Scientific Opinion

Total Page:16

File Type:pdf, Size:1020Kb

Scientific Opinion EFSA Journal 20xx; volume(issue):xxxx 1 SCIENTIFIC OPINION 2 Technical Guidance on the assessment of the toxigenic potential of Bacillus 1 3 and related genera used in animal nutrition 4 EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP)2,3 5 European Food Safety Authority (EFSA), Parma, Italy 6 ABSTRACT 7 8 9 10 11 KEY WORDS 12 13 14 15 16 1 On request from EFSA, Question No EFSA-Q-2009-00973, adopted on DD Month YYYY. 2 Panel members: Gabriele Aquilina, Georges Bories, Andrew Chesson, Pier Sandro Cocconcelli, Joop de Knecht, Noël Albert Dierick, Mikolaj Antoni Gralak, Jürgen Gropp, Ingrid Halle, Christer Hogstrand, Reinhard Kroker, Lubomir Leng, Secundino Lopez Puente, Anne-Katrine Lundebye Haldorsen, Alberto Mantovani, Giovanna Martelli, Miklós Mézes, Derek Renshaw, Maria Saarela, Kristen Sejrsen and Johannes Westendorf. Correspondence: [email protected] 3 Acknowledgement: The Panel wishes to thank the members of the Working Group on Micro-organisms including Atte von Wright, Per Einar Granum and Christophe Nguyen-thé for the preparation of this opinion. Suggested citation: EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Error! Reference source not found.. EFSA Journal 20xx; volume(issue):xxxx. [12 pp.]. doi:10.2903/j.efsa.20NN.NNNN. Available online: www.efsa.europa.eu © European Food Safety Authority, 20xx 1 Technical guidance on Bacillus safety 17 TABLE OF CONTENTS 18 Abstract .................................................................................................................................................... 1 19 Table of contents ...................................................................................................................................... 2 20 Terms of reference ............................................................................................................................... 3 21 1. Introduction ...................................................................................................................................... 4 22 2. Taxonomy ......................................................................................................................................... 4 23 2.1. Current taxonomy and phylogeny of Bacillus and related genera (other than B. cereus 24 group) ............................................................................................................................................... 4 25 2.2. Current taxonomy and phylogeny of the Bacillus cereus group ............................................. 5 26 3. Safety concerns caused by Bacillus species ..................................................................................... 5 27 3.1. Virulence factors found in Bacillus and related genera (other than B. cereus group) ............ 5 28 3.2. Virulence factors of Bacillus cereus responsible for gastro intestinal diseases ...................... 7 29 4. Methods to detect toxigenic potential .............................................................................................. 7 30 4.1. Bacillus and related genera (other than B. cereus group) ....................................................... 8 31 4.2. Bacillus cereus taxonomic group ............................................................................................ 8 32 References ................................................................................................................................................ 8 33 Annex ..................................................................................................................................................... 12 34 35 EFSA Journal 20xx; volume(issue):xxxx 2 Technical guidance on Bacillus safety 36 BACKGROUND AS PROVIDED BY EFSA 37 38 Regulation (EC) No 1831/20034 establishes the rules governing the Community authorisation of 39 additives for use in animal nutrition. Moreover, Article 7(6) of this Regulation provides for the 40 European Food Safety Authority (EFSA) to publish detailed guidance to assist applicants in the 41 preparation and presentations of applications. 42 EFSA has the responsibility to assess the safety of feed additives before an authorisation is granted. A 43 considerable amount of feed additives are composed by micro-organisms. As a tool to simplify and 44 harmonise within EFSA the assessment of micro-organisms used in food and feed, the Scientific 45 Committee published one opinion on the introduction of a Qualified Presumption of Safety (QPS) 46 approach for the assessment of selected micro-organisms (EFSA, 2007). This last opinion has been 47 updated on a yearly basis, and will be continuously updated in the future. The QPS approach is 48 currently used by the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) 49 in the assessment of microbial products subject to a pre-authorisation assessment. 50 One of the genera included in this opinion is Bacillus, which is commonly found in a number of feed 51 additives. The QPS opinion imposes, for Bacillus, the qualification that the absence of food poisoning 52 toxins, surfactant activity or enterotoxic activity. In 2000 the Scientific Committee for Animal 53 Nutrition (SCAN) adopted an opinion on the safety of use of Bacillus species in animal nutrition. 54 Since the adoption of the SCAN opinion on this matter, new scientific data have become available that 55 call for a revision of the taxonomy and toxin production of the Bacillus species. Therefore, the 56 FEEDAP Panel considers it necessary to update this document in order to provide applicants with 57 proportionate and up-to-date guidance on how to conduct the safety assessment of these products. 58 59 TERMS OF REFERENCE 60 The FEEDAP Panel is requested produce a Technical Guidance on the safety of use of Bacillus 61 species in animal nutrition taking into account the opinion from the Scientific Committee for Animal 62 Nutrition (SCAN) on the safety of use of Bacillus species in animal nutrition and any new scientific 63 data available. 64 65 4 OJ L 268, 18.10.2003, p. 29. EFSA Journal 20xx; volume(issue):xxxx 3 Technical guidance on Bacillus safety 66 67 1. INTRODUCTION 68 A number of strains of Bacillus species are used in animal production either directly as microbial feed 69 additives or as the source of other feed additives, notably enzymes. Approximately half of the present 70 production of bulk enzymes derives from strains of this or related genera. Regulation (EC) No 71 1831/2003 requires that all feed additives, including microorganisms, are assessed for safety before 72 being placed on the market. The principal safety concern for consumers and, to a lesser extent 73 livestock, associated with Bacillus (and related genera) is a capacity for toxin production. However, 74 the capacity for toxin production is unevenly distributed over the genus, occurring frequently in some 75 species and more rarely, if at all, in others. For this reason the Scientific Committee on Animal 76 Nutrition (SCAN) recommended that the use of strains of the Bacillus cereus taxonomic group, a 77 group containing many known pathogenic strains, be strongly discouraged, but recognised that strains 78 from other Bacillus species may be considered safe (EC, 2000). The FEEDAP Panel concurs with this 79 general position. 80 The Qualified Presumption of Safety (QPS) approach to the safety assessment of microorganisms 81 adopted by EFSA is considered applicable to most of the commercially relevant Bacillus species. This 82 approach requires the unambiguous identification of the strain being assessed, a demonstration of a 83 lack of antibiotic resistance determinants and, in particular, evidence that the strain lacks a capacity for 84 toxin production. Any other strain of Bacillus or related genera not falling within the scope of the QPS 85 approach would also require an assessment of toxigenic potential. To date, applicants seeking 86 regulatory approval for a novel strain of Bacillus have relied for guidance on how to assess toxigenic 87 potential on the SCAN Opinion on the safety of use of Bacillus species in animal nutrition published 88 in 2000. The SCAN guidance takes as its basis the then existing knowledge on the structure and 89 biogenesis of toxins produced by B. cereus, assuming that toxins found in other Bacillus species 90 would have sufficiently similar properties to be detected by the methods developed for the B. cereus 91 group. Subsequent to the SCAN opinion there have been significant developments both in the 92 knowledge of toxins prevalent in the B. cereus group and, more importantly, in the toxigenic potential 93 of other Bacillus species and their prevalence. These developments are reviewed below. In addition, 94 more refined methods of genetic analysis are now more widely available. 95 In view of the need to update the guidance contained within the original SCAN opinion, the FEEDAP 96 Panel takes the opportunity to adopt the revision as part of the technical guidance provided to 97 applicants seeking authorisation of feed additives. 98 2. Taxonomy 99 100 2.1. Current taxonomy and phylogeny of Bacillus and related genera (other than B. 101 cereus group) 102 Since the first edition of the Bergey’s Manual of Systematic Bacteriology, the structure and content of 103 the genus Bacillus have been substantially modified (Claus and Berkeley, 1986; Ash et al., 1993; 104 Priest, 1993). It was recognised as being very heterogeneous both genetically and phenotypically and 105 Ash et al.,
Recommended publications
  • Molecular Characterization of Local Strains of Bacillus Thuringiensis in the North of Algeria
    Vol. 10(45), pp. 1880-1887, 7 December, 2016 DOI: 10.5897/AJMR2016.7946 Article Number: AEEEB8A61917 ISSN 1996-0808 African Journal of Microbiology Research Copyright © 2016 Author(s) retain the copyright of this article http://www.academicjournals.org/AJMR Full Length Research Paper Molecular characterization of local strains of Bacillus thuringiensis in the North of Algeria Kebdani M.1*, Mahdjoubi M.2, Cherif A.2, Gaouar B. N.1 and Rebiahi S. A.3 1Laboratory of Ecology and Management of Naturals Ecosystems, Ecology and Environment Department, Abu Bakr Belkaid University, Imama, Tlemcen, Algeria. 2Laboratory of Biotechnology and Bio-Geo Resources Valorization, Higher Institute for Biotechnology, University of Manouba Biotechpole of Sidi Thabet Sidi Thabet, Ariana, Tunisia. 3Laboratory of Applied Microbiology and Environment, Biology Department, Abu Bakr Belkaid University, Imama, Tlemcen, Algeria. Received 1 February, 2016, Accepted 19 September, 2016. The analysis of soil samples taken from orange groves located in four cities of Northern Algeria allowed the isolation and identification of 24 strains belonging to the group Bacillus cereus, based on their physiological, biochemical and molecular characters investigated. They were divided as follow: 12 strains of Bacillus thuringiensis, 1 strain of Bacillus pumilis, 4 strains of Bacillus cereus, 5 strains of Bacillus subtilis and 2 Bacillus mycoides strains. After the molecular characterization performed with the aid of polymerase chain reaction (PCR) analysis, it was confirmed from the parasporal bodies using a scanning electron microscope that the strains of the identified collection belong to the species, B. thuringiensis. Key words: Bacillus cereus, Bacillus thuringiensis, Bacillus pumilis, Bacillus subtilis, Bacillus mycoides, polymerase chain reaction, scanning EM.
    [Show full text]
  • Polyhydroxyalkanoate Biosynthesis by Oxalotrophic Bacteria from High Andean Soil
    Univ. Sci. 23 (1): 35-59, 2018. doi: 10.11144/Javeriana.SC23-1.pbb0 Bogotá ORIGINAL ARTICLE Polyhydroxyalkanoate biosynthesis by oxalotrophic bacteria from high Andean soil Roger David Castillo Arteaga1, *, Edith Mariela Burbano Rosero2, Iván Darío Otero Ramírez3, Juan Camilo Roncallo1, Sandra Patricia Hidalgo Bonilla4 and Pablo Fernández Izquierdo2 Edited by Juan Carlos Salcedo-Reyes Abstract ([email protected]) 1. Universidade de São Paulo, Oxalate is a highly oxidized organic acid anion used as a carbon and energy Instituto de Ciências Biomédicas, Laboratório de Bioprodutos, source by oxalotrophic bacteria. Oxalogenic plants convert atmospheric CO2 Av. Prof. Lineu Prestes, 1374, São Paulo, into oxalic acid and oxalic salts. Oxalate-salt formation acts as a carbon sink in SP, Brasil, CEP 05508-900. terrestrial ecosystems via the oxalate-carbonate pathway (OCP). Oxalotrophic 2. Universidad de Nariño, bacteria might be implicated in other carbon-storage processes, including Departamento de Biología. the synthesis of polyhydroxyalkanoates (PHAs). More recently, a variety Grupo de Investigación de Biotecnología of bacteria from the Andean region of Colombia in Nariño have been Microbiana. Torobajo, Cl 18 - Cra 50. reported for their PHA-producing abilities. These species can degrade oxalate San Juan de Pasto, Colombia. and participate in the oxalate-carbonate pathway. The aim of this study 3. Universidad del Cauca, was to isolate and characterize oxalotrophic bacteria with the capacity to Facultad de Ciencias Agrarias, Grupo de Investigación en accumulate PHA biopolymers. Plants of the genus Oxalis were collected Aprovechamiento de Subproductos and bacteria were isolated from the soil adhering to the roots. The isolated Agroindustriales, Cl 5 No.
    [Show full text]
  • Operational Group B. Amyloliquefaciens” Within the B
    ORIGINAL RESEARCH published: 20 January 2017 doi: 10.3389/fmicb.2017.00022 Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an “Operational Group B. amyloliquefaciens” within the B. subtilis Species Complex Ben Fan 1, Jochen Blom 2, Hans-Peter Klenk 3 and Rainer Borriss 4, 5* 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China, 2 Bioinformatics and Systems Biology, Justus-Liebig-Universität Giessen, Giessen, Germany, 3 School of Biology, Newcastle University, Newcastle upon Tyne, UK, 4 Fachgebiet Phytomedizin, Institut für Agrar- und Gartenbauwissenschaften, Humboldt Universität zu Berlin, Berlin, Germany, 5 Nord Reet UG, Greifswald, Germany Edited by: Rakesh Sharma, The plant growth promoting model bacterium FZB42T was proposed as the type strain Institute of Genomics and Integrative Biology (CSIR), India of Bacillus amyloliquefaciens subsp. plantarum (Borriss et al., 2011), but has been Reviewed by: recently recognized as being synonymous to Bacillus velezensis due to phylogenomic Prabhu B. Patil, analysis (Dunlap C. et al., 2016). However, until now, majority of publications consider Institute of Microbial Technology plant-associated close relatives of FZB42 still as “B. amyloliquefaciens.” Here, we (CSIR), India Bo Liu, reinvestigated the taxonomic status of FZB42 and related strains in its context to Fujian Academy of Agaricultural the free-living soil bacterium DSM7T, the type strain of B. amyloliquefaciens. We Sciences, China identified 66 bacterial genomes from the NCBI data bank with high similarity to DSM7T. *Correspondence: Rainer Borriss Dendrograms based on complete rpoB nucleotide sequences and on core genome [email protected] sequences, respectively, clustered into a clade consisting of three tightly linked branches: (1) B.
    [Show full text]
  • Bacillus Rubiinfantis Sp. Nov. Strain Mt2t, a New Bacterial Species Isolated from Human Gut
    TAXONOGENOMICS: GENOME OF A NEW ORGANISM Bacillus rubiinfantis sp. nov. strain mt2T, a new bacterial species isolated from human gut M. Tidjiani Alou1, J. Rathored1, S. Khelaifia1, C. Michelle1, S. Brah2, B. A. Diallo3, D. Raoult1,4 and J.-C. Lagier1 1) Faculté de médecine, Unité des Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS7278, IRD198, Inserm 1095, Aix-Marseille Université, Marseille, France, 2) Hopital National de Niamey, 3) Laboratoire de microbiologie, département de biologie, Université Abdou Moumouni de Niamey, Niamey, Niger and 4) Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia Abstract Bacillus rubiinfantis sp. nov. strain mt2T is the type strain of B. rubiinfantis sp. nov., isolated from the fecal flora of a child with kwashiorkor in Niger. It is Gram-positive facultative anaerobic rod belonging to the Bacillaceae family. We describe the features of this organism alongside the complete genome sequence and annotation. The 4 311 083 bp long genome (one chromosome but no plasmid) contains 4028 protein-coding gene and 121 RNA genes including nine rRNA genes. New Microbes and New Infections © 2015 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases. Keywords: Bacillus rubiinfantis, culturomics, genome, taxonogenomics Original Submission: 7 July 2015; Revised Submission: 1 September 2015; Accepted: 7 September 2015 Article published online: 16 September 2015 The genus Bacillus was established in 1872 by Cohn and is Corresponding author: J.-C. Lagier, Faculté de Médecine, URMITE, composed of strictly aerobic and facultatively anaerobic rod- UMR CNRS 7278, IRD 198, INSERM U1095, Aix-Marseille Université, 27 Bd Jean Moulin, 13385 Marseille cedex 5, France shaped bacteria that form heat-resisting endospores [16–19].
    [Show full text]
  • Complete Issue
    J. Fernholz and Q.E. Phelps – Influence of PIT tags on growth and survival of banded sculpin (Cottus carolinae): implications for endangered grotto sculpin (Cottus specus). Journal of Cave and Karst Studies, v. 78, no. 3, p. 139–143. DOI: 10.4311/2015LSC0145 INFLUENCE OF PIT TAGS ON GROWTH AND SURVIVAL OF BANDED SCULPIN (COTTUS CAROLINAE): IMPLICATIONS FOR ENDANGERED GROTTO SCULPIN (COTTUS SPECUS) 1 2 JACOB FERNHOLZ * AND QUINTON E. PHELPS Abstract: To make appropriate restoration decisions, fisheries scientists must be knowledgeable about life history, population dynamics, and ecological role of a species of interest. However, acquisition of such information is considerably more challenging for species with low abundance and that occupy difficult to sample habitats. One such species that inhabits areas that are difficult to sample is the recently listed endangered, cave-dwelling grotto sculpin, Cottus specus. To understand more about the grotto sculpin’s ecological function and quantify its population demographics, a mark-recapture study is warranted. However, the effects of PIT tagging on grotto sculpin are unknown, so a passive integrated transponder (PIT) tagging study was performed. Banded sculpin, Cottus carolinae, were used as a surrogate for grotto sculpin due to genetic and morphological similarities. Banded sculpin were implanted with 8.3 3 1.4 mm and 12.0 3 2.15 mm PIT tags to determine tag retention rates, growth, and mortality. Our results suggest sculpin species of the genus Cottus implanted with 8.3 3 1.4 mm tags exhibited higher growth, survival, and tag retention rates than those implanted with 12.0 3 2.15 mm tags.
    [Show full text]
  • Bacillus Mojavensis Sp. Nov., Distinguishable from Bacillus Subtilis by Sexual Isolation, Divergence in DNA Sequence, and Differences in Fatty Acid Composition
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1994, p. 256-264 Vol. 44, No. 2 0020-7713/94/$04.00+0 Copyright 0 1994, International Union of Microbiological Societies Bacillus mojavensis sp. nov., Distinguishable from Bacillus subtilis by Sexual Isolation, Divergence in DNA Sequence, and Differences in Fatty Acid Composition MICHAEL S. ROBERTS,' L. K. NAKAMURA,* AND FREDERICK M. COW1* Department of Biology, Wesleyan University, Middletown, Connecticut 06459-0170,' and Microbial Properties Research, National Center for Agricultural Utilization Research, Agricultural Research Sewice, U.S. Department of Agriculture, Peoria, Illinois 616042 A number of Bacillus strains isolated from desert soil samples were shown to belong to a previously unidentified species, for which we propose the name Bacillus mojavensis. The type strain is RO-H-1 (= NRRL B-14698). On the basis of restriction digest data, B. rnojavensis is most closely related to Bacillus amylolique- faciens, Bacillus atrophaeus, and Bacillus subtilis. So far, B. mojavensis can be distinguished from B. subtilis only by differences in whole-cell fatty acid composition, divergence in DNA sequence, and resistance to genetic transformation between taxa (in addition to reduced genome relatedness values). Sequence divergence and sexual isolation may prove to be more useful than metabolic characteristics for delimiting cryptic Bacillus species. Although the species most closely related to Bacillus subtilis strain is maintained in the Agricultural Research Service are easily distinguished from one another by DNA relatedness Culture Collection at the National Center for Agricultural data (14, 15), very few phenotypic criteria that distinguish Utilization Research; each NRRL designation includes the these species are known. For example, only three phenotypic prefix B-, which identifies organisms that were obtained di- traits that distinguish Bacillus amyloliquefaciens from B.
    [Show full text]
  • Draft Genome Sequence of Bacillus Amyloliquefaciens Subsp
    Pinto et al. Standards in Genomic Sciences (2018) 13:30 https://doi.org/10.1186/s40793-018-0327-x EXTENDED GENOME REPORT Open Access Draft genome sequence of Bacillus amyloliquefaciens subsp. plantarum strain Fito_F321, an endophyte microorganism from Vitis vinifera with biocontrol potential Cátia Pinto1,2, Susana Sousa1, Hugo Froufe1, Conceição Egas1,3, Christophe Clément2, Florence Fontaine2 and Ana C Gomes1,3* Abstract Bacillus amyloliquefaciens subsp. plantarum strain Fito_F321 is a naturally occurring strain in vineyard, with the ability to colonise grapevine and which unveils a naturally antagonistic potential against phytopathogens of grapevine, including those responsible for the Botryosphaeria dieback, a GTD disease. Herein we report the draft genome sequence of B. amyloliquefaciens subsp. plantarum Fito_F321, isolated from the leaf of Vitis vinifera cv. Merlot at Bairrada appellation (Cantanhede, Portugal). The genome size is 3,856,229 bp, with a GC content of 46.54% that contains 3697 protein-coding genes, 86 tRNA coding genes and 5 rRNA genes. The draft genome of strain Fito_F321 allowed to predict a set of bioactive compounds as bacillaene, difficidin, macrolactin, surfactin and fengycin that due to their antimicrobial activity are hypothesized to be of utmost importance for biocontrol of grapevine diseases. Keywords: Genome sequencing, Bacillus amyloliquefaciens subsp. plantarum, Fito_F321 strain, Grapevine-associated microorganism, Biocontrol, Endophytic microorganism Introduction kept as singular species across their clade however, and Bacillus amyloliquefaciens is a species from the genus due to their close relationship, these species should be Bacillus, genetically and phenotypically related to B. included in the “operational group B. amyloliquefaciens” subtilis, B. vallismortis, B. mojavensis, B.
    [Show full text]
  • Biodiversity of Bacillus Subtilis Group and Beneficial Traits of Bacillus Species Useful in Plant Protection
    Romanian Biotechnological Letters Vol. 20, No. 5, 2015 Copyright © 2015 University of Bucharest Printed in Romania. All rights reserved REVIEW Biodiversity of Bacillus subtilis group and beneficial traits of Bacillus species useful in plant protection Received for publication, June 10, 2015 Accepted, September 10, 2015 SICUIA OANA ALINA1,2, FLORICA CONSTANTINSCU2, CORNEA CĂLINA PETRUŢA1,* 1Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, 59 Mărăşti Blvd, 011464 Bucharest, Romania 2Research and Development Institute for Plant Protection, 8 Ion Ionescu de la Brad Blvd., 013813 Bucharest, Romania *Corresponding author: Călina Petruţa Cornea, Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, 59 Mărăşti Blvd, 011464 Bucharest, Romania, phone. 004-021-318.36.40, fax. 004-021-318.25.88, e-mail: [email protected] Abstract Biological control of plant pathogens and plant growth promotion by biological means is the late tendency in biotechnological approaches for agricultural improvement. Such an approach is considering the environmental protection issues without neglecting crop needs. In the present study, we are reviewing Bacillus spp. biocontrol and plant growth promoting activity. As Bacillus genus is a large bacterial taxon, with grate physiological biodiversity, we are describing some inter-grouping, differences and similarities between Bacillus species, especially related to Bacillus subtilis. Keywords: Bacillus subtilis group, beneficial bacteria 1. Introduction Bacillus genus is a heterogeneous taxon, with ubiquitous spread in nature. Bacillus species, such as Bacillus cereus, B. megaterium, B. subtilis, B.circulans and B. brevis group are widely exploited for biotechnological and industrial applications [1, 2]. Their beneficial traits for plant protection and growth promotion comprise the synthesis of broad-spectrum active metabolites, easily adaptation in various environmental conditions, benefic plant- bacterial interaction and advantageous formulation process [3].
    [Show full text]
  • Bacillus Species in Animal Nutrition
    EUROPEAN COMMISSION HEALTH & CONSUMER PROTECTION DIRECTORATE-GENERAL Directorate B - Scientific Health Opinions Unit B3 - Management of scientific committees II OPINION OF THE SCIENTIFIC COMMITTEE ON ANIMAL NUTRITION ON THE SAFETY OF USE OF BACILLUS SPECIES IN ANIMAL NUTRITION (EXPRESSED ON 17 FEBRUARY 2000) 1. BACKGROUND In its report on the use of certain micro-organisms as feed additives expressed on 26 September 1997, the Scientific Committee on Animal Nutrition (hereafter SCAN) stated that the use of Bacillus species may be ill-advised and should be accepted only for clearly defined strains which have been tested negative for toxicity and pathogenicity in vitro and in vivo. In June 1999, Denmark drew the attention of the Commission to a number of scientific publications describing the detection of toxigenic strains of Bacillus cereus and other Bacillus spp. Strains of these species are used in animal nutrition either as microbial feed additives or as a source of enzymes used as feed additives. 2. TERMS OF REFERENCE In the light of its previous report and of newly available scientific data, SCAN is requested to reassess the safety of the use of bacteria of the genus Bacillus (Bacillus cereus and other species) in animal nutrition. SCAN is also requested to identify the scientific data which should be provided for the safety evaluation of products using strains of Bacillus species submitted for authorisation as feed additives. 3. INTRODUCTION The genus Bacillus contains a number of industrially important species. The large range of physiological types found amongst the bacilli (attributed to the genetic diversity of the genus) and the fact that most species are non-pathogenic and are relatively easy to manipulate and to grow, makes Bacillus spp.
    [Show full text]
  • GRAS Notice 691, Bacillus Coagulans SANK 70258 Spore Preparation
    GRAS Notice (GRN) No. 691 http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm GRAS Conclusion for the Use of Bacillus coagulans SANK 70258 Spores Preparation (LACRIS-S) in Select Foods SUBMITTED BY: Mitsubishi-Kagaku Foods Corporation 1-1 , Marunouchi 1-chome Chiyoda-ku, Tokyo 100-8251 JAPAN SUBMITTED TO: U.S. Food and Drug Administration Center for Food Safety and Applied Nutrition Office ofFood Additive Safety 5001 Campus Drive College Park, MD 20740 CONTACT FOR TECHNICAL OR OTHER INFORMATION: Mary M. Murphy Senior Managing Scientist Exponent, Inc. 1150 Connecticut A venue, NW Suite 1100 Washington, DC 20036 February 3, 2017 ~~~~~Wfe(O) Page 1 of 113 FEB 6 2017 Table of Contents Table of Contents 2 List ofTables 5 List of Figures 6 List of Acronyms 7 Part 1: Signed Statements and Certification 9 Name and Address ofNotifier 9 Name ofGRAS Substance 9 Intended Use and Consumer Exposure 9 Basis for Conclusion ofGRAS Status 9 Pre-Market Approval Exclusion Claim 9 Availability of Information I 0 Exemptions from Disclosure 10 Certification Statement I 0 Part 2. Identity, Method of Manufacture, Specifications, and Physical or Technical Effect 11 Identity 11 Source ofOrganism and Use in a Spores Preparation II Description and Characterization of Organism I1 Biochemical Characterization 12 Genotypic Identification 14 16S rDNA Testing I4 DNA-DNA Hybridization Testing IS Summary of Characterization Data I 6 Method of Manufacture I 6 Specifications 19 Page 2 of 113 Shelf-Life Stability 21 Part 3. Dietary Exposure 22 Food Uses in the United States 22 Supplement Uses in the United States 23 International Uses 23 Proposed Use and Level 23 Estimated Daily Intakes 24 Part 4.
    [Show full text]
  • Bacillus Vallismortis Sp. Nov., a Close Relative of Bacillus Subtilis, Isolated from Soil in Death Valley, California
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1996, p. 470-475 Vol. 46, No. 2 0020-7713/96/$04.00+0 Copyright 0 1996, International Union of Microbiological Societies Bacillus vallismortis sp. nov., a Close Relative of Bacillus subtilis, Isolated from Soil in Death Valley, California MICHAEL S. ROBERTS,'" L. K. NAKAMURA,' AND FREDERICK M. COHAN3 Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824-1I01 '; Microbial Properties Research, National Center for Agricultural Utilization Research, Agricultural Research Service, US. Department of Agriculture, Peoria, Illinois 61 604'; and Department of Biology, Wesleyan University, Middletown, Connecticut 06459-01703 Five Bacillus strains isolated from Death Valley soil were shown to belong to a previously unidentified species, for which we propose the name Bacillus vallismortis. The type strain is strain DV1-F-3 (= NRRL B-14890). On the basis of previously published restriction digestion data, B. vallismortis is most closely related to Bacillus subtilis. At this time B. vallismortis can be distinguished from B. subtilis only by differences in whole-cell fatty acid compositions, DNA sequences, and levels of reassociation of genomic DNA. The species most closely related to Bacillus subtilis are easily cludes the prefix B-, which identifies organisms that were obtained directly from distinguished by differences in their DNA sequences. B. subti- individuals or were isolated at the National Center for Agricultural Utilization Research, or the prefix NRS-, which
    [Show full text]
  • Hydrogen Peroxide-Resistant Cota and Yjqc of Bacillus Altitudinis
    RESEARCH ARTICLE Hydrogen Peroxide-Resistant CotA and YjqC of Bacillus altitudinis Spores Are a Promising Biocatalyst for Catalyzing Reduction of Sinapic Acid and Sinapine in Rapeseed Meal Yanzhou Zhang1, Xunhang Li1,2, Zhikui Hao3, Ruchun Xi4, Yujie Cai1, Xiangru Liao1* 1 The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan a11111 University, 1800 Lihu Avenue, Wuxi, 214122, China, 2 The Bioscience and Engineering College, Jiangxi Agriculture University, Nanchang, 330045, China, 3 Institute of Applied Biotechnology, Taizhou Vocational & Technical College, Taizhou, 318000, China, 4 College of Forestry, South China Agricultural University, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China * [email protected] OPEN ACCESS Citation: Zhang Y, Li X, Hao Z, Xi R, Cai Y, Liao X Abstract (2016) Hydrogen Peroxide-Resistant CotA and YjqC of Bacillus altitudinis Spores Are a Promising For the more efficient detoxification of phenolic compounds, a promising avenue would be Biocatalyst for Catalyzing Reduction of Sinapic Acid to develop a multi-enzyme biocatalyst comprising peroxidase, laccase and other oxidases. and Sinapine in Rapeseed Meal. PLoS ONE 11(6): However, the development of this multi-enzyme biocatalyst is limited by the vulnerability of e0158351. doi:10.1371/journal.pone.0158351 fungal laccases and peroxidases to hydrogen peroxide (H2O2)-induced inactivation. There- Editor: Adam Driks, Loyola University Chicago, fore, H2O2-resistant peroxidase and laccase should be exploited. In this study, H2O2-stable UNITED STATES CotA and YjqC were isolated from the outer coat of Bacillus altitudinis SYBC hb4 spores. In Received: September 20, 2015 addition to the thermal and alkali stability of catalytic activity, CotA also exhibited a much Accepted: June 14, 2016 higher H2O2 tolerance than fungal laccases from Trametes versicolor and Trametes trogii.
    [Show full text]