers and astronauts with ray guns. And just as easy to then dismiss the whole thing as W nonsense. It’s why last month’s call by President Trump for an American “space force”, which he helpfully explained was similar to the air force but for err… space, was met with a tired eye-roll from most. But there is truth behind his words. While the Star Wars-esque scenario for what a space war would look like is indeed far-fetched, there is one thing all the experts agree on. “It is absolutely inevitable that we will see conflict move into space,” says Michael Schmitt, professor of public international law and a space war expert at University of Exeter in the United Kingdom. Space has been eyed up as a military asset almost since the beginning of the space race. During the cold war, Russia and America imagined many kinds of space weapon. One in particular was called the Rods from Godor the kinetic bombardment weapon. It was a kind of unmanned space bomber that carried tungsten rods to drop on unsuspecting enemies. As they fell from orbit, the rods gathered so much speed that they delivered the explosive power of a nuclear bomb, but without the radioactive fallout. -
Ydinaseiden Käsikirja Janne Kemppi [email protected] Lähteet
Ydinaseiden käsikirja Janne Kemppi [email protected] Lähteet • Office of Technology Assessment: "Nuclear Proliferation and Safeguards", 1977 • https://www.iaea.org/sites/default/files/publications/magazines/bulletin/b ull59-2/5921617.pdf • https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1864web.pdf • Matthew Kershner: "Trafficking Nuclear and Radiological Materials And the Risk Analysis of Transnational Criminal Organization Involvement", USAF • https://scholarcommons.usf.edu/jss/vol9/iss1/9/ • https://www.world-nuclear.org/information-library/economic- aspects/economics-of-nuclear-power.aspx • http://scienceandglobalsecurity.org/archive/sgs19diakov.pdf • https://www.ctbto.org/specials/who-we-are/ • Stephen Scwartz: ”Atomic Audit – The Costs and Consequences of US Nuclear Weapons Since 1940”, 1996 • https://ee.stanford.edu/~hellman/resources/schlosser.pdf • "AD-A148 776": Proliferation of Small Nuclear Forces, 1983 • ”Death's Twilight Kingdom”, Volume 1 & 2, 2017-2020 • http://digitalcollections.library.cmu.edu/awweb/awarchive?type=file&item=7108 09 • https://arxiv.org/pdf/physics/0510071v5.pdf • http://repository.ias.ac.in/34472/1/34472.pdf • Arkin & al: “Nuclear Weapons Databook” kirjasarja… • https://cns-snc.ca/media/Bulletin/A_Miller_Heavy_Water.pdf • https://www.tandfonline.com/doi/pdf/10.2968/066004008 • https://fas.org/nuke/cochran/nuc_01019501a_138.pdf • https://fas.org/nuke/norris/ • https://www.everycrsreport.com/files/20011108_RL30425_bd3708552c1a 12028ee7db21f0efbd71ceabe5eb.pdf • http://fti.neep.wisc.edu/pdf/fdm840.pdf • https://inis.iaea.org/collection/NCLCollectionStore/_Public/35/032/35032 523.pdf • https://www.osti.gov/servlets/purl/4077785 • https://www.iaea.org/sites/default/files/publications/magazines/bulletin/b ull1-1/01102001314.pdf • Asevoimien rakenteen (ja suurvaltapolitiikan) kannalta on ensiarvoisen tärkeää miettiä onko sillä joukkotuhoaseita. -
China's Progress with Directed Energy Weapons by Richard D. Fisher, Jr
China’s Progress with Directed Energy Weapons By Richard D. Fisher, Jr. Senior Fellow, International Assessment and Strategy Center Testimony before the U.S.-China Economic and Security Review Commission hearing, “China’s Advanced Weapons,” Washington, D.C, February 23, 2017 Introduction For the United States, decades of technology investments in directed energy weapons—lasers, railguns and high power microwave—are finally nearing the point of providing “next generation” capabilities over potential enemies. Effective early defensive laser weapons plus defensive-offensive railguns could be deployed in the early 2020s, while multi-platform high power but compact laser weapons could be realized in the 2030s. However, it appears increasingly likely that any period of advantage from these weapons could be shorter than expected due to China’s large investments in energy weapons development. As in many areas of advanced military technology development, it is difficult to assess precisely China’s successes or progress toward the fielding of energy weapons. While Chinese military transparency has improved gradually in some areas, with few exceptions, it does not approach that of the U.S. in energy weapons.1 “Grey Sources” can provide some insights but they do not allow for a full understanding of potential threats. That said, China’s development of laser technology dates back to the early 1960s, aided by an early and enduring commitment by top Chinese political and military leaders. Today, early Chinese low-power electric Solid State Laser (SSL) “kill” weapons are being marketed as there are indications China is also developing more powerful laser weapons, showing interest in using them on land, naval, air and space platforms. -
Nuclear Weapon
Nuclear weapon “A-bomb” redirects here. For other uses, see A-bomb fare, both times by the United States against Japan near (disambiguation). the end of World War II. On August 6, 1945, the U.S. Army Air Forces detonated a uranium gun-type fission bomb nicknamed “Little Boy” over the Japanese city of Hiroshima; three days later, on August 9, the U.S. Army Air Forces detonated a plutonium implosion-type fission bomb codenamed "Fat Man" over the Japanese city of Nagasaki. The bombings resulted in the deaths of approximately 200,000 civilians and military personnel from acute injuries sustained from the explosions.[3] The ethics of the bombings and their role in Japan’s surrender remain the subject of scholarly and popular debate. Since the atomic bombings of Hiroshima and Nagasaki, nuclear weapons have been detonated on over two thou- sand occasions for the purposes of testing and demon- stration. Only a few nations possess such weapons or are suspected of seeking them. The only countries known to have detonated nuclear weapons—and acknowledge pos- sessing them—are (chronologically by date of first test) the United States, the Soviet Union (succeeded as a nu- clear power by Russia), the United Kingdom, France, the People’s Republic of China, India, Pakistan, and North Korea. Israel is also believed to possess nuclear weapons, though in a policy of deliberate ambiguity, it does not acknowledge having them. Germany, Italy, Turkey, The mushroom cloud of the atomic bombing of the Japanese city Belgium and the Netherlands are nuclear weapons sharing [4][5][6] of Nagasaki on August 9, 1945 rose some 11 miles (18 km) above states. -
Poročilo O Delu 2019 Annual Report 2019 - 2 - Poročilo O Delu 2019 Annual Report 2019
Poročilo o delu 2019 Annual report 2019 - 2 - Poročilo o delu 2019 Annual report 2019 Ljubljana 2020 Poročilo o delu 2019 / Annual report 2019 Izdal / Issued by Kmetijski inštitut Slovenije / Agricultural Institute of Slovenia Hacquetova ulica 17 SI-1000 Ljubljana www.kis.si Urednika / Editors Andrej Simončič, Ela Žilič Prevajanje / Translation Sebastijan R. Maček in delavci KIS / and AIS employees Lektoriranje za angleški jezik / English language editoring Dean J. DeVos in delavci KIS / and AIS employees Fotografije / Photos arhiv KIS / Archive AIS Fotografija na naslovnici / Cover photo Patent WO2019063101A1; New bio-pesticides for controlling plant pests Koruzni hrošč (Diabrotica v. virgifera) objeda listje koruze v okviru preskušanja toksičnosti egerolizinskih proteinov izoliranih iz bukovega ostrigarja. / Western corn rootworm (Diabrotica v. virgifera) feeding on maize leaves in toxicity assessment of aegerolysin proteins isolated from Pleurotus mushrooms. Oblikovanje / Graphic design AV Studio d.o.o. Ljubljana 2020 - 2 - K M E T I J S K I I N Š T I T U T S L O V E N I J E — P O R O Č I L O O D E L U 2 0 1 9 / AGRICULTURAL INSTITUTE OF SLOVENIA - ANNUAL REPORT 2019 06 Uvodna beseda direktorja Preface by the director 1 09 Kmetijski inštitut Slovenije v letu 2019 Agricultural Institute of Slovenia in 2019 1.1 10 Organiziranost Organisation 1.2 12 Zaposleni Vsebina Staff 1.3 13 Contents Poslovanje Financial operations 1.4 16 Sistemi kakovosti Quality systems 1.5 17 Raziskovalni programi in projekti Research programmes and projects 1.6 -
2. Development of Laser Systems
£&& JAERI-CONF 95-005 ^•x—A^^L-4-%- f \JAER1\ S Vol.1 JAERI-Conf—95-005 (v<,l) JP9507237 Proceedings of the 6th International Symposium on Advanced Nuclear Energy Research INNOVATIVE LASER TECHNOLOGIES tfM#*. BteV' ii ' Xi :•*!& list &sm JJ V,\ Energy Society of Japan 本レポートは,日本原子力研究所が不定 J~l に公'F IJ している研究報告書です。 入手の間合わせは,日本原子力研究所技1j:汁;')'報部情報資料課(干A*eo|UI^h*«, H*IR^*Bf5fiRfrttffiff/*ffl5tS#*e^» (T319-319-11 H 3&WCW8WSBJ~だ城県別 IJ 可郎東K 海村)あて.お I担し他しください。なお,このほかに財団法人原子力弘前会資料センター (干(T319-1319-11 1 茨域県郎珂3E«I&WJSIIIBIK»i郡東海村日本原子力研究所内)で佼写による実質頒布をおこなってW B -#m-Mmrm) -efs^c «t a§£««#£ i- £ o -c おります。fciJii". This This This report report is is issued issue d irregularly. irregularly. Inquiries Inquiries Inquiries about abou t availability availability of of the the reports reports should should bc be addressed addressed to to Information Information Division. Division, Department Department Department of of Technical Technical Information ,, JapanJapa n AtomicAtomic Energy Energy Research Research Institute ,, Tokai -・ mura. mura. mura, Naka-gun. Naka-gun , Ibaraki-kcn Ibaraki-kcn 319319-H・11. , Japan. Japan. 。© Japan Japan Atomic Atomic Encrgy Energy Rcscarch Researc h Institutc. Institute, 1995 I995 Publishcd Publishcd Published by by JAERI.JAERl, March March I991995 5 編集兼発行 日本原子力研究所 印en 刷m いばらさ印刷附^ ix ^ # f-n m m ^ "-*" — -»• • - • •_«•_. W L ••. •• •. • ••••'•;:,•</»,'• ^»es The 6th Inlemalional Symposium on Advanced Nuclear Energy Research "INNOVATIVE LASER TECHNOLOGIES IN NUCLEAR ENERGY" March 23 (Wed), 1994 OPENING ADDRESS Mr. S. Shimomura (President of the JAERI, Japan) Conference Room (Zuiun-no-ma) Honorary Invited Lecture 1 "Lasers in perspective" Prof. A. L. Schawlow (Stanford Univ. -
Nuclear Weapons Databook
Nuclear Weapons Databook Volume I1 US. Nuclear Warhead Production Nuclear Weapons Databook Volume I1 U.S. Nuclear Warhead Production Thomas B. Cochran, William M. Arkin, Robert S. Norris, and Milton M. Hoenig A book by the Natural Resources Defense Council, Inc. BALLINGER PUBLISHING COMPANY Cambridge, Massachusetts A Subsidiary of Harper &Row,Publishers, Inc Copyright Q 1987 by the Natural Resources Defense Council, Inc All rights reserved No part of this publication may be reproduced, stored in a retrieval system, or trans- mitted in any form or by any means, electronic, mechanical, photocopy, recording or otherwise, without the prior written consent of the publisher International Standard Book Number: 0-88730-124-X (CL) 0-88730-125-8 (PB) Library of Congress Catalog Card Number: 82-24376 Printed in the United States of America Library of Congress Cataloghgin-Publication Data (Revised for vol 2) Cochran, Thomas B Nuclear weapons databook "A book by the Natural Resources Defense Council, Inc " Includes bibliographical references and indexes Contents: v 1 U S nuclear forces and capabilities-v 2 U S nuclear warhead production 1 Nuciear weapons I Arkin, William M I1 Natural Resources Defense Council I Title U264 C6 1984 355 8'25119 82-24376 ISBN 0-88410-172-X (v 1) ISBN 0-88410-178-8 (pbk : v 1) ISBN 0-88730-124-X (v. 2) ISBN 0-88730-125-8 (pbk : v 2) About the Authors About the Authors Thomas B Cochran is a Senior Staff Scientist and gic Affairs (Washington, DC: IPS, 1981), SlOP: The Director of the Nuclear Weapons Databook Project at the