Apports D'une Approche Combinant Mesures in Situ Et Télédétection Optique Pour Le Suivi Des Glaciers De Montagne

Total Page:16

File Type:pdf, Size:1020Kb

Apports D'une Approche Combinant Mesures in Situ Et Télédétection Optique Pour Le Suivi Des Glaciers De Montagne Apports d'une approche combinant mesures in situ et t´el´ed´etectionoptique pour le suivi des glaciers de montagne : cas des Andes tropicales et des Alpes occidentales Antoine Rabatel To cite this version: Antoine Rabatel. Apports d'une approche combinant mesures in situ et t´el´ed´etectionoptique pour le suivi des glaciers de montagne : cas des Andes tropicales et des Alpes occidentales. Interfaces continentales, environnement. Universit´eGrenoble Alpes, 2015. <tel-01230519> HAL Id: tel-01230519 https://tel.archives-ouvertes.fr/tel-01230519 Submitted on 18 Nov 2015 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License Diplôme d'Habilitation à Diriger des Recherches Spécialité : Glaciologie Arrêté ministériel du 23 novembre 1988 relatif à l'habilitation à diriger des recherches, modifié par les arrêtés des 13 février 1992, 13 juillet 1995 et 25 avril 2002 Présenté par Antoine RABATEL Laboratoire de Glaciologie et Géophysique de l’Environnement École Doctorale « Terre, Univers, Environnement » Apports d’une approche combinant mesures in situ et télédétection optique pour le suivi des glaciers de montagne : cas des Andes tropicales et des Alpes occidentales Présentation publique le 29 avril 2015, devant le jury composé de : Mme Frédérique REMY Directeur de Recherche CNRS, Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, Toulouse – France. Rapporteur Mr Michael ZEMP Directeur du World Glacier Monitoring Service, Université de Zurich, Zurich – Suisse. Rapporteur Mr Martin HOELZLE Professeur à l’Université de Fribourg, Fribourg – Suisse. Rapporteur Mr Michel FILY Professeur à l’Université J. Fourier – Grenoble 1, Directeur de l’Observatoire des Sciences de l’Univers de Grenoble, Grenoble – France. Examinateur Mr Pierre RIBSTEIN Professeur à l’Université Pierre et Marie Curie – Paris 7, Paris – France. Examinateur Université Joseph Fourier / Université Pierre Mendès France / Université Stendhal / Université de Savoie / Grenoble INP Avant-propos Avant-propos L’Habilitation à Diriger des Recherches (HDR), c’est un « passage obligé » pour le chercheur/enseignant-chercheur français s’il souhaite : évoluer dans sa carrière vers des fonctions de Directeur de Recherche, de Professeur d’Université ou de Physicien (dans le cas du CNAP) ; encadrer des doctorants sans faire appel à un « prête nom » plus ou moins investi dans le travail du doctorant ; servir la communauté de son laboratoire dans la mesure où (au moins à Grenoble) le nombre d’HDR dans un laboratoire conditionne le nombre de bourses de thèse ministérielles auquel le laboratoire peut prétendre ! La forme et le contenu de l’HDR varient énormément d’une personne à l’autre, il n’existe pas de « canevas type », et chaque auteur est par conséquent libre dans la présentation du document. Ceci étant, écrire son HDR, c’est prendre le temps de faire un point sur sa carrière, l’avancée de ses travaux, l’évolution que l’on souhaite leurs donner dans les années à venir. C’est en partie un travail de synthèse, et en partie une réflexion prospective à un moment donné, dans un contexte donné. La recherche académique, si tant est que cela ait été vrai un jour, ne s’effectue aujourd’hui plus seul. Chaque résultat nouveau est le fruit d’un travail collectif, alliant des compétences multiples et variées, pouvant parfois survenir après des années d’efforts, souvent entrepris par des pairs. Je n’échappe évidement pas à la règle, et j’en profite ici pour rendre hommage à Pierre Ribstein et Bernard Francou pour avoir initié le programme de suivi glaciologique dans les Andes tropicales au début des années 1990, programme dont je participe aujourd’hui à assurer la pérennité. Je souhaite aussi remercier Louis Reynaud pour m’avoir « guidé » durant mes premiers pas de chercheur et m’avoir mené sur la piste de l’utilisation de la ligne de neige pour reconstruire le bilan de masse glaciaire. Je tiens également à souligner que les résultats présentés dans ce document n’auraient vraisemblablement pas été acquis dans les mêmes temps et/ou dans les mêmes conditions sans : les collègues du LGGE et du LTHE (notamment ceux de l’équipe CHyC) avec lesquels je travaille depuis de nombreuses années (notamment Christian Vincent, Delphine Six, Jean-Pierre Dedieu, les PatrickS : Wagnon et Ginot, Thomas Condom, Jean-Emmanuel Sicart, Anne Letréguilly, Yves Arnaud, Vincent Favier, Fabien Gillet- Chaulet) ; les personnels techniques du LGGE et du LTHE (notamment Romain Biron et Luc Piard) ; les collègues d’autres instituts en France ou à l’étranger (notamment Marie Dumont, i Avant-propos Emmanuel Thibert, Nicolas Eckert, Vincent Jomelli, Olivier Dangles, Matthias Vuille, Philip Deline et particulièrement les partenaires des pays des Andes tropicales comme Alvaro Soruco, Jesus Gomez, Luzmila Davila, Bolivar Caceres, Luis Maisincho, Marcos Villacis, Remigio Galarraga, Jorge-Luis Ceballos) ; les étudiants de Doctorat et de Master ainsi que les CDD/Post-doc que j’ai encadrés ou avec lesquels j’ai collaboré (dont particulièrement Ruben, Marion, Edwin, Maële, Marie, Adrien, Brad, Fanny, Guillaume et Olivier) ; les Volontaires Internationaux qui ont œuvrés en Bolivie (notamment Benjamin et les MaximeS) ; et finalement, les personnels des services administratif et informatique du LGGE et du LTHE pour leurs actions au quotidien. J’adresse également mes sincères remerciements aux trois rapporteurs qui ont accepté de réviser ce document : Frédérique Rémy, Michael Zemp et Martin Hoezle, ainsi qu’aux autres membres du jury : Michel Fily et Pierre Ribstein. Finalement, merci à Christian et Bernard pour leurs relectures et leurs conseils avisés, et MERCI à Hélène pour… la liste serait trop longue ! ii Sommaire Sommaire Avant-propos .......................................................................................................................... i Introduction .......................................................................................................................... 1 Les enjeux de l’étude des glaciers de montagne.......................................................................... 1 Déroulement de mon parcours scientifique ................................................................................ 3 Organisation du document ........................................................................................................... 4 Chapitre 1 De l’observation de terrain à la télédétection ........................................................ 5 1.1. Stratégies et méthodes d’observation de terrain ............................................................ 8 1.1.1. Le SO/SOERE GLACIOCLIM et sa composante Andine .............................................. 8 1.1.2. GLACIOCLIM-Andes et les réseaux d’observation des Andes tropicales ................ 13 1.2. Stratégies et méthodes d’observation par télédétection optique ................................. 16 1.2.1. Les apports de la télédétection optique en glaciologie ......................................... 16 1.2.2. L’usage de la télédétection optique dans GLACIOCLIM ......................................... 17 1.2.3. L’initiative internationale GLIMS ............................................................................ 19 1.3. Quelles évolutions des observations dans GLACIOCLIM peut-on envisager ? ............... 20 1.3.1. Maintien du réseau d’observation ......................................................................... 20 1.3.2. Développement des mesures topographiques à très haute résolution ................. 22 1.3.3. Systématisation de l’usage des images satellites à très haute résolution spatiale et/ou temporelle ............................................................................................................... 23 1.3.4. Mesure des vitesses d’écoulement par télédétection optique .............................. 24 Chapitre 2 Variations glaciaires depuis le Petit Age Glaciaire ................................................ 25 2.1. Contexte de ces travaux ................................................................................................. 25 2.1.1. Pourquoi étudier les fluctuations glaciaires au cours des derniers siècles ? ......... 25 2.1.2. Dans quel cadre s’inscrivent ces travaux ? ............................................................. 26 2.2. Le Petit Age Glaciaire a-t-il existé dans les Andes de Bolivie ? ....................................... 27 iii Sommaire 2.2.1. Travaux antérieurs à ma thèse de Doctorat .......................................................... 27 2.2.2. Principaux résultats obtenus dans le cadre de ma thèse de Doctorat. ................. 28 2.3. Quelles informations paléoclimatiques tirer de ces variations glaciaires ? ................... 32 2.3.1. Cas des Andes de Bolivie ........................................................................................ 32 2.3.2. Qu’en est-il à l’échelle des Andes tropicales ? ......................................................
Recommended publications
  • Chronologie Et Interpretation
    CHRONOLOGIE ET INTERPRETATION PALEOCLIMATIQUE DES FLUCTUATIONS DES GLACIERS DANS LES ANDES DE BOLIVIE (16S) DEPUIS LE MAXIMUM DU PETIT AGE GLACIAIRE (17EME SIECLE) Antoine Rabatel To cite this version: Antoine Rabatel. CHRONOLOGIE ET INTERPRETATION PALEOCLIMATIQUE DES FLUCTUATIONS DES GLACIERS DANS LES ANDES DE BOLIVIE (16S) DEPUIS LE MAXIMUM DU PETIT AGE GLACIAIRE (17EME SIECLE). Autre. Universit´eJoseph- Fourier - Grenoble I, 2005. Fran¸cais. <tel-00012124> HAL Id: tel-00012124 https://tel.archives-ouvertes.fr/tel-00012124 Submitted on 12 Apr 2006 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. UNITE DE RECHERCHE GREAT-ICE Institut de Recherche pour le Développement LABORATOIRE DE GLACIOLOGIE ET GEOPHYSIQUE DE L’ENVIRONNEMENT UMR5183 Centre National de la Recherche Scientifique Université Joseph Fourier – Grenoble I 54, rue Molière – Domaine Universitaire BP96 38402 SAINT-MARTIN-D’HERES Cedex (France) ________________________________________ CHRONOLOGIE ET INTERPRETATION PALEOCLIMATIQUE DES FLUCTUATIONS DES GLACIERS DANS LES ANDES DE BOLIVIE (16°S) DEPUIS LE MAXIMUM DU PETIT AGE GLACIAIRE (17EME SIECLE) ________________________________________ Antoine RABATEL Thèse de doctorat de l’Université Joseph Fourier – Grenoble I (Arrêtés ministériels du 5 juillet 1984 et 30 mars 1992) Spécialité : Géographie Physique Date de soutenance : 23 septembre 2005 Composition du jury : M.
    [Show full text]
  • Cordillera Quimsa Cruz, Bolivia
    EVELIO ECHEVARRiA Cordillera Quimsa Cruz, Bolivia ere it not for the intervening bulk of Illimani, a range of rock and ice W peaks up to 5800m would be visible from the southern streets of La Paz. Illimani blocks out most of the mountain scenery south of the highest capital city in the world, so that barely a distant glimpse of the attractive Cordillera Quimsa Cruz can be discerned. Only when one travels south of the city for some 50km do the silvery Nevados that form the central part of the range come fully into view. The Cordillera Quimsa Cruz is the continuation of Bolivia's Cordillera Real and begins at the Asiento pass, just south of Illimani. It extends roughly in a north to south-east direction for some 40km and comes to an end in another wide pass, the Paso Tres Cruces, which separates it from the much smaller Cordillera Santa Vera Cruz. -The Quimsa Cruz offers very pleasant mountaineering and is the most easily accessible range in Bolivia, sometimes enabling climbers to have their high camp in place the same day as they have left La Paz. This range has been treated fairly well in international mountaineering writing, and perhaps even better in the short notes appearing in many climbingjournals. However, all this information is widely scattered and the range itself has received no recent biography. The last known ones date back to 1913 and 1932. Furthermore, part of the available information about the range is either incorrect or has not been brought up to date. In this short monograph I have attempted to unify and modernise the existing information, making use of my own first-hand knowledge of the range, derived from having climbed there in nine different seasons.
    [Show full text]
  • Terrazas Precolombinas Taqanas Quillas Y Wachus
    Segunda parte Tecnologías ancestrales y reducción de riesgos del cambio climático Terrazas precolombinas Taqanas Quillas y Wachus 5 EDUARDO CHILON CAMACHO SEGUNDA PARTE Terrazas agrícolas precolombinas: taqanas, quillas y wachus Antecedentes En épocas ancestrales, los pobladores del espacio andino-amazónico de Bo- livia à lograron un apropiado y excelente acceso a los recursos naturales, en unmedio geográfico difícil, agreste, heteǂ rogéneo y contrastante. Redujeron la incertidumbre de los riegos del cambio climático a través de la creación y el usoadecuado de tecnologías ancestrales andino-amazónicas, de la ingeniería genética y otras alternativas tecnológicas, lo que les permitió preservar las bases productivas y una variedad de plantas y animales, adaptadas a cada uno de losúltiples pisos ecológicos, que ofrecía y ofrece la geografía del país, asegurandoØǂ cuada de alimentos. Las impresionantes terrazas agrícolas construidas en diversos ecosistemas del país, son una prueba fehaciente del trabajo científico de nuestras culturas an- cestrales. Las terrazas agrícolas precolombinas presentes en Bolivia, denomina- das taqanas, quillas y wachus son, actualmente, reconocidas como las únicas infraestructuras jamás inventadas por el hombre, para acceder a los ecosistemas de alta montaña, evitando la erosión de los suelos. La actual superficie bajo cultivo del país, estimada en 2.374.605 hectáreas, incluyendo cultivos industriales, no industriales y las tierras en descanso, po- dría incrementarse en un 25%, con sólo recuperar el 70% del total de las terra- zas agrícolas precolombinas abandonadas en diferentes ecosistemas del país. Lamentablemente persiste el prejuicio de los impulsores de la agricultura moderna en señalar como causa de la escasa productividad agropecuaria nacio- nal, a la permanencia de tecnologías ancestrales que estarían condenadas a de - 83 saparecer.
    [Show full text]
  • Mountaineering in the Andes by Jill Neate Bolivia RGS-IBG Expedition Advisory Centre, 2Nd Edition, May 1994
    Taken from Mountaineering in the Andes by Jill Neate Bolivia RGS-IBG Expedition Advisory Centre, 2nd edition, May 1994 BOLIVIA The Andes of Bolivia follow the general north-south line of the main axis and are grouped into two cordilleras, Occidental and Oriental, the latter being more extensive and important, containing as it does one of South America’s finest ranges, the Cordillera Real. The Cordillera Occidental is a continuation of the Peruvian Cordillera Occidental and, for the most part, marks the boundary between Bolivia and Chile. The Cordillera Oriental enters Bolivia through the Cordillera de Apolobamba, north of Lake Titicaca, and continues in a north-west to south-east direction through the Cordillera Real, Cordillera de Quimsa Cruz, Sierra Santa Vera Cruz, and the Cordillera de Cocapata, finally stretching in a great crescent of lesser ranges some 600 kilometres in length around the Bolivian cities of Sucre and Potos¡. Both cordilleras merge into the cordilleras bordering the Puna de Atacama in the north of Chile and Argentina. Between the two Bolivian cordilleras lies the Altiplano, one of the world’s highest interior drainage basins. It is approximately 800 kilometres long by 160 kilometres wide and slopes gently from c.3800 metres at Lake Titicaca to c.3700 metres at Lake Poopo, and a little lower at the Salar de Uyuni. The Altiplano is nearly as high as the Tibetan plateau but only about one tenth the size: it is also similarly cold, dry and barren. Its eastern edge is well-defined by the sharp rise and line of the Cordillera Oriental, but the western edge is less clear-cut, with irregular hilly areas formed of volcanic debris from the coastal cordillera.
    [Show full text]
  • Keith R. Long1, Jane S. Ciener2, Fernando Urquidi-Barrau3 And
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY MINERAL RESOURCE BIBLIOGRAPHY FOR BOLIVIA by Keith R. Long1 , Jane S. Ciener2 , Fernando Urquidi-Barrau3 and Waldo Avila Salinas4 Open-File Report 89-526 Prepared in cooperation with the Bolivian Ministry of Mines and Metallurgy and the U.S. Trade and Development Program This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1989 1 Center for Inter-American Mineral Resource Investigations, 210 E. 7th Street, Tucson, AZ 85705. 2 Box 25046, Denver Federal Center, MS 902, Denver, CO 80225. 3 U.S. Embassy, La Paz, Bolivia. 4 Servicio Geologico de Bolivia, La Paz, Bolivia INTRODUCTION This bibliography is a compilation of references useful for a mineral resource assessment of Bolivia. In its present form it is a nearly exhaustive guide to the published literature on the mineral resources, economic geology and areal geology of Bolivia. References pertaining to mineralogy, geochemistry, geophysics, stratigraphy, structural geology, and tectonics that are relevant to a study of Bolivian mineral resources are also included. An attempt has been made to include as much unpublished literature as possible, such a theses and company reports, but the compila­ tion of these is known to be incomplete. A number of references concerning the economic geology of south­ east Peru and northwest Argentina have been included as these areas contain the northern and southern extensions of the Bolivian metalliferous belts.
    [Show full text]
  • 2010 Bolivia, Quimsa Cruz Range
    The dawn photos on the previous page are of Mt. Whitney from North KR Fork Trail, the team are beside South Lake and the camp site is at Whitney. The other photos are of Bristle-cone Pines, an unnamed wild flower and a scene described as something from the wild west, backing up the claims of the plaque shown here. The final photograph is one of the local inhabitants - a rattlesnake. AB Photographs throughout the report are by # Tim (TJ), Adrian (AB) and Ken (KR) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ BOLIVIA, QUIMSA CRUZ - AUG A report of the YRC trekking expedition to the small Quimsa Cruz range of 5000+m peaks a day's drive from Bolivia's principal city, La Paz. Following a week of acclimatisation tourism the party of seven completed their trek during a week in mid August 2010. Introduction Over the last forty years or so the Club and its members have made several successful trips to the Bolivian Andes with ascents and treks in the Cordillera Apolobamba, Cordillera Real and the Yungas, Cordillera Cocapata and the full length of the Cordillera Occidental. The remaining significant mountain group, the Cordillera Quimsa Cruz appeared overdue a visit. Interest in such a trip was aroused among both rock climbers and mountain trekkers though the former were already committed to a trip elsewhere in the Americas this season. The Quimsa Cruz The Quimsa Cruz range is part of the Cordillera Oriental which runs in a line to the north and east of the alitplano. The Cordilleras Apolobamba and Real form the northern part of the line, close to and north of La Paz with Cerro Illimani marking their southern limit.
    [Show full text]
  • The Timing and Magnitude of Mountain Glaciation in the Tropical Andes
    JOURNAL OF QUATERNARY SCIENCE (2008) 23(6-7) 609–634 Copyright ß 2008 John Wiley & Sons, Ltd. Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/jqs.1224 The timing and magnitude of mountain glaciation in the tropical Andes JACQUELINE A. SMITH,1* BRYAN G. MARK2 and DONALD T. RODBELL3 1 Department of Physical and Biological Sciences, The College of Saint Rose, Albany, New York, USA 2 Department of Geography, The Ohio State University, Columbus, Ohio, USA 3 Geology Department, Union College, F. W. Olin Center, Schenectady, New York, USA Smith, J. A., Mark, B. G. and Rodbell, D. T. 2008. The timing and magnitude of mountain glaciation in the tropical Andes. J. Quaternary Sci., Vol. 23 pp. 609–634. ISSN 0267-8179. Received 18 June 2007; Revised 26 February 2008; Accepted 27 May 2008 ABSTRACT: The Andes of Ecuador, Peru and Bolivia host the majority of the world’s tropical glaciers. In the tropical Andes, glaciers accumulate during the wet season (austral summer) and ablate year- round. Precipitation is delivered mainly by easterlies, and decreases both N–S and E–W. Chronological control for the timing of glacial advances in the tropical Andes varies. In Ecuador, six to seven advances have been identified; dating is based on radiocarbon ages. Timing of the local Last Glacial Maximum (LGM) and the existence of Younger Dryas advances remain controversial. In Peru, local variability in glaciation patterns is apparent. Surface exposure dating in the Cordillera Blanca and Junin Plain suggests that the local LGM may have been early (30 ka), although uncertainties in age calculations remain; the local LGM was followed by a Lateglacial readvance/stillstand and preceded by larger glaciations.
    [Show full text]