Role of Exopolymeric Substances in Biofilm Formation on Dairy Separation Membranes Nuria Garcia-Fernandez South Dakota State University

Total Page:16

File Type:pdf, Size:1020Kb

Role of Exopolymeric Substances in Biofilm Formation on Dairy Separation Membranes Nuria Garcia-Fernandez South Dakota State University South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Theses and Dissertations 2016 Role of Exopolymeric Substances in Biofilm Formation on Dairy Separation Membranes Nuria Garcia-Fernandez South Dakota State University Follow this and additional works at: https://openprairie.sdstate.edu/etd Part of the Dairy Science Commons Recommended Citation Garcia-Fernandez, Nuria, "Role of Exopolymeric Substances in Biofilm Formation on Dairy Separation Membranes" (2016). Theses and Dissertations. 958. https://openprairie.sdstate.edu/etd/958 This Dissertation - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. ROLE OF EXOPOLYMERIC SUBSTANCES IN BIOFILM FORMATION ON DAIRY SEPARATION MEMBRANES BY NURIA GARCIA-FERNANDEZ A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy Major in Biological Sciences Specialization in Dairy Science South Dakota State University 2016 iii To my family. iv ACKNOWLEDGEMENTS This investigation was completed at the Department of Dairy Science of South Dakota State University under the co-guidance of Drs. Ashraf Hassan and Sanjeev Anand. I want to acknowledge the Midwest Dairy Research Center and the Agricultural experiment station of SDSU for sponsoring my assistantship and for funding this project. I would like to gratefully and sincerely thank Dr. Ashraf Hassan, for giving me the opportunity to join his group and starting this investigation, his teaching about biofilms and exopolysaccharides was generous, always providing stimulating challenges, and inspiring me to chase original paths without fear to fail or make mistakes. I also want to express my appreciation to Dr. Sanjeev Anand, for always having his door open for my questions, and his guidance during my beginning stages providing new ideas and thoughts on my biofilm research work, and during final stages of compilation, and writing this dissertation. I thank Dr. Lloyd Metzger and Dr. Vikram Mistry for participating in my Advisory Committee, challenging me with technical and philosophical questions and interpretations that enhanced my critical thinking. I am also grateful for the advice received by Dr. Fathi Halaweish on analytical methods for characterization of exopolymeric material, and protein purification. I thank my lab mates for making lab work very enjoyable. It sure was fun to get to know so many international cultures and traditions. v Lastly but by no means least, I thank my dear husband, Fernando, for his unconditional support and encouragement throughout this time without which this research would not have been completed. vi CONTENTS ABSTRACT xi CHAPTER 1. INTRODUCTION AND BACKGROUND INFORMATION 1 1. Dairy processing membranes 1 2. The problem of biofilms on filtration membranes 3 3. Mechanisms of bacterial adhesion 5 3.1 Cell / substrate surface characteristics 5 3.2 Biopolymers as adhesives 7 4. EPS producing cultures in the dairy industry 8 5. Slime-producing endospore forming bacilli in the dairy industry 9 6. Characterization of microbial exopolymeric substances (EPS) 12 6.1 Methods of isolation and purification of bacterial EPS 12 6.2 Methods of analysis of bacterial EPS 14 6.2.1 Analysis of total carbohydrate content and total protein content of EPS 14 6.2.2 Monosaccharide analysis 15 6.2.3 Amino acid analysis 18 7. Control strategies for biofilm formation of RO membranes 19 7.1. Cleaning-in-place procedures (CIP) 19 7.2. Antimicrobial approach to inactivate the embedded cells 21 7.3. Enzymatic degradation of the biofilm matrix 22 CHAPTER 2. ROLE OF EXOPOLYSACCHARIDES PRODUCED BY DAIRY STARTER CULTURES IN FORMATION OF WHEY CONCENTRATION MEMBRANE BIOFILMS 24 Abstract 24 Introduction 25 Materials and methods 27 Source of EPS producing bacteria and other cultures 27 Selection of the EPS(−) mutants 27 vii Preparation of RO membranes for in vitro biofilm studies 28 Study of attachment and biofilm formation 29 Microscopic observations 29 Transmission Electron Microscopy (TEM) observation of bacterial cell surface structures. 30 Confocal Laser Scanning Microscopy (CLSM) observation of bacterial capsules 30 Scanning Electron Microscopy (SEM) observations of biofilms on RO membranes. 31 Cell surface hydrophobicity 31 Zeta-potential of bacterial cells 32 Influence of EPS producing cultures on biofilm formation by potential food pathogens 33 Effects of surfactants on cell attachment and biofilm formation 33 Statistical analysis 34 Results 35 Study of attachment and biofilm formation 35 Cell surface hydrophobicity and charge 35 Microscopic observations 36 Influence of EPS producing cultures on biofilm formation by potential food pathogens 37 Effects of surfactants on cell attachment and biofilm formation 37 Discussion 38 Evaluation of attachment and biofilm formation as affected by EPS production 38 Influence of EPS on biofilm formation by potential food pathogens 39 Role of hydrophobicity on cell attachment and biofilm formation by EPS producing bacteria 40 Conclusions 42 Tables and Figures 43 viii CHAPTER 3. INFLUENCE OF SLIME PRODUCED BY BACILLUS SPP. ON MEMBRANE BIOFILM FORMATION 54 Abstract 54 Introduction 55 Materials and methods 56 Source of bacterial cultures 56 Selection of slime-negative mutants 57 Attachment and biofilm development on RO membranes 58 Evaluation of biofilm formation 58 Study of the role of slime production on biofilm formation 59 Modification of cell surface hydrophobicity by surfactants 60 Characterization of the slime of Bacillus strains 61 Statistical analysis 63 Results 63 Attachment and biofilm formation by slime-producing Bacillus strains 63 Hydrophobicity and surface charge 63 Microscopic observations 65 Bacillus slime composition 65 Discussion 67 Conclusions 73 Tables and Figures 75 CHAPTER 4. A NOVEL APPLICATION OF A FUNGAL CATALASE PREPARATION TO CONTROL SPORE-FORMING BACTERIA IN THE DAIRY INDUSTRY 84 Abstract 84 Introduction 85 Materials and methods 87 Bacterial strains 87 Enzymes 87 Spore preparation 88 ix Inhibition of spores in milk 88 Agar diffusion test on vegetative cells 89 Determination of MIC by microdilution testing 90 Effect of catalase on biofilm formed by slime-producing Bacillus 90 Characterization of the antimicrobial activity 92 Effect of heat on the antimicrobial properties of catalase 92 Sporostatic test 93 Identification of the major proteins of Cat preparations 93 Results 94 Inhibition of spores in milk 94 Determination of the MIC of Cat 95 Effect of catalase on biofilm formed by slime-producing Bacillus 96 Characterization of the antimicrobial activity 96 Discussion 97 Conclusions 101 Tables and Figures 102 CHAPTER 5. EVALUATION OF NATURAL DEPOLYMERASES ISOLATED FROM BACTERIOPHAGES AND BACTERIA ON DISRUPTING THE BIOFILM MATRIX – A PROOF OF CONCEPT 116 Abstract 116 Introduction 118 Materials and methods 120 Isolation of bacteriophages infecting EPS degrading bacteria 120 Partial purification of EPS degrading enzymes from bacteriophages 121 Application of crude enzymes from bacteriophages 122 Application of crude enzymes from EPS producing culture after long fermentation 124 Application of crude enzymes from amylolytic bacteria to biofilms formed on RO membranes 125 Statistical analysis 127 x Results and discussion 127 Bacteriophage crude-enzymes 127 Depolymerases from EPS producing culture that degrades its own EPS 129 Application of crude enzymes from amylolytic Bacillus strain to biofilms formed on RO membranes 132 Conclusions 133 Tables and Figures 135 CHAPTER 6. SUMMARY AND CONCLUSIONS 141 BIBLIOGRAPHY 147 xi ABSTRACT ROLE OF EXOPOLYMERIC SUBSTANCES IN BIOFILM FORMATION ON DAIRY SEPARATION MEMBRANES NURIA GARCIA-FERNANDEZ 2016 In the concentration of cheese whey by membrane filtration processes, fouling is a major limiting factor that leads to flux decline and affects product quality. The growth of biofilms on membranes contributes to biofouling. Biofilms are very difficult to eliminate, and will serve as the seed for additional biofilm development and product contamination. The biofilm matrix is composed mainly of microbial exopolymeric substances (EPS), and therefore EPS is thought to help bacteria to adhere and form biofilms by acting as a cementing agent. The first research project under this study was conducted with the aim of elucidating the role of the EPS produced by lactic acid starter cultures on reverse osmosis (RO) membranes. A second study was designed to investigate the role of EPS produced by spore forming bacteria on RO membrane biofilms. A third study was conducted to evaluate the application of Catalase (Cat) on spores and biofilms formed by spore forming bacteria that produce EPS. Finally, the fourth study evaluated the application of natural depolymerases from bacteriophages and bacteria to disrupt biofilms. In the first research project we observed that the EPS of Streptococcus thermophilus strain 3534 enhanced biofilm formation but the EPS of Lactococcus lactis ssp. cremoris strain JFR inhibited the attachment and biofilm formation to RO membranes. This was associated to the cell-surface hydrophobicity of the strains, which xii was affected by the EPS production. In the second study a greater biofilm
Recommended publications
  • Molecular Characterization of Local Strains of Bacillus Thuringiensis in the North of Algeria
    Vol. 10(45), pp. 1880-1887, 7 December, 2016 DOI: 10.5897/AJMR2016.7946 Article Number: AEEEB8A61917 ISSN 1996-0808 African Journal of Microbiology Research Copyright © 2016 Author(s) retain the copyright of this article http://www.academicjournals.org/AJMR Full Length Research Paper Molecular characterization of local strains of Bacillus thuringiensis in the North of Algeria Kebdani M.1*, Mahdjoubi M.2, Cherif A.2, Gaouar B. N.1 and Rebiahi S. A.3 1Laboratory of Ecology and Management of Naturals Ecosystems, Ecology and Environment Department, Abu Bakr Belkaid University, Imama, Tlemcen, Algeria. 2Laboratory of Biotechnology and Bio-Geo Resources Valorization, Higher Institute for Biotechnology, University of Manouba Biotechpole of Sidi Thabet Sidi Thabet, Ariana, Tunisia. 3Laboratory of Applied Microbiology and Environment, Biology Department, Abu Bakr Belkaid University, Imama, Tlemcen, Algeria. Received 1 February, 2016, Accepted 19 September, 2016. The analysis of soil samples taken from orange groves located in four cities of Northern Algeria allowed the isolation and identification of 24 strains belonging to the group Bacillus cereus, based on their physiological, biochemical and molecular characters investigated. They were divided as follow: 12 strains of Bacillus thuringiensis, 1 strain of Bacillus pumilis, 4 strains of Bacillus cereus, 5 strains of Bacillus subtilis and 2 Bacillus mycoides strains. After the molecular characterization performed with the aid of polymerase chain reaction (PCR) analysis, it was confirmed from the parasporal bodies using a scanning electron microscope that the strains of the identified collection belong to the species, B. thuringiensis. Key words: Bacillus cereus, Bacillus thuringiensis, Bacillus pumilis, Bacillus subtilis, Bacillus mycoides, polymerase chain reaction, scanning EM.
    [Show full text]
  • Bacillus Rubiinfantis Sp. Nov. Strain Mt2t, a New Bacterial Species Isolated from Human Gut
    TAXONOGENOMICS: GENOME OF A NEW ORGANISM Bacillus rubiinfantis sp. nov. strain mt2T, a new bacterial species isolated from human gut M. Tidjiani Alou1, J. Rathored1, S. Khelaifia1, C. Michelle1, S. Brah2, B. A. Diallo3, D. Raoult1,4 and J.-C. Lagier1 1) Faculté de médecine, Unité des Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS7278, IRD198, Inserm 1095, Aix-Marseille Université, Marseille, France, 2) Hopital National de Niamey, 3) Laboratoire de microbiologie, département de biologie, Université Abdou Moumouni de Niamey, Niamey, Niger and 4) Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia Abstract Bacillus rubiinfantis sp. nov. strain mt2T is the type strain of B. rubiinfantis sp. nov., isolated from the fecal flora of a child with kwashiorkor in Niger. It is Gram-positive facultative anaerobic rod belonging to the Bacillaceae family. We describe the features of this organism alongside the complete genome sequence and annotation. The 4 311 083 bp long genome (one chromosome but no plasmid) contains 4028 protein-coding gene and 121 RNA genes including nine rRNA genes. New Microbes and New Infections © 2015 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases. Keywords: Bacillus rubiinfantis, culturomics, genome, taxonogenomics Original Submission: 7 July 2015; Revised Submission: 1 September 2015; Accepted: 7 September 2015 Article published online: 16 September 2015 The genus Bacillus was established in 1872 by Cohn and is Corresponding author: J.-C. Lagier, Faculté de Médecine, URMITE, composed of strictly aerobic and facultatively anaerobic rod- UMR CNRS 7278, IRD 198, INSERM U1095, Aix-Marseille Université, 27 Bd Jean Moulin, 13385 Marseille cedex 5, France shaped bacteria that form heat-resisting endospores [16–19].
    [Show full text]
  • Bacillus Mojavensis Sp. Nov., Distinguishable from Bacillus Subtilis by Sexual Isolation, Divergence in DNA Sequence, and Differences in Fatty Acid Composition
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1994, p. 256-264 Vol. 44, No. 2 0020-7713/94/$04.00+0 Copyright 0 1994, International Union of Microbiological Societies Bacillus mojavensis sp. nov., Distinguishable from Bacillus subtilis by Sexual Isolation, Divergence in DNA Sequence, and Differences in Fatty Acid Composition MICHAEL S. ROBERTS,' L. K. NAKAMURA,* AND FREDERICK M. COW1* Department of Biology, Wesleyan University, Middletown, Connecticut 06459-0170,' and Microbial Properties Research, National Center for Agricultural Utilization Research, Agricultural Research Sewice, U.S. Department of Agriculture, Peoria, Illinois 616042 A number of Bacillus strains isolated from desert soil samples were shown to belong to a previously unidentified species, for which we propose the name Bacillus mojavensis. The type strain is RO-H-1 (= NRRL B-14698). On the basis of restriction digest data, B. rnojavensis is most closely related to Bacillus amylolique- faciens, Bacillus atrophaeus, and Bacillus subtilis. So far, B. mojavensis can be distinguished from B. subtilis only by differences in whole-cell fatty acid composition, divergence in DNA sequence, and resistance to genetic transformation between taxa (in addition to reduced genome relatedness values). Sequence divergence and sexual isolation may prove to be more useful than metabolic characteristics for delimiting cryptic Bacillus species. Although the species most closely related to Bacillus subtilis strain is maintained in the Agricultural Research Service are easily distinguished from one another by DNA relatedness Culture Collection at the National Center for Agricultural data (14, 15), very few phenotypic criteria that distinguish Utilization Research; each NRRL designation includes the these species are known. For example, only three phenotypic prefix B-, which identifies organisms that were obtained di- traits that distinguish Bacillus amyloliquefaciens from B.
    [Show full text]
  • Draft Genome Sequence of Bacillus Amyloliquefaciens Subsp
    Pinto et al. Standards in Genomic Sciences (2018) 13:30 https://doi.org/10.1186/s40793-018-0327-x EXTENDED GENOME REPORT Open Access Draft genome sequence of Bacillus amyloliquefaciens subsp. plantarum strain Fito_F321, an endophyte microorganism from Vitis vinifera with biocontrol potential Cátia Pinto1,2, Susana Sousa1, Hugo Froufe1, Conceição Egas1,3, Christophe Clément2, Florence Fontaine2 and Ana C Gomes1,3* Abstract Bacillus amyloliquefaciens subsp. plantarum strain Fito_F321 is a naturally occurring strain in vineyard, with the ability to colonise grapevine and which unveils a naturally antagonistic potential against phytopathogens of grapevine, including those responsible for the Botryosphaeria dieback, a GTD disease. Herein we report the draft genome sequence of B. amyloliquefaciens subsp. plantarum Fito_F321, isolated from the leaf of Vitis vinifera cv. Merlot at Bairrada appellation (Cantanhede, Portugal). The genome size is 3,856,229 bp, with a GC content of 46.54% that contains 3697 protein-coding genes, 86 tRNA coding genes and 5 rRNA genes. The draft genome of strain Fito_F321 allowed to predict a set of bioactive compounds as bacillaene, difficidin, macrolactin, surfactin and fengycin that due to their antimicrobial activity are hypothesized to be of utmost importance for biocontrol of grapevine diseases. Keywords: Genome sequencing, Bacillus amyloliquefaciens subsp. plantarum, Fito_F321 strain, Grapevine-associated microorganism, Biocontrol, Endophytic microorganism Introduction kept as singular species across their clade however, and Bacillus amyloliquefaciens is a species from the genus due to their close relationship, these species should be Bacillus, genetically and phenotypically related to B. included in the “operational group B. amyloliquefaciens” subtilis, B. vallismortis, B. mojavensis, B.
    [Show full text]
  • Biodiversity of Bacillus Subtilis Group and Beneficial Traits of Bacillus Species Useful in Plant Protection
    Romanian Biotechnological Letters Vol. 20, No. 5, 2015 Copyright © 2015 University of Bucharest Printed in Romania. All rights reserved REVIEW Biodiversity of Bacillus subtilis group and beneficial traits of Bacillus species useful in plant protection Received for publication, June 10, 2015 Accepted, September 10, 2015 SICUIA OANA ALINA1,2, FLORICA CONSTANTINSCU2, CORNEA CĂLINA PETRUŢA1,* 1Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, 59 Mărăşti Blvd, 011464 Bucharest, Romania 2Research and Development Institute for Plant Protection, 8 Ion Ionescu de la Brad Blvd., 013813 Bucharest, Romania *Corresponding author: Călina Petruţa Cornea, Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, 59 Mărăşti Blvd, 011464 Bucharest, Romania, phone. 004-021-318.36.40, fax. 004-021-318.25.88, e-mail: [email protected] Abstract Biological control of plant pathogens and plant growth promotion by biological means is the late tendency in biotechnological approaches for agricultural improvement. Such an approach is considering the environmental protection issues without neglecting crop needs. In the present study, we are reviewing Bacillus spp. biocontrol and plant growth promoting activity. As Bacillus genus is a large bacterial taxon, with grate physiological biodiversity, we are describing some inter-grouping, differences and similarities between Bacillus species, especially related to Bacillus subtilis. Keywords: Bacillus subtilis group, beneficial bacteria 1. Introduction Bacillus genus is a heterogeneous taxon, with ubiquitous spread in nature. Bacillus species, such as Bacillus cereus, B. megaterium, B. subtilis, B.circulans and B. brevis group are widely exploited for biotechnological and industrial applications [1, 2]. Their beneficial traits for plant protection and growth promotion comprise the synthesis of broad-spectrum active metabolites, easily adaptation in various environmental conditions, benefic plant- bacterial interaction and advantageous formulation process [3].
    [Show full text]
  • Insecticidal Activity of Bacteria from Larvae Breeding Site with Natural Larvae Mortality: Screening of Separated Supernatant and Pellet Fractions
    pathogens Article Insecticidal Activity of Bacteria from Larvae Breeding Site with Natural Larvae Mortality: Screening of Separated Supernatant and Pellet Fractions Handi Dahmana 1,2 , Didier Raoult 1,2, Florence Fenollar 2,3 and Oleg Mediannikov 1,2,* 1 IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France; [email protected] (H.D.); [email protected] (D.R.) 2 IHU-Méditerranée Infection, 13005 Marseille, France; fl[email protected] 3 IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France * Correspondence: [email protected]; Tel.: +33-(0)4-13-73-24-01; Fax: +33-(0)4-13-73-24-02 Received: 15 May 2020; Accepted: 17 June 2020; Published: 18 June 2020 Abstract: Mosquitoes can transmit to humans devastating and deadly pathogens. As many chemical insecticides are banned due to environmental side effects or are of reduced efficacy due to resistance, biological control, including the use of bacterial strains with insecticidal activity, is of increasing interest and importance. The urgent actual need relies on the discovery of new compounds, preferably of a biological nature. Here, we explored the phenomenon of natural larvae mortality in larval breeding sites to identify potential novel compounds that may be used in biological control. From there, we isolated 14 bacterial strains of the phylum Firmicutes, most of the order Bacillales. Cultures were carried out under controlled conditions and were separated on supernatant and pellet fractions. The two fractions and a 1:1 mixture of the two fractions were tested on L3 and early L4 Aedes albopictus. Two concentrations were tested (2 and 6 mg/L).
    [Show full text]
  • A Molecular Phylogenetic Framework for Bacillus Subtilis Using Genome
    3 Biotech (2016) 6:96 DOI 10.1007/s13205-016-0408-8 ORIGINAL ARTICLE A molecular phylogenetic framework for Bacillus subtilis using genome sequences and its application to Bacillus subtilis subspecies stecoris strain D7XPN1, an isolate from a commercial food-waste degrading bioreactor 1 1 Joseph Adelskov • Bharat K. C. Patel Received: 11 January 2016 / Accepted: 28 February 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract A thermophilic, heterotrophic and facultatively our results from electronic DNA–DNA Hybridization (e- anaerobic bacterium designated strain D7XPN1 was iso- DDH) studies. Furthermore, our additional in-depth phy- lated from Baku BakuKingTM, a commercial food-waste logenomic analyses using three different datasets degrading bioreactor (composter). The strain grew opti- unequivocally supported the creation of a fourth B. subtilis mally at 45 °C (growth range between 24 and 50 °C) and subspecies to include strains D7XPN1 and JS for which we pH 7 (growth pH range between pH 5 and 9) in Luria Broth propose strain D7XPN1T (=KCTC 33554T, JCM 30051T) supplemented with 0.3 % glucose. Strain D7XPN1 toler- as the type strain, and designate it as B. subtilis subsp. ated up to 7 % NaCl and showed amylolytic and xylano- stecoris. lytic activities. 16S rRNA gene analysis placed strain D7XPN1 in the cluster represented by Bacillus subtilis and Keywords Moderate thermophile Á Bacillus subtilis the genome analysis of the 4.1 Mb genome sequence subspecies Á Phylogenomics Á Bacillus subtilis subspecies determined using RAST (Rapid Annotation using Subsys- stecoris tem Technology) indicated a total of 5116 genomic fea- tures were present of which 2320 features could be grouped into several subsystem categories.
    [Show full text]
  • Toxigenic Bacilli Associated with Food Poisoning
    Food Sci. Biotechnol. Vol. 18, No. 3, pp. 594 ~ 603 (2009) RESEARCH REVIEW ⓒ The Korean Society of Food Science and Technology Toxigenic Bacilli Associated with Food Poisoning Mi-Hwa Oh1 and Julian M. Cox* Food Science and Technology, School of Chemical Engineering and Industrial Chemistry, University of New South Wales, Sydney NSW 2052, Australia 1National Institute of Animal Science, Rural Development Administration, Suwon, Gyeonggi 441-857, Korea Abstract The genus Bacillus includes a variety of diverse bacterial species, which are widespread throughout the environment due to their ubiquitous nature. A well-known member of the genus, Bacillus cereus, is a food poisoning bacterium causing both emetic and diarrhoeal disease. Other Bacillus species, particularly B. subtilis, B. licheniformis, B. pumilus, and B. thuringiensis, have also recently been recognized as causative agents of food poisoning. However, reviews and research pertaining to bacilli have focused on B. cereus. Here, we review the literature regarding the potentially toxigenic Bacillus species and the toxins produced that are associated with food poisoning. Keywords: Bacillus, food poisoning, emetic disease, diarrhoeal disease, toxigenic Introduction thuringiensis, referred to as the B. cereus group, are very closely related (11,12). In fact, extensive biochemical, The genus Bacillus comprises a very large and diverse physiological, and morphological studies of the genus group whose members are widespread in nature. They are failed to find characteristics that would consistently important in the food industry and also to consumers differentiate these 4 species (13); whereas members of the because of the association of some species with food B. subtilis group, including B. subtilis, B.
    [Show full text]
  • Comparative Phylogeny of the Bacillaceae Species Related to Shrimp Paste Products
    Environmental and Experimental Biology (2016) 14: 23–26 Original Paper DOI: 10.22364/eeb.14.04 Comparative phylogeny of the Bacillaceae species related to shrimp paste products Ekachai Chukeatirote* School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand *Corresponding author, E-mail: [email protected] Abstract Shrimp paste is one of the traditional seafood products widely consumed in several Asian countries. Although the microbial diversity of shrimp paste remains largely undescribed to date, it has been suggested that the bacterial members of the order Bacillales are predominant. This study was therefore conducted to investigate the bacterial diversity especially for those of the family Bacillaceae, isolated from the shrimp paste products. For this 24 Bacillaceae strains related to the shrimp paste, as well as their nucleotide sequences of the 16S rRNA gene were retrieved from the GenBank database. To elucidate the phylogeny of these Bacillaceae isolates, their 16S rRNA genes were aligned and used to construct the dendogram. Based on the analysis, these 23 Bacillaceae strains were categorized into three major clades: (i) Bacillus subtilis/amyloliquefaciens complex; (ii) Bacillus cereus group; and (iii) non-Bacillus species. Key words: Bacillaceae, Bacillus, fermented seafood, shrimp paste. Introduction not a surprise that knowledge of microbial diversity of the shrimp paste is scarce. For example, the microflora of Fermented fishery products are widely consumed in Terasi has been previously studied and this reveals a diverse many Asian countries, and can be generally classified group of bacteria including those in the genera Bacillus, based on the raw material used (i.e., fish, shrimp, etc.).
    [Show full text]
  • Scientific Opinion
    EFSA Journal 20xx; volume(issue):xxxx 1 SCIENTIFIC OPINION 2 Technical Guidance on the assessment of the toxigenic potential of Bacillus 1 3 and related genera used in animal nutrition 4 EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP)2,3 5 European Food Safety Authority (EFSA), Parma, Italy 6 ABSTRACT 7 8 9 10 11 KEY WORDS 12 13 14 15 16 1 On request from EFSA, Question No EFSA-Q-2009-00973, adopted on DD Month YYYY. 2 Panel members: Gabriele Aquilina, Georges Bories, Andrew Chesson, Pier Sandro Cocconcelli, Joop de Knecht, Noël Albert Dierick, Mikolaj Antoni Gralak, Jürgen Gropp, Ingrid Halle, Christer Hogstrand, Reinhard Kroker, Lubomir Leng, Secundino Lopez Puente, Anne-Katrine Lundebye Haldorsen, Alberto Mantovani, Giovanna Martelli, Miklós Mézes, Derek Renshaw, Maria Saarela, Kristen Sejrsen and Johannes Westendorf. Correspondence: [email protected] 3 Acknowledgement: The Panel wishes to thank the members of the Working Group on Micro-organisms including Atte von Wright, Per Einar Granum and Christophe Nguyen-thé for the preparation of this opinion. Suggested citation: EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Error! Reference source not found.. EFSA Journal 20xx; volume(issue):xxxx. [12 pp.]. doi:10.2903/j.efsa.20NN.NNNN. Available online: www.efsa.europa.eu © European Food Safety Authority, 20xx 1 Technical guidance on Bacillus safety 17 TABLE OF CONTENTS 18 Abstract ...................................................................................................................................................
    [Show full text]
  • Ecology of Bacillaceae
    Ecology of Bacillaceae INES MANDIC-MULEC,1 POLONCA STEFANIC,1 and JAN DIRK VAN ELSAS2 1University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, Vecna pot 111, 1000 Ljubljana, Slovenia; 2Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Linneausborg, Nijenborgh 7, 9747AG Groningen, Netherlands ABSTRACT Members of the family Bacillaceae are among the been found in soil, sediment, and air, as well as in un- most robust bacteria on Earth, which is mainly due to their ability conventional environments such as clean rooms in the to form resistant endospores. This trait is believed to be the Kennedy Space Center, a vaccine-producing company, key factor determining the ecology of these bacteria. and even human blood (1–3). Moreover, members of However, they also perform fundamental roles in soil ecology (i.e., the cycling of organic matter) and in plant health and the Bacillaceae have been detected in freshwater and growth stimulation (e.g., via suppression of plant pathogens and marine ecosystems, in activated sludge, in human and phosphate solubilization). In this review, we describe the high animal systems, and in various foods (including fer- functional and genetic diversity that is found within the mented foods), but recently also in extreme environ- Bacillaceae (a family of low-G+C% Gram-positive spore-forming ments such as hot solid and liquid systems (compost bacteria), their roles in ecology and in applied sciences related and hot springs, respectively), salt lakes, and salterns (4– to agriculture. We then pose questions with respect to their 6). Thus, thermophilic genera of the family Bacillaceae ecological behavior, zooming in on the intricate social behavior that is becoming increasingly well characterized for some dominate the high-temperature stages of composting members of Bacillaceae.
    [Show full text]
  • Analysis of Bacteria Associated with Honeys of Different Geographical
    RESEARCH ARTICLE Analysis of bacteria associated with honeys of different geographical and botanical origin using two different identification approaches: MALDI-TOF MS and 16S rDNA PCR technique 1 1 1,2 1,2 Paweø PomastowskiID *, Michaø ZøochID , Agnieszka Rodzik , Magda Ligor , Markus Kostrzewa3, Bogusøaw Buszewski1,2 a1111111111 1 Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, Torun, Poland, 2 Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus a1111111111 University in Torun, Torun, Poland, 3 Bruker Daltonik GmbH, Bremen, Germany a1111111111 a1111111111 * [email protected] a1111111111 Abstract In the presented work identification of microorganisms isolated from various types of honeys OPEN ACCESS was performed. Martix-assisted laser desorption/ionization time-of-flight mass spectrometry Citation: Pomastowski P, Zøoch M, Rodzik A, Ligor (MALDI-TOF MS) and 16S rDNA sequencing were applied to study environmental bacteria M, Kostrzewa M, Buszewski B (2019) Analysis of bacteria associated with honeys of different strains.With both approches, problematic spore-forming Bacillus spp, but also Staphylococ- geographical and botanical origin using two cus spp., Lysinibacillus spp., Micrococcus spp. and Brevibacillus spp were identified. How- different identification approaches: MALDI-TOF MS ever, application of spectrometric technique allows for an unambiguous distinction between and 16S rDNA PCR technique. PLoS ONE 14(5): species/species groups e.g.B. subtilis or B. cereus groups. MALDI TOF MS and 16S rDNA e0217078. https://doi.org/10.1371/journal. pone.0217078 sequencing allow for construction of phyloproteomic and phylogenetic trees of identified bacterial species. Furthermore, the correlation beetween physicochemical properties, geo- Editor: Doralyn S. Dalisay, University of San Agustin, PHILIPPINES graphical and botanical origin and the presence bacterial species in honey samples were investigated.
    [Show full text]